Hashing: Bloom filters & Cuckoo hashing

Bloom filter:

Setting: HUGE universe \(U = \{0, 1, \ldots, N-1\} \) of possible elements

Want to maintain a subset \(S \subseteq U \)

where \(|S| = m \)

using 0-1 table/array \(H[0, 1, \ldots, n-1] \)

where \(n = |H| \)

\(n = cm \) for \(c \geq 1 \).

Example: \(U = \) possible password strings

\(S = \) unacceptable passwords

Want fast queries, small space, simple,
allow false positives with small probability.
\(k = \# \text{ of hash functions} \)

Hash functions: \(h_1, h_2, \ldots, h_k : U \rightarrow \{0, 1, \ldots, n-1\} \)

\underline{Operations:}
- Insert \(x \) into \(S \)
- Query: is \(x \in S \)?

No Deletions

\underline{Bloom filter:}
- Initialize \(H \) to all 0's

\underline{To insert} \(x \) into \(S \):
 \[\text{for all } i = 1 \rightarrow k: \]
 - Compute \(h_i(x) \)
 - Set \(H[h_i(x)] = 1 \) (keep as is if already set to 1)
For a query: is \(x \in S\)?

for all \(i = 1 \to k:\)
- compute \(h_i(x)\)
- check whether \(H[h_i(x)] = 1\)

If for all \(i\) it is set to 1,
then return (YES)
else return (NO).

Note, if \(x \in S\), then we always output YES
but if \(x \notin S\), we might have a
false positive = incorrectly output YES.

What is the false positive rate
as a function of \(k\) & \(c\)?

\[c = \frac{n}{m} = \frac{|H|}{|S|} = \frac{|\text{hash table}|}{|\text{subset to maintain}|} \]

Note, big \(k\): more robust/redundancy, i.e.,
check more bits
but add more 1's when insert.
So what's optimal \(k\)?
What is the probability of a false positive?

First, what's the prob. an entry \(H[i,j] \) is 0 or 1?

\[
Pr(H[i,j] = 0) = Pr(\forall y \in S, \forall j \leq k, h_j(y) \neq i) = (1 - \frac{1}{n})^{km}
\]

\[
= (1 - \frac{1}{cm})^{kn} = (1 - \frac{1}{cm})^{kn} = (1 - \frac{1}{cm})^{kn} = \leq e^{-k/c}
\]

in fact, \((1 - \frac{1}{cm})^{kn} \approx e^{-k/c}\) for \(m\) large

So we'll use this approximation.

False Positive:

\[
Pr(output \times \in S | \times \in S) = Pr(\forall j, H[j,x] = 1) \propto (1 - e^{-k/c})^k
\]

Let \(f = Pr(false\ positive) = (1 - e^{-k/c})^k \).
What's the optimal choice of k as a function of c?

Let's minimize f as a function of k.

Let \(g = \ln f = k \ln (1 - e^{-k/c}) \)

\[
\frac{\partial g}{\partial k} = \ln (1 - e^{-k/c}) + \frac{k}{1 - e^{-k/c}} \cdot \frac{1}{c} \cdot e^{-k/c}
\]

Set \(k = c \ln 2 \)

Then \(\frac{\partial g}{\partial k} = -\ln 2 + \ln 2 \) & can check this is a minimum by looking at the 2nd derivative.

Plugging in \(k = c \ln 2 \),

\[
\Pr(\text{false positive}) = f = (1 - e^{-k/c})^k = \left(\frac{1}{2}\right)^k \cdot 6.185^f
\]

Note, \(\Pr(H|\overline{H} = 0) = e^{-k/c} = \frac{1}{2} \)

So \(H \) is a random 0-1 string.
Examples

\[f = \left(1 - e^{-\frac{k}{c}}\right)^k \]

For \(\frac{k}{c} \) small, \(f \approx \left(\frac{k}{c}\right)^k \)

- \(k=1 \): \(c=10 \):
 - \(c=100 \):
 - \(0.09516 \)
 - \(0.00995 \)

- \(k=5 \): \(c=10 \):
 - \(0.0049 \)

- \(k=10 \): \(c=100 \):
 - \(6 \times 10^{-11} \)

- \(k=\ln 2 \): \(c=10 \):
 - \(c=100 \):
 - \(0.0082 \)
 - \(1.3 \times 10^{-21} \)
Cuckoo hashing:

As before, HUGE universe U

but **static** S: Do a set of insertions to set up S

& then we want fast queries.

