DFS = Depth first search
Run DFS on undirected graphs to get connected components.

DFS(G):
 input: G = (V, E) in adjacency list representation
 output: vertices labelled by connected components
 CC = Ø
 for all v ∈ V, visited(v) = FALSE
 for all v ∈ V,
 if not visited(v) then
 CC++
 Explore(v)

Explore(z):
 ccnum(z) = CC
 visited(z) = TRUE
 for all (z, w) ∈ E,
 if not visited(w) then Explore(w)

Running time: O(n+m)
 n = |V|
 m = |E|
Directed graphs: we need more information
So add pre/postorder numbers

DFS(G):
input: directed G = (V, E) in adjacency list format
for all \(v \in V \), \(\text{visited}(v) = \text{FALSE} \)
clock = 1
for all \(v \in V \), if not visited \((v) \) then Explore \((v) \)

Explore \((z) \):
\(\text{visited}(z) = \text{TRUE} \)
\(\text{Pre}(z) = \text{clock} \)
clock++
for all \((z, w) \in E \), if not visited \((w) \) then Explore \((w) \)
\(\text{Post}(z) = \text{clock} \)
clock++
Example:

Run DFS starting at B:

Types of edges:
- $z \rightarrow w$: explored edges
- tree edge: $\text{post}(z) > \text{post}(w)$
- back edges: examples $E \rightarrow A, F \rightarrow B$
 $\text{post}(z) < \text{post}(w)$
- forward edges: $D \rightarrow G$
- cross edges: $F \rightarrow H, H \rightarrow G$ $\text{post}(z) > \text{post}(w)$
G has a cycle iff its DFS tree has a back edge.

DAG = directed acyclic graph

- no cycles

Topologically sorting a DAG

= order vertices so that all edges go left → right
 (or lower → higher)

Run DFS on a DAG.

No back edges, so for all edges $z \rightarrow w$,

$\text{Post}(z) > \text{Post}(w)$

Topological sorting algorithm = Sort vertices by Postorder
Source vertex = no incoming edges
Sink = no outgoing edges

In a DAG,
 lowest post # is a sink (might be other sinks)
 highest post # is a source (might be others)

Alternative topological sorting algorithm:
1) Find a sink, output it, and delete it.
2) Repeat (1) until the graph is empty.

General directed graph $G=(V,E)$,
vertices v & w are strongly connected if
there is a path v to w
& a path w to v

$SCC =$ strongly connected component
= maximal set of strongly connected vertices.
Example:

SCCs: 5A5, 3BEJ, 7C, F, G, 7D, 9H, I, J, K, L

New metagraph: vertex for each SCC, edge from SCC S to S' if some vεS & wεS' has v→w

The metagraph is a DAG.
Every directed graph is a DAG of its SCCs.
Let's find the SCCs & topologically sort these SCCs.
Approach: Find sink SCC, output it, remove it & repeat

How to find a sink SCC?
Take any vertex \(v \) in a sink SCC \(S \).
Run Explore(\(v \)) — only visit \(S \) (no more).

How to find \(v \) in a sink SCC?
Maybe \(v \) with lowest post #?
No:

\[
\text{DFS from A: } \\
\begin{array}{c}
\text{A} \\
\text{B} \\
\text{C}
\end{array}
\]

B has lowest post # but \(FA,B \) is not a sink SCC.

But: Vertex with highest post # lies in a source SCC.

We'll prove it later. Now we can do our algorithm.
How to get a vertex in a sink SCC?

Look at G^R = reverse of G.

For $G = (V,E)$, let $G^R = (V,E^R)$
where $E^R = \{ w \rightarrow v : v \rightarrow w \in E \}$

= reverse of every edge in G

Source SCC in G = Sink SCC in G^R
Sink SCC in G = Source SCC in G^R

SCC algorithm:

For input $G = (V,E)$,
1. Construct G^R
2. Run directed DFS on G^R
3. Order vertices V by \downarrow Post #
4. Run undirected connected components algorithm on G
 (this is just DFS with $\text{ccnum}(v)$)

Running time: $O(n+m)$.
Proof of key fact:

Vertex with highest post # lies in a source SCC.

First simpler claim:
if S & S' are SCC's, and if there is an edge from $V(S)$ to $V(S')$
then $\max_{S} \text{post #} > \max_{S'} \text{post #}$
in S
in S'

Assuming the claim,
topological sort the SCC's by the max post # in each.
The first SCC is a source SCC since it's a topological sorting and it has the vertex with max post #.
So that proves the key fact.
Just need to prove the claim.
There is a path $S \rightarrow S'$ (since $\text{yes} \rightarrow \text{west}$)
So no path $S' \rightarrow S$ otherwise SUS' is a SCC
Let z be the 1st vertex in SUS' visited by DFS.

Case 1: $z \in S'$
We see all of S' before visiting any of S
& finish them
Thus all post # of S' in $S' < all post # of S.

Case 2: $z \in S$
When we Explore(z) we see all of SUS'
before finishing z
Post # of $z > Post # of all of SUS'

Since $z \in S$ we are done.