Lecture 10: Scribe Notes

February 12th, 2019
Lecturer: Eric Vigoda
Scribes: Alexandre Jouandin, Smriti

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

10.1 Polynomial identity testing

10.1.1 Matrix multiplication

We want to check matrix multiplication. We have $n \times n$ matrices A, B and C, and we want to check if $A \times B=C$.
Naive approach: Compute $A \times B$ in time of $\mathcal{O}\left(n^{2.36 \cdots}\right)$ (matrix multiplication)
Randomized approach: Choose a random vector $r=\left[\begin{array}{c}r_{1} \\ r_{2} \\ \vdots \\ r_{n}\end{array}\right]$
where each r_{i} is independently and uniformly at random from $S=\{1,2, \ldots k\}$
Compute $(A B) r$ and $C r$ and check if both are equal. Time complexity for this method $=O\left(n^{2}\right)$
Claim : $\operatorname{Pr}_{r}((A B) r=C r \mid A B \neq C) \leq 1 / k$
If we run t trials, we can boost this probability to k^{-t}
Proof: Assume $A B \neq C$. So $D=A B-C \neq 0$.
Assume $d_{11} \neq 0$ (if it's not, we can relabel rows and columns to make it true)

$$
\operatorname{Pr}\left(D_{r}\right)=0 \leq \operatorname{Pr}\left(\left(D_{r}\right)_{1}=0\right) \leq \operatorname{Pr}\left(r_{1}=S^{*}\right) \leq \frac{1}{k}
$$

$\because(D r)_{1}=\sum_{-1}^{n} d_{1 i} r_{i}=0$
$\Longrightarrow r_{1}=\frac{-1}{d_{11}}\left(d_{12} r_{2}+d_{13} r_{3}+\cdots+d_{1 n} r_{n}\right)=S^{*}$

10.1.2 Polynomial Equality Testing

Now, let's consider two polynomials $P \& Q$ over n variables X_{1}, \cdots, X_{n}. We want to know if $P=Q$.
We assume "oracle" access to P and Q, i.e., for a given $X=X_{1}, \cdots, X_{n}$, we can evaluate P and Q at X efficiently.
Proof: Assume $R \neq 0$. Induct on n
Base case: $n=1, R\left(x_{1}\right)$ univariate polynomial of degree $\leq d \Longrightarrow \leq d$ roots.
General: Take x_{1} and term of max degree in x, say j. Factor out x_{1}^{j}

$$
R\left(x_{1}, \cdots, x_{n}\right)=x_{1}^{j} \underbrace{\left(M\left(x_{2}, \cdots, x_{n}\right)\right)}_{n-1 \text { variables }}+\underbrace{N\left(x_{1}, \cdots, x_{n}\right)}_{\text {max. deg. of } x_{1}<j}
$$

```
Algorithm 1: Schwarz-Zippel algorithm
    Consider \(R=P-Q\). Check if \(R=0\) ?;
    Choose \(x_{i}\) uniformly at random from \(S=\{1, \cdots, k\}\);
    if \(R\left(x_{1}, \cdots, x_{n}\right)=0\) then
        output YES;
    else
        output NO;
    \(\operatorname{Pr}\left(R\left(x_{1}, \cdots, x_{n}\right)=0 \mid R \neq 0\right) \leq \frac{d}{k} \quad(d=\#\) of roots \() ;\)
    if \(k \geq 2 d\) then
        False positive probability \(\leq \frac{1}{2}\);
        and with \(t\) trials \(\Longrightarrow 2^{-t}\)
```

Using Principle of Deferred Decisions, fix x_{2}, \cdots, x_{n} and consider x_{1}.
Let event ξ be $M\left(x_{2}, \ldots, x_{n}\right)=0$
Now:

$$
\operatorname{Pr}\left(R\left(x_{1}, \cdots, x_{n}\right)=0\right)=\operatorname{Pr}\left(R\left(x_{1}, \ldots, x_{n}\right)=0 \mid \xi\right) \operatorname{Pr}(\xi)+\operatorname{Pr}\left(R\left(x_{1}, \ldots, x_{n}\right)=0 \mid \bar{\xi}\right) \operatorname{Pr}(\bar{\xi})
$$

Taking the bigger value for both, we get:

$$
\operatorname{Pr}\left(R\left(x_{1}, \cdots, x_{n}\right)=0\right)=\operatorname{Pr}(\xi)+\operatorname{Pr}\left(R\left(x_{1}, \ldots, z_{n}\right) \mid \bar{\xi}\right)
$$

Now,

$$
\operatorname{Pr} \xi=\operatorname{Pr}\left(M\left(x_{2}, \cdots, x_{n}\right)=0\right) \leq \frac{d-j}{k}
$$

where $\mathrm{d}=$ original degree, $\mathrm{j}=$ degree when x_{1}^{j} factored out
Using Principle of Deferred Decisions, plug in x_{2}, \ldots, x_{n} in the R equation. R remains univariate now with just one unknown x_{1}. Thus we can can apply base case here.

$$
\operatorname{deg}\left(R\left(x_{1}\right)\right) \leq j \Longrightarrow \operatorname{Pr}\left(R\left(x_{1}, \ldots, x_{n}\right)=0 \mid \bar{\xi}\right)=\operatorname{Pr}\left(R\left(x_{1}\right)=0 \mid x_{2}, \ldots, x_{n}, \bar{\xi}\right) \leq \frac{j}{k}
$$

Using these values in the original equation,

$$
\operatorname{Pr}\left(R\left(x_{1}, \cdots, x_{n}\right)=0\right) \leq \frac{d-j}{k}+\frac{j}{k}=\frac{d}{k}
$$

Note: It is not necessary to choose from $\{1, \ldots, \mathrm{k}\}$. It is important to choose from ' k ' different numbers.

