Given a graph $G = (V,E)$

let $\mathcal{M}(G)$ = all matchings of G (any size)

Sampling problem: generate a matching from $\pi = \text{uniform}(\mathcal{M})$.

Counting problem: FPRAS for $|\mathcal{M}| = \# \text{of matchings}$.

Harder problem (later): $\Phi = \text{perfect matchings (for bipartite)}$.

Markov chain for sampling problem:

let $\mathcal{M} = \text{collection of all matchings of input graph } G$.

From $X_t \in \mathcal{M}$,

1. Choose an edge $e = (x, w)$ uniformly from E.

2. Set $X' = X_t \oplus e$, i.e., $X' = \begin{cases} X_{t+1} \oplus e & \text{if } e \notin X_t \\ X_t \oplus e & \text{if } e \in X_t. \end{cases}$

3. If $X' \in \mathcal{M}$ then $X_{t+1} = X'$ w/ prob. $\frac{1}{2}$
 otherwise set $X_{t+1} = X_t$.

This MC is ergodic and symmetric. Hence, \(\Pi = \text{uniform}(G) \).

Later we'll show \(\text{Tr} x = \text{poly}(n) \) for all \(G \).

Let's use this sampling algorithm to design an FPRAS for the counting problem.

Order the edges \(E = \{ e_1, e_2, \ldots, e_m \} \).

(arbitrary order)

Let \(G_0 = G \), and for \(i > 0 \):

Let \(G_i = G \backslash e_i \) (remove edge \(e_i \)).

Thus, \(G_m = \text{empty graph} \)

& thus \(|M(G_0)| = 1 \).

Note,

\[
|M(G)| = \frac{|M(G_0)|}{|M(G_1)|} \times \frac{|M(G)|}{|M(G_2)|} \times \cdots \times \frac{|M(G_m)|}{|M(G_m)|}
\]
Let \(\alpha_i = \frac{|M(G_i)|}{|M(G_{i-1})|} \).

Then, \(|M(G)| = \frac{1}{\alpha_1 \alpha_2 \ldots \alpha_m} \).

Note, \(M(G_i) \subseteq M(G_{i-1}) \) since \(M \in M(G_{i-1}) \) is also in \(M(G_{i-1}) \).

And thus \(\alpha_i \leq 1 \).

Moreover, \(\alpha_i \geq \frac{1}{2} \) because:

\[|M(G_{i-1}) \setminus M(G_i)| \leq |M(G_i)| \]

by mapping \(f : M(G_{i-1}) \setminus M(G_i) \rightarrow M(G_i) \)

as \(f(M) = M \setminus e_i \).

Therefore,

\[\frac{1}{2} \leq \alpha_i \leq 1. \]
To estimate $\alpha_i = \frac{|\mathbf{M}(G)|}{|\mathbf{M}(G_i-1)|}$,

Generate samples M_1^i, \ldots, M_m^i from M_i where \(\|M_i - \mathbf{π}_i\| \leq \delta_i \)

for $\mathbf{π}_i = \text{uniform}(\mathbb{E} \rightarrow \mathbf{M}(G_{i-1}))$

and $\delta_i = \frac{e}{6m}$ ($\varepsilon > 0$ is the desired accuracy of $|\mathbf{M}(G)|$)

Let $X_j = 1$ if $M_j^i \in \mathbf{M}(G_i)$

and $X_j = 0$ if not

Note, $\alpha_i - \delta_i \leq E[X_j] \leq \alpha_i + \delta_i$

& thus, $\alpha_i(1 - \frac{e}{3m}) \leq E[X_j] \leq \alpha_i(1 + \frac{e}{3m})$

By Chebyshev's, for $\lambda = O\left(\frac{m}{e^2}\right)$

\[
N = \left(\bar{X}_1, \bar{X}_2, \ldots, \bar{X}_m\right)^{-1}
\]

where $\bar{X}_i = \frac{1}{N} \sum_{j=1}^{N} X_j$

is an \textit{EPRAS} for $|\mathbf{M}(G)|$, with prob. $\geq \frac{3}{4}$

$(1 \pm \varepsilon)$-approx. then use median/Chernoff to boost.
How to prove rapid mixing \((T_{\text{mix}} = \text{Poly}(n))\) for the MC on matchings?

MC defined by \((P, \mathcal{S}, \pi)\)

Graph defined by

Vertices = \(\mathcal{S}\)

Edges = \(\{m \Rightarrow m': P(m, m') > 0\}\)

Conductance = normalized edge expansion.

