Given a graph $G = (V, E)$ of maximum degree Δ and integer $k > 0$, generate a random k-coloring of G.

Goal: Poly-time algorithm when $k > \Delta$.

Markov Chain: Glauber Dynamics = single-vertex update

1. Let \mathcal{Z} = collection of proper vertex k-colorings of G.
2. Set X_0 = some proper vertex k-coloring.
3. From $X_t \in \mathcal{Z}$,

 1. Choose a vertex v uniformly at random (var) from V
 2. Choose a color c (var) from $\{1, \ldots, k\}$
 3. For all $w \neq v$ set $X_{t+1}(w) = X_t(w)$.
 4. If no neighbors of v have color c
 then $X_{t+1}(v) = c$
 else $X_{t+1}(v) = X_t(v)$.

Claim: When $k \geq \Delta + 2$ the MC is ergodic.

Since P is symmetric then $\pi = \text{Uniform}(\mathcal{Z})$ when $k \geq \Delta + 2$.
Analyze mixing time = \# of steps from worst \(X_0\) to get "close" to \(\pi\).

Measure distance using total variation distance:

\[
\text{for a pair of distributions } \mu \& \nu \text{ on } \mathbb{Z},
\]
\[
\text{\(Q_{TV}(\mu, \nu) = \frac{1}{2} \sum_{\sigma \in \mathbb{Z}} |\mu(\sigma) - \nu(\sigma)|\)}
\]
\[
= \sum_{\sigma : \mu(\sigma) \geq \nu(\sigma)} \mu(\sigma) - \nu(\sigma)
\]
\[
= \max_{S \subseteq \mathbb{Z}} \mu(S) - \nu(S).
\]

for \(\epsilon > 0\), \(X_0 \in \mathbb{Z}^d\),
\[
T_{mix}(\epsilon) = \min \{ t \in \mathbb{Z}^+ : Q_{TV}(P_{1}^t(X_0), \pi) \leq \epsilon \}
\]

Distribution of \(X_+\) given \(X_0\).

\[
T_{mix}(\epsilon) = \max_{X_0 \in \mathbb{Z}} T_{mix}(\epsilon).
\]

Let \(T_{mix} = T_{mix}(\frac{1}{4})\)

then \(T_{mix}(\epsilon) \leq T_{mix} \times \log \left(\frac{1}{\epsilon}\right)\). (Prove using coupling)
Coupling: a method to bound distance b/w distributions.

For \(\mu \) & \(\nu \) on \(\Sigma \),

let \(\omega \) be a distribution on \(\Sigma \times \Sigma \).

Then \(\omega \) is a coupling of \(\mu \) & \(\nu \) if:

for all \(\sigma \in \Sigma \), \(\sum_{\tau \in \Sigma} \omega(\sigma, \tau) = \mu(\sigma) \)

& for all \(\tau \in \Sigma \), \(\sum_{\sigma \in \Sigma} \omega(\sigma, \tau) = \nu(\tau) \)

(in words, for \(\omega \), the marginal in the 1st coordinate is \(\mu \)

& in the 2nd coordinate is \(\nu \))

Choose \((X, Y) \sim \omega \)

Then, \(D_{TV}(\mu, \nu) \leq \Pr(X = Y) \)

Proof: \(\Pr(X = Y) = \sum_{\sigma \in \Sigma} \omega(\sigma, \sigma) \leq \sum_{\sigma \in \Sigma} \min \{ \mu(\sigma), \nu(\sigma) \} \)

& hence, \(\Pr(X \neq Y) \geq 1 - \sum_{\sigma \in \Sigma} \min \{ \mu(\sigma), \nu(\sigma) \} \)

\[= \sum_{\sigma \in \Sigma} \mu(\sigma) - \min \{ \mu(\sigma), \nu(\sigma) \} \]

\[= \sum_{\sigma : \mu(\sigma) \geq \nu(\sigma)} \mu(\sigma) - \nu(\sigma) = D_{TV}(\mu, \nu). \]
Note, a coupling \(w \) of \(\mu \& \nu \) s.t.
\[d_{TV}(\mu, \nu) = \Pr(X \neq Y). \]

Exercise: Prove this fact by construction.