10.1.3 Perfect Matching

Bipartite graph $G=(L \cup R, E)$. Does G have a perfect matching?
For any edge (i, j) in $E: M_{G}=\left\{\begin{array}{ll}x_{i j} & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{array}\right.$.
Claim: $\operatorname{det}(M) \Leftrightarrow G$ has a perfect matching.
Proof: Test if $\operatorname{det}(M) \neq 0$: choose $x_{i j}$ uniformly at random from $\{1, \cdots, 2 n\}$
$\Leftarrow: G$ has a perfect matching P, every perfect matching P has a unique term $\prod_{(i, j) \in P}$.
$\Rightarrow: \operatorname{det}(M) \neq 0$

$$
\operatorname{det}(M)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} M_{i \sigma(i)}
$$

where:

$$
\begin{aligned}
S_{n} & =\text { permutations of }\{1, \cdots, n\} \\
\operatorname{sgn}(\sigma) & =(-1)^{\mathrm{nb} . \text { of inversions in } \sigma} \\
& =(-1)^{\mathrm{nb} . \text { of even cycles in } \sigma} \\
& =(-1)^{n-\mathrm{nb} . \text { of cycles in } \sigma}
\end{aligned}
$$

Test if G has a perfect matching?

1. Assume G has a perfect matching. P corresponds to a permutation.
Π gives $x_{i j}$ (not zero), each edge gives a distinct variable. Every perfect matching has a unique term $\Pi_{(i, j) \in P} x_{i j}$
There has to be at least one non-zero term, thus making $\operatorname{det}(M) \neq 0$.
2. Assume $\operatorname{det}(M) \neq 0$.
Π gives non-zero terms for each $(i, j) \in E$. Because all edges of the perfect matching belong to the graph G, all edges of the perfect matching exist and Π gives non-zero values for each of those.
\Longrightarrow There exists a perfect matching.
```
Algorithm 2: Test if \(G\) has a perfect matching.
    for each edge \((i, j) \in E\), choose \(x_{i j}\) u.a.r. from \(\{1, \cdots, 2 n\}\) do
        Compute \(\operatorname{det}(M): \operatorname{Pr}(\operatorname{det}(M)=0 \mid G\) has a perfect matching \() \leq \frac{1}{2}\);
```

Run it t times to boost this probability to $\leq 2^{-t}$
$G=\overbrace{V}^{L \cup R}, E)$, edge $(i, j) \in E$.
Induced subgraph on $V \backslash\{i, j\}, M_{i j}=M$ with row i and column j removed.
Check if $\operatorname{det}\left(M_{i j}\right) \neq 0$? (using the algorithm described above)
Recurse on the smaller graph.
Time complexity : $O(|E|)$ rounds
Question: Can it be done in parallel (check all edges at the same time to see which ones belong to the perfect matching)?
Problem: Every edge might be in 'a' perfect matching, but it does not necessarily mean that they belong to the same one.
Solution: We can find a unique perfect matching with minimum weight. Check if $(i, j) \in E$ is in the minimum weight Perfect Matching (check value of the determinant to get the minimum weight P.M.). All determinant evaluations will go towards the same unique perfect matching.

```
Algorithm 3: Mulmuley, Vazirani, Vazirani, '87
    Let \(S=\left\{x_{1}, \cdots, x_{m}\right\}\). Subsets \(S_{1}, \ldots, S_{k}\) of \(S\);
    Randomly assign \(\omega=S \rightarrow\{1, \ldots, l\}: \omega\left(S_{i}\right)=\sum_{x \in S_{i}} \omega(x)\);
```

Lemma 10.1 (Isolation Lemma) From algorithm 3:

$$
\operatorname{Pr}\left(\text { unique set } S_{i} \text { of min. weight }\right) \geq 1-\frac{m}{l}
$$

where $S_{i} s$ are perfect matchings.
Proof: We say that $X \in S$ is tied if $\min _{X \in S_{i}} \omega\left(S_{i}\right)=\min _{X \notin S_{i}} \omega\left(S_{i}\right)$

Unique subset S_{i} of minimum weight iff no X is tied.
$\operatorname{Pr}(X$ is tied $)=\operatorname{Pr}\left(\omega(x)=\omega^{-}-\omega^{+}\right)=\frac{1}{l}$.
Fix $\omega(y)$ for all $y \in S$ such that $y \neq x$.
$\operatorname{Pr}\left(\right.$ not unique subset S_{i} of min weight $)=\operatorname{Pr}($ some X is tied $)=\sum_{Y \in S} \operatorname{Pr}(Y$ is tied $) \leq \frac{m}{l}$.
$\Longrightarrow \operatorