Key questions:
- What's NP-completeness mean?
- What's \(P = NP \) or \(P \neq NP \) mean?
- How do we show that a problem is intractable? Intractable = unlikely to be solved efficiently

Definitions:

\[P = \text{class of all search problems that can be solved in polynomial time} \]

\[NP = \text{class of all search problems (regardless of time required to solve)} \]

What's a search problem?
Roughly, a problem where we can efficiently verify solutions

Given a solution, we can verify this is a solution in polynomial-time.
Formally, what is a search problem?

Search problem:

has the following input/output form:

Given instance I (e.g., graph G)

we are asked to find a solution if one exists and if no solution exists we output NO.

Additional requirement:

if we are given a solution S for instance I,
then we can verify (i.e., check) that S is a solution to I in time polynomial in $|I|$.

So $P=NP$ or $P\neq NP$ addresses whether or not:

Solving a problem (i.e., constructing a solution) is as easy as verifying a solution.
To show a problem P is a search problem, we need to show an algorithm A that takes as input (I, S) & in poly-time verifies that S is a solution to I.

Examples of search problems:

k-coloring:

- input: undirected $G = (V, E)$ & integer $k > 0$.
- output: Assign each vertex to a color in $P_1, ..., P_k$ so that adjacent vertices get different colors, and output NO if no such k-coloring exists for G.

Given G & a k-coloring σ (so $\sigma(v)$ is the color for vertex v) then in $O(|V| + |E|)$ time we can verify that σ is a valid coloring.

Hence, coloring $\in \text{NP}$.
SAT:

Input: Boolean formula \(f \) in CNF with \(n \) variables & \(m \) clauses

Output: Satisfying assignment if one exists
No otherwise.

SAT \∈\ NP:

Given \(f \) and assignment \(\sigma \),
in \(O(n) \) time/clause can verify that the clause is satisfied & hence in \(O(nm) \) total time we can verify that \(\sigma \) satisfies \(f \).

Knapsack:

Input: \(n \) objects with integer weights \(w_1, \ldots, w_n \) & integer values \(v_1, \ldots, v_n \) & capacity \(B \)

Output: Subset \(S \) of objects with total weight \(\leq B \) & maximum total value.
Is knapsack $\in \mathsf{NP}$?

Given instance $\{w_1, \ldots, w_n; v_1, \ldots, v_n; B\}$ & solution S in $O(n)$ time can check total weight is $\leq B$

but how do we verify that S has maximum value?

(need to do it in time poly $(n, \log B)$

but only approach is to run knapsack to find an optimal solution S which takes time $\text{poly}(n, B)$)

This is the optimization version, not search.

Look at search version:

Knapsack-search: as before

- input: $w_1, \ldots, w_n; v_1, \ldots, v_n; B$ & goal g
- output: subset S with
 - total weight $\leq B$
 - total value $\geq g$
 - \text{NO} if no such S exists.

Knapsack-search $\in \mathsf{NP}$: Given instance & solution S, in poly-time $O(n)$ can check that it has total weight $\leq B$ & total value $\geq g$.
Note: if we can solve the search version in poly-time then we can solve the optimization version in poly-time by binary search over $g(T), \ldots, Vg$.

So knapsack \rightarrow knapsack-search.

MST:

input: $G = (V,E)$ with $w(e) \geq 0$ for $e \in E$.

output: tree T with min weight.

MST in NP:

Given G & T, run Kruskal's or Prim's alg. to find in poly(n) time a MST T'. Check that $w(T) = w(T')$ & then run BFS/DFS to check that T is a tree.
NP stands for nondeterministic polynomial time

= problems that can be solved in poly-time
or a non-deterministic machine

↑

allowed to guess at each step
(there exists a path to the accepting state)

NP = all search problems.
P = search problems that can be solved in poly-time

Hence, \(P \subseteq NP \).

\[\text{NP} \]

if \(P = \text{NP} \):
means that if we can verify solutions efficiently
then we can construct solutions efficiently.
(e.g., verifying a proof is as hard as constructing a proof)

if \(P \neq \text{NP} \):
means there are some search problems that can't be solved in poly-time.
If $P \neq NP$: what problems can't be solved in poly-time?

NP-complete problems = hardest problems in NP = most difficult to solve.

SAT is NP-complete

This means:

a) $SAT \in NP$

b) if we can solve SAT in poly-time then we can solve every problem in NP in poly-time.

Thus if $P \neq NP$ then there is no poly-time algorithm for SAT.

How to show (b)?
Reductions:

Problems A & B (example: A=MST, B=SAT or A=2SAT, B=SCC)

A \Rightarrow B or A \leq B

means: A reduces to B

if we can solve B in poly-time then we can use that alg. for B as a black-box to solve A in poly-time.

Algorithm for A

I \rightarrow f(I) \rightarrow Algorithm for B \rightarrow S \rightarrow h \rightarrow h(s) \rightarrow NO

Take input I for A:
1) define input $f(I)$ for B
2) run black-box alg. for B on $f(I)$
3) given solution S for $f(I)$ produce solution $h(S)$ for I
& given NO for $f(I)$ then output NO for I.
To reduce \(A \rightarrow B \),

need to define \(f \) & \(h \)

\& prove that

if \(S \) is a solution to \(f(I) \)
then \(h(S) \) is a solution to \(I \)

\& if no solution for \(f(I) \)
then no solution for \(I \).

To show:
- \(\text{SAT} \) is \(\text{NP} \)-complete

need to show:

a) \(\text{SAT} \in \text{NP} \)
b) for all \(A \in \text{NP} \)
\(A \rightarrow \text{SAT} \).

How to do (b)?
Suppose we know SAT is NP-complete (somehow?)
So for every \(A \in \text{NP} \), \(A \rightarrow \text{SAT} \).

Suppose we want to show:

Colorings is NP-complete.
If we show:

\(\text{SAT} \rightarrow \text{Colorings} \)

Then \(A \rightarrow \text{SAT} \rightarrow \text{Colorings} \)

Hence, to show Colorings is NP-complete, we need to show:

a) Colorings \(\in \text{NP} \)

& b) for a known NP-complete problem \(B \), \(B \rightarrow \text{Colorings} \).