Now consider a MC defined by \(P \) on \(S_2 \).
Make 2 copies \((X^+, Y^+)\), with arbitrary \(X_0, Y_0 \).
From \((X^+, Y^+)\), define \((X^{+1}, Y^{+1})\) so that:
\[X^+ \rightarrow X^{+1} \quad \text{is distributed according to} \ P \]
\[Y^+ \rightarrow Y^{+1} \quad \text{but they can be correlated.} \]

Then,
\[d_{TV}(P^+(X_0, \cdot), P^+(Y_0, \cdot)) \leq \Pr(X^+ \neq Y^+) \]
& if for all \(X_0, Y_0 \),
\[\Pr(X^+ \neq Y^+) \leq \frac{1}{4} \]
then by setting \(Y_0 \sim \Pi \) we have:
\[T_{mix} \leq t. \]
Toy example: Random walk on the hypercube.

$S^2 = \{0,1\}^n = n$-bit vectors.

From $X_t \in \{0,1\}^n$:

1. Choose i var from $\{1,2,\ldots,n\}$
 & b var from $\{0,1\}$.

2. for all $j \neq i$, set $X_{t+1}(j) = X_t(j)$.

3. Set $X_{t+1}(i) = b$.

Lemma: $T_{\text{mix}} = O(n \log n)$

Proof: For a pair $X_t, Y_t \in \{0,1\}^n$

define a coupling $(X_t, Y_t) \rightarrow (X_{t+1}, Y_{t+1})$ by:

Using the same random i & b.

Let $H_t = |\{i : X_t(i) \neq Y_t(i)\}|$

$E[H_{t+1}] \leq H_t - \frac{H_t}{n} = H_t(1 - \frac{1}{n})$

$E[H_0] \leq H_0 (1 - \frac{1}{n})^t \leq ne^{-\frac{t}{2n}}$ for $t = \frac{1}{2n}$.
Back to colorings:

For \(k \)-colorings \(X_t, Y_t \in \mathcal{Z} \),

Choose same \(v \) & \(c \) for attempted update

Let \(H_t = \left| \{ w \in V : X_t(w) \neq Y_t(w) \} \right| \)

= \# of vertices that \(X_t \& Y_t \) differ on.

Let \(D_t = \{ w \in V : X_t(w) \neq Y_t(w) \} \)

& thus \(H_t = |D_t| \)

& \(A_t = V \setminus D_t = \{ w \in V : X_t(w) = Y_t(w) \} \)

For \(w \in V \), Let \(a_t(w) = |A_t \cap NN(w)| \& \(d_t(w) = |D_t \cap NN(w)| \)

\[
\Pr(v \in A_{t+1} | v \in D_t) \geq \frac{k - 2\Delta + a_t(v)}{nk}
\]

\[
\Pr(v \in D_{t+1} | v \in A_t) \leq \frac{2d_t(v)}{nk}
\]

\[
E[H_{t+1} | X_t, Y_t] \leq H_t + \sum_{v \in A_t} \frac{2d_t(v)}{nk} - \sum_{v \in D_t} \frac{k - 2\Delta + a_t(v)}{nk}
\]

(for \(k \geq 3\Delta_t \))

\[
\leq H_t + \sum_{v \in A_t} \frac{2d_t(v)}{nk} + \sum_{v \in D_t} \frac{-1 - 2a_t(v)}{nk}
\]

\[
\leq H_t + \sum_{v \in A_t} \frac{2d_t(v)}{nk} + \sum_{v \in D_t} \frac{-1 - 2a_t(v)}{nk}
\]
So we have:

\[E[H_{t+1} | X_t, Y_t] \leq H_t + \frac{1}{nk} \left[\sum_{v \in A_t} 2 \delta_t(v) + \sum_{v \in D_t} 1 - 2a_t(v) \right] \]