Goal: $O(1)$ query time (as with Bloom filter)

but **no errors**

& $O(1)$ expected insertion time

(instead of worst-case as for Bloom filter)

Use 2 hash functions $h, h_2: U \rightarrow \{0, \ldots, n-1\}$

Store ≤ 1 item at each location $H[i,j]$.

To insert: use $h(x)$ or $h_2(x)$, whichever is empty.

If neither is empty, then **push** one of the occupied elements to its other choice & repeat, if necessary.

Potential problem: cycle of pushes, in which case: start over with 2 new hash functions h, h_2.
To insert x into S:

- Compute $h_1(x)$
- if $H[h_1(x)]$ is empty
 then add x at $H[h_1(x)]$
else:
 - Compute $h_2(x)$
 - if $H[h_2(x)]$ is empty
 then add x at $H[h_2(x)]$
 else (so $h_1(x) \& h_2(x)$ are occupied)
 - Let $y = H[h_2(x)]$
 - Set $H[h_2(x)] = x$
 & move y to its other possible location & repeat for y.

Query: is x in S?
Check $H[h_1(x)] \& H[h_2(x)]$
Cuckoo graph:

Directed graph representing H. Vertex for each entry of H, so n vertices. Edges show possible locations for items.

- if $H[i] = x \& h_1(x) = i$
 - then edge $i \rightarrow h_2(x)$
- if $H[i] = x \& h_2(x) = i$
 - then edge $i \rightarrow h_1(x)$

Insertion succeeds if no cycle.
If there's a cycle we do a rehash (choose 2 new hash functions)
Recall, $|S|=m$ & $|H|=n=cm$
we'll choose so that $n>6m$, i.e., $c>6$.

First, we'll show that the expected insertion time is $O(1)$.

Claim 1: For $l \geq 1$ for positions $i \& j$
Prob. of a shortest path from $i \to j$
of length l is $\leq \frac{3^{-l}}{n}$

Using the claim, say $x \& y$ collide
if there's a path $x \to y$ or $y \to x$.
In other words, a path from $\{h_1(x)\}$ to $\{h_1(y)\}$
or from $\{h_1(x)\}$ to $\{h_2(x)\}$
or from $\{h_1(y)\}$ to $\{h_2(y)\}$.
By the claim, the prob. x & y collide is
\[\leq 4 \sum_{l=1}^{\infty} \frac{3^{-l}}{n} = 4 \times \frac{1}{2} \times \frac{1}{n} = \frac{2}{n} \]

Hence, # of expected collisions with x is \(O(1) \)

So when adding x into S there's \(O(1) \) other elements that are moved in expectation.

Proof of claim: induction on l.

Base case: \(l=1 \) so edge \(i \rightarrow j \) or \(j \rightarrow i \)

Fix i & j. Prob. \(x \in S \) has \(h_1(x) = i \) & \(h_2(x) = j \) (or reverse)

is \(\frac{2}{n^2} \)

Summing over \(x \in S \)

Prob. of edge \(i \rightarrow j \) or \(j \rightarrow i \) is

\[\leq \frac{m \times 2}{n^3} \leq \frac{1}{3n} \quad \text{for } n>6m. \]
In general, for \(l > 1 \):

Want shortest path of length \(l \) so length \(l-1 \) path.

Consider penultimate position \(k \) on shortest path:

thus there is a path of length \(l-1 \) from \(i \to k \)

& edge \(k \to j \)

the prob. is \(\leq \frac{3^{l-1}}{n} \times \frac{1}{3n} = \frac{1}{3^n} \)

Summing over the \(n \) choices of \(k \) we have:

\[\leq \frac{1}{3^n} \]
Rehashing:

To get a rehash we need a cycle.

We'll show that with prob. $\geq \frac{1}{2}$ no cycles exist.

By the claim,

\[
\text{Prob. of a cycle involving Position } i \text{ of length } l \leq \frac{3^{-l}}{n}
\]

thus, \[
\text{Prob. of some cycle involving Position } i \leq \frac{1}{n} \sum_{l=1}^{\infty} 3^{-l} = \frac{1}{2n}
\]

therefore prob. of some cycle is

\[
\leq n \times \frac{1}{2n} = \frac{1}{2}
\]

So prob. $\leq \frac{1}{2}$ of a rehash

& prob. $\leq \left(\frac{1}{2}\right)^k$ of k rehashes

So expect 1 rehash & each takes $O(n)$ time.