CS 6550: Randomized Algorithms

Lecture 10: Scribe Notes

February 12th, 2019

Lecturer: Eric Vigoda

Scribes: Alexandre Jouandin, Smriti

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

10.1 Polynomial identity testing

10.1.1 Matrix multiplication

We want to check matrix multiplication. We have $n \times n$ matrices A, B and C, and we want to check if $A \times B = C$.

Naive approach: Compute $A \times B$ in time of $\mathcal{O}(n^{2.36\cdots})$ (matrix multiplication)

Randomized approach: Choose a random vector r =

$$r = \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_m \end{bmatrix}$$

where each r_i is independently and uniformly at random from $S = \{1, 2, ..., k\}$ Compute (AB)r and Cr and check if both are equal. Time complexity for this method $= O(n^2)$

 $\label{eq:Claim} \begin{array}{l} {\bf Claim}: \ {\rm Pr}_r((AB)r=Cr|AB\neq C)\leq 1/k\\ {\rm If we \ run \ }t \ {\rm trials, \ we \ can \ boost \ this \ probability \ to \ }k^{-t} \end{array}$

Proof: Assume $AB \neq C$. So $D = AB - C \neq 0$. Assume $d_{11} \neq 0$ (if it's not, we can relabel rows and columns to make it true)

$$\Pr(D_r) = 0 \le \Pr((D_r)_1 = 0) \le \Pr(r_1 = S^*) \le \frac{1}{k}$$

$$\therefore (Dr)_1 = \sum_{i=1}^n d_{1i}r_i = 0$$

$$\implies r_1 = \frac{-1}{d_{11}}(d_{12}r_2 + d_{13}r_3 + \dots + d_{1n}r_n) = S^*$$

10.1.2 Polynomial Equality Testing

Now, let's consider two polynomials P & Q over n variables X_1, \dots, X_n . We want to know if P = Q. We assume "oracle" access to P and Q, i.e., for a given $X = X_1, \dots, X_n$, we can evaluate P and Q at X efficiently.

Proof: Assume $R \neq 0$. Induct on n

Base case: n = 1, $R(x_1)$ univariate polynomial of degree $\leq d \implies \leq d$ roots. General: Take x_1 and term of max degree in x, say j. Factor out x_1^j

$$R(x_1, \cdots, x_n) = x_1^j \underbrace{(M(x_2, \cdots, x_n))}_{n-1 \text{ variables}} + \underbrace{N(x_1, \cdots, x_n)}_{\text{max. deg. of } x_1 < j}$$

Spring 2019

Algorithm 1: Schwarz-Zippel algorithm

1 Consider R = P - Q. Check if R = 0?; 2 Choose x_i uniformly at random from $S = \{1, \dots, k\}$; 3 if $R(x_1, \dots, x_n) = 0$ then 4 \lfloor output YES; 5 else 6 \lfloor output NO; 7 $\Pr(R(x_1, \dots, x_n) = 0 | R \neq 0) \leq \frac{d}{k}$ $(d = \# of \ roots)$; 8 if $k \geq 2d$ then 9 \mid False positive probability $\leq \frac{1}{2}$; 10 \mid and with t trials $\implies 2^{-t}$

Using Principle of Deferred Decisions, fix x_2, \dots, x_n and consider x_1 . Let event ξ be $M(x_2, \dots, x_n) = 0$ Now:

$$\Pr(R(x_1, \dots, x_n) = 0) = \Pr(R(x_1, \dots, x_n) = 0 | \xi) \Pr(\xi) + \Pr(R(x_1, \dots, x_n) = 0 | \xi) \Pr(\xi)$$

Taking the bigger value for both, we get:

$$\Pr(R(x_1, \cdots, x_n) = 0) = \Pr(\xi) + \Pr(R(x_1, \ldots, z_n) | \bar{\xi})$$

Now,

$$\Pr\xi = \Pr(M(x_2, \cdots, x_n) = 0) \le \frac{d-j}{k}$$

where d = original degree, j = degree when x_1^j factored out

Using Principle of Deferred Decisions, plug in x_2, \ldots, x_n in the R equation. R remains univariate now with just one unknown x_1 . Thus we can can apply base case here.

$$\deg(R(x_1)) \le j \implies \Pr(R(x_1, \dots, x_n) = 0 | \bar{\xi}) = \Pr(R(x_1) = 0 | x_2, \dots, x_n, \bar{\xi}) \le \frac{j}{k}$$

Using these values in the original equation,

$$\Pr(R(x_1,\cdots,x_n)=0) \le \frac{d-j}{k} + \frac{j}{k} = \frac{d}{k}$$

Note: It is not necessary to choose from $\{1, \ldots, k\}$. It is important to choose from 'k' different numbers.