Note, \[\sum_{v \in A_t} \delta_t(v) = \sum_{v \in D_t} a_t(v) \]

hence,

\[E[H_{t+1} | X_t, Y_t] \leq H_t - \frac{|D_t|}{nk} = H_t \left(1 - \frac{1}{nk} \right) \]

Thus, \[\Pr(X_t = Y_t) \leq E[H_t] \leq H_0 \left(1 - \frac{1}{nk} \right) \]

\[\leq ne^{-t/nk} \]

\[\leq \frac{1}{4} \text{ for } t = nk \log(4n) \]

when \(k \geq 3\Delta + 1 \).

This proves \(T_{mix} = O(nk \log n) \)

when \(k > 3\Delta \).
How to improve?

Couplings compose:

Consider distributions \(M, \nu, \omega \) on \(\mathbb{Z} \),

& coupling \(\alpha \) of \(M \) & \(\nu \)

coupling \(\beta \) of \(\nu \) & \(\omega \)

then \(X = \alpha \circ \beta \) is a coupling of \(M \) & \(\omega \).

Choose \(\sigma \) from \(M \)
then apply \(\alpha \) to choose \(\xi \) from \(\nu \)
then apply \(\beta \) to choose \(\eta \) from \(\omega \).

Note,
\[
\gamma'(\xi, \eta) = \sum_{\xi} \alpha(\xi, \omega) \beta(\eta, \nu)
\]
Define a coupling for all pairs of colorings X^+, Y^+

where $H(X^+, Y^+)=H_+=1$,

so they only differ on 1 vertex.

For arbitrary W^+, Z^+

define a sequence of colorings X^0, X^1, \ldots, X^l

where $X^0 = W^+, X^l = Z^+$

& $H(X^i, X^{i+1}) = 1$ \forall i

Note, $l = H(W^+, Z^+)$

Define a coupling for all pairs X^+, Y^+

where $H(X^+, Y^+)=1$

and the coupling satisfies:

$\mathbb{E}\left[H(X_{n+1}^+, Y_{n+1}^+) \right] \leq 1 - \frac{1}{n^k}$
Then, for arbitrary W_t, Z_t

Consider the path X_t, \ldots, X^0

by composing couplings we have a

coupling $(W_t, Z_t) \rightarrow (W_{t+1}, Z_{t+1})$

\[E[H(W_{t+1}, Z_{t+1})] \leq E\left[\sum_{i=0}^{l-1} H(X^i_{t+i}, X^i_{t+i+1}) \right] \]

\[\leq \sum_i E[H(X_{t+i}, X_{t+i+1})] \]

\[\leq \sum_i (1 - \frac{1}{n^k}) \]

\[= H_+(1 - \frac{1}{n^k}). \]

So it suffices to analyze pairs that differ on 1 vertex.
Couple \(B \) in \(\mathbf{X}^+(v) \) with \(R \) in \(\mathbf{Y}^+(v) \) & vice-versa for \(v \in \mathbb{N}(v^*) \).

Couple \(B \) in \(\mathbf{X}^+ \) with \(R \) in \(\mathbf{Y}^+ \) & \(R \) in \(\mathbf{X}^+ \) with \(B \) in \(\mathbf{Y}^+ \) & everything else, \((\forall c) \) is same for \(\mathbf{X}^+, \mathbf{Y}^+ \).

Note,

\[
E[\mathcal{H}(x_{t+1}, y_{t+1})] = 1 - \left(1 - \frac{k-d}{nk}\right) + \frac{\Delta}{nk} \\
= 1 - \left(1 - \frac{k-2\Delta}{nk}\right) \leq 1 - \frac{1}{nk} \quad \text{for } k > 2\Delta.
\]