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10.1 Polynomial identity testing

10.1.1 Matrix multiplication

We want to check matrix multiplication. We have n × n matrices A, B and C, and we want to check if
A×B = C.
Naive approach: Compute A×B in time of O(n2.36···) (matrix multiplication)

Randomized approach: Choose a random vector r =


r1
r2
...
rn


where each ri is independently and uniformly at random from S = {1, 2, . . . k}
Compute (AB)r and Cr and check if both are equal. Time complexity for this method = O

(
n2)

Claim : Prr((AB)r = Cr|AB 6= C) ≤ 1/k
If we run t trials, we can boost this probability to k−t

Proof: Assume AB 6= C. So D = AB − C 6= 0.
Assume d11 6= 0 (if it’s not, we can relabel rows and columns to make it true)

Pr(Dr) = 0 ≤ Pr((Dr)1 = 0) ≤ Pr(r1 = S∗) ≤ 1

k

∵ (Dr)1 =
∑n
i=1 d1iri = 0

=⇒ r1 =
−1

d11
(d12r2 + d13r3 + · · ·+ d1nrn) = S∗

10.1.2 Polynomial Equality Testing

Now, let’s consider two polynomials P & Q over n variables X1, · · · , Xn. We want to know if P = Q.
We assume “oracle” access to P and Q, i.e., for a given X = X1, · · · , Xn, we can evaluate P and Q at X
efficiently.
Proof: Assume R 6= 0. Induct on n
Base case: n = 1, R(x1) univariate polynomial of degree ≤ d =⇒ ≤ d roots.
General: Take x1 and term of max degree in x, say j. Factor out xj1

R(x1, · · · , xn) = xj1 (M(x2, · · · , xn))︸ ︷︷ ︸
n−1 variables

+ N(x1, · · · , xn)︸ ︷︷ ︸
max. deg. of x1<j

10-1
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Algorithm 1: Schwarz-Zippel algorithm

1 Consider R = P −Q. Check if R = 0?;
2 Choose xi uniformly at random from S = {1, · · · , k};
3 if R(x1, · · · , xn) = 0 then
4 output YES;

5 else
6 output NO;

7 Pr(R(x1, · · · , xn) = 0|R 6= 0) ≤ d
k (d = # of roots);

8 if k ≥ 2d then
9 False positive probability ≤ 1

2 ;
10 and with t trials =⇒ 2−t

Using Principle of Deferred Decisions, fix x2, · · · , xn and consider x1.
Let event ξ be M(x2, . . . , xn) = 0
Now:

Pr(R(x1, · · · , xn) = 0) = Pr(R(x1, . . . , xn) = 0| ξ )Pr(ξ) + Pr(R(x1, . . . , xn) = 0| ξ̄ )Pr(ξ̄)

Taking the bigger value for both, we get:

Pr(R(x1, · · · , xn) = 0) = Pr(ξ) + Pr(R(x1, . . . , zn)| ξ̄ )

Now,

Prξ = Pr(M(x2, · · · , xn) = 0) ≤ d− j
k

where d = original degree, j = degree when xj1 factored out
Using Principle of Deferred Decisions, plug in x2, . . . , xn in the R equation. R remains univariate now with
just one unknown x1. Thus we can can apply base case here.

deg(R(x1)) ≤ j =⇒ Pr(R(x1, . . . , xn) = 0| ξ̄ ) = Pr(R(x1) = 0| x2, . . . , xn, ξ̄ ) ≤ j

k

Using these values in the original equation,

Pr(R(x1, · · · , xn) = 0) ≤ d− j
k

+
j

k
=
d

k

Note: It is not necessary to choose from {1, . . . , k}. It is important to choose from ’k’ different numbers.

10.1.3 Perfect Matching

Bipartite graph G = (L ∪R,E). Does G have a perfect matching?

For any edge (i, j) in E: MG =

{
xij if (i, j) ∈ E
0 otherwise

.

Claim: det(M)⇔ G has a perfect matching.
Proof: Test if det(M) 6= 0: choose xij uniformly at random from {1, · · · , 2n}
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⇐: G has a perfect matching P , every perfect matching P has a unique term
∏

(i,j)∈P .

⇒: det(M) 6= 0

det(M) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

Miσ(i)

where:

Sn = permutations of {1, · · · , n}
sgn(σ) = (−1)nb. of inversions in σ

= (−1)nb. of even cycles in σ

= (−1)n−nb. of cycles in σ

Test if G has a perfect matching?

1. Assume G has a perfect matching. P corresponds to a permutation.
Π gives xij (not zero), each edge gives a distinct variable. Every perfect matching has a unique term
Π(i,j)∈Pxij
There has to be at least one non-zero term, thus making det(M) 6= 0.

2. Assume det(M) 6= 0.
Π gives non-zero terms for each (i, j) ∈ E. Because all edges of the perfect matching belong to the
graph G, all edges of the perfect matching exist and Π gives non-zero values for each of those.
=⇒ There exists a perfect matching.

Algorithm 2: Test if G has a perfect matching.

1 for each edge (i, j) ∈ E, choose xij u.a.r. from {1, · · · , 2n} do
2 Compute det(M): Pr(det(M) = 0|G has a perfect matching) ≤ 1

2 ;

Run it t times to boost this probability to ≤ 2−t

G = (

L∪R︷︸︸︷
V ,E), edge (i, j) ∈ E.

Induced subgraph on V \{i, j}, Mij = M with row i and column j removed.
Check if det(Mij) 6= 0? (using the algorithm described above)
Recurse on the smaller graph.
Time complexity : O

(
|E|) rounds

Question: Can it be done in parallel (check all edges at the same time to see which ones belong to the
perfect matching)?
Problem: Every edge might be in ‘a’ perfect matching, but it does not necessarily mean that they belong
to the same one.
Solution: We can find a unique perfect matching with minimum weight. Check if (i, j) ∈ E is in the
minimum weight Perfect Matching (check value of the determinant to get the minimum weight P.M.). All
determinant evaluations will go towards the same unique perfect matching.
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Algorithm 3: Mulmuley, Vazirani, Vazirani, ’87

1 Let S = {x1, · · · , xm}. Subsets S1, . . . , Sk of S;
2 Randomly assign ω = S → {1, . . . , l}: ω(Si) =

∑
x∈Si

ω(x);

Lemma 10.1 (Isolation Lemma) From algorithm 3:

Pr(unique set Si of min. weight) ≥ 1− m

l

where Sis are perfect matchings.

Proof: We say that X ∈ S is tied if min
X∈Si

ω(Si)︸ ︷︷ ︸
ω++ω(x)

= min
X/∈Si

ω(Si)︸ ︷︷ ︸
ω−

Unique subset Si of minimum weight iff no X is tied.
Pr(X is tied) = Pr(ω(x) = ω− − ω+) = 1

l .
Fix ω(y) for all y ∈ S such that y 6= x.

Pr(not unique subset Si of min weight) = Pr(some X is tied) =
∑
Y ∈S Pr(Y is tied) ≤ m

l
.

=⇒ Pr(unique) ≥ 1−m/l
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