For set \(S\) where \(\pi(S) \leq \frac{1}{2}\),

\[
\Phi(S) = \Pr(X_{t+1} \notin S | X_t \in S, X_t \sim \pi)
\]

\[
= \sum_{m \in S, m' \in \mathcal{S}} \pi(m)P(m, m') \frac{\pi(S)}{\pi(S)}
\]

For the MC on matchings, \(P(m, m') = \frac{1}{m} \quad \# \pi(m) = \frac{1}{\sqrt{2}}\)

Thus, \(\Phi(S) = \frac{1}{m} \frac{\# \mathcal{E}(SS)}{|S|}\)
Let \(\Phi = \min_{S: \Pi(S) \leq \frac{1}{2}} \Pi(S) \)

Theorem:

\[T_{\text{mix}} = O\left(\frac{1}{\Phi^2} \log \left(\frac{1}{\Pi_{\text{min}}} \right) \right) \]

Easy inequality: Since \(\Pi(S) \leq \frac{1}{2} \), to get close to \(\Pi \) have to at least visit \(S \).

Set \(\{x_0, \ldots, x_n\} \sim \Pi \).

Then \(\Phi(S) \) is the prob. of leaving in 1 step, and \(\frac{1}{\Phi(S)} \) is the expected \# of steps to leave \(S \) & visit \(S \).

To lower bound the mixing time, find a set \(S \) with bad conductance.
To upper bound the mixing time,
prove that the conductance \(\Phi(S) \geq \frac{1}{\text{poly}(n)} \)
for every \(S \subseteq Z \).

Doesn't give as tight bounds as coupling.

Canonical paths:

For every pair \(I, F \in Z \),
define a path \(\gamma_{IF} \) along edges in \((Z, P)\),
assume \(P(M, M') = \frac{1}{m} \) \(\forall (M, M') \in P \),
\& \(\gamma = \text{uniform}(Z) \).

For edge \(T = M \rightarrow M' \),
define its congestion:
\[
\text{cp}(T) = \sum (I, F) : T \in \gamma_{IF} \text{ set of paths that go through } T.
\]

\[
\text{let } p = \max_{T} \frac{\text{cp}(T)}{|S|}.
\]
Lemma: \(\Phi \geq \frac{1}{2m} \)

Proof: Fix SCCL where \(\Pi(S) \leq \frac{1}{2} \) and thus \(|S| \leq |S| \) and \(|S| \geq 12/2 \).

Let's bound \(|E(S,S)| \):

There are \(|S| \times |S| \) pairs \((I,F)\) with \(\frac{|E_S|}{S_S} \) each of these crosses \(S \rightarrow S \) at least once on \(\Phi_{IF} \).

Every edge \(\tau = S \rightarrow S \in E(S,S) \) has \(\leq \frac{1}{|S|^2} \) through it.

Therefore, \(\geq \frac{|S| |S|}{|S|^2} \geq \frac{|S|}{2p} \) transitions from \(S \rightarrow S \).

So \(|E(S,S)| \geq \frac{|S|}{2p} \).
Random walk on hypercube:

\[S = \{0, 1\}^n \]

From \(X_0 \in S \):
1. Choose \(i \in \{1, ..., n\} \) & \(b \in \{0, 1\} \)
2. For all \(j \neq i \), \(X_{+1}(j) = X_+(j) \)
3. Set \(X_{+1}(i) = b \)

For \(I, F \in S \), canonical path \(X_{IF} \):

- For \(i = 1 \rightarrow n \):
 - change \(I(i) \rightarrow F(i) \)

Consider transition \(T = X \rightarrow X' \) which flips \(i^{th} \) bit:

Set \(E = (F(1), ..., F(i), I(i+1), ..., I(n)) \)

Set \(E = (I(1), ..., I(i), F(i+1), ..., F(n)) \)

Claim: \(E: cp(T) \rightarrow S \) & \(E \) is injective (can invert)

where \(cp(T) = \{ (I,F) : Y_{IF} \in T \} \)
Proof of claim:

Note, transition T agrees with F on first i-1 bits, and with I on last bits i,...,n.

Thus, from E & T can infer F on all bits & I on all bits.

(can use \(X \to X' \) transition to get \(I(i) \) & \(F(i) \))

Therefore, E is injective & clearly \(E \in \mathbb{R} \).

Thus, \(|c_F(T)| \leq 1521 \), and so \(p = O(1) \).

And this implies \(\Theta \geq \frac{1}{2} + \Omega(\frac{1}{n}) \).

Finally, \(T_{\text{mix}} = O\left(\frac{m^2}{n} \right) \) since \(T_{\text{min}} = 2^{-n} \).

Note, using coupling we get an \(O(n \log n) \) bound on the mixing time.