10.1.3 Perfect Matching

Bipartite graph $G = (L \cup R, E)$. Does G have a perfect matching? For any edge (i, j) in E: $M_G = \begin{cases} x_{ij} & \text{if } (i, j) \in E \\ 0 & \text{otherwise} \end{cases}$.

Claim: $det(M) \Leftrightarrow G$ has a perfect matching.

Proof: Test if det $(M) \neq 0$: choose x_{ij} uniformly at random from $\{1, \dots, 2n\}$

⇐: G has a perfect matching P, every perfect matching P has a unique term $\prod_{(i,j)\in P}$. ⇒: det $(M) \neq 0$

$$\det(M) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n M_{i\sigma(i)}$$

where:

$$S_n = \text{permutations of } \{1, \cdots, n\}$$

$$\operatorname{sgn}(\sigma) = (-1)^{\text{nb. of inversions in } \sigma}$$

$$= (-1)^{\text{nb. of even cycles in } \sigma}$$

$$= (-1)^{n-\text{nb. of cycles in } \sigma}$$

Test if G has a perfect matching?

1. Assume G has a perfect matching. P corresponds to a permutation. II gives x_{ij} (not zero), each edge gives a distinct variable. Every perfect matching has a unique term $\prod_{(i,j)\in P} x_{ij}$

There has to be at least one non-zero term, thus making $\det(M) \neq 0$.

2. Assume $det(M) \neq 0$.

 Π gives non-zero terms for each $(i, j) \in E$. Because all edges of the perfect matching belong to the graph G, all edges of the perfect matching exist and Π gives non-zero values for each of those. \implies There exists a perfect matching.

Algorithm 2:	Lest	11	G	has	\mathbf{a}	perfect	matching.
--------------	------	----	---	-----	--------------	---------	-----------

Run it t times to boost this probability to $\leq 2^{-t}$

1 for each edge $(i, j) \in E$, choose x_{ij} u.a.r. from $\{1, \dots, 2n\}$ do 2 | Compute det(M): Pr(det(M) = 0|G has a perfect matching) $\leq \frac{1}{2}$;

G = (V, E), edge $(i, j) \in E$. Induced subgraph on $V \setminus \{i, j\}$, $M_{ij} = M$ with row *i* and column *j* removed. Check if $\det(M_{ij}) \neq 0$? (using the algorithm described above) Recurse on the smaller graph. Time complexity : O(|E|) rounds

Question: Can it be done in parallel (check all edges at the same time to see which ones belong to the perfect matching)?

Problem: Every edge might be in 'a' perfect matching, but it does not necessarily mean that they belong to the same one.

Solution: We can find a unique perfect matching with minimum weight. Check if $(i, j) \in E$ is in the minimum weight Perfect Matching (check value of the determinant to get the minimum weight P.M.). All determinant evaluations will go towards the same unique perfect matching.

|--|

1 Let $S = \{x_1, \dots, x_m\}$. Subsets S_1, \dots, S_k of S ;	
2 Randomly assign $\omega = S \to \{1, \dots, l\}$: $\omega(S_i) = \sum_{x \in S_i} \omega(x);$	

Lemma 10.1 (Isolation Lemma) From algorithm 3:

 $\Pr(\text{unique set } S_i \text{ of min. weight}) \ge 1 - \frac{m}{l}$

where S_is are perfect matchings.

Proof: We say that $X \in S$ is tied if $\min_{\substack{X \in S_i \\ \omega^+ + \omega(x)}} \omega(S_i) = \min_{\substack{X \notin S_i \\ \omega^-}} \omega(S_i)$ Unique subset S_i of minimum weight iff no X is tied. $\Pr(X \text{ is tied}) = \Pr(\omega(x) = \omega^- - \omega^+) = \frac{1}{l}$. Fix $\omega(y)$ for all $y \in S$ such that $y \neq x$. $\Pr(\text{not unique subset } S_i \text{ of min weight}) = \Pr(\text{some } X \text{ is tied}) = \sum_{Y \in S} \Pr(Y \text{ is tied}) \leq \frac{m}{l}$. $\implies \Pr(\text{unique}) \geq 1 - m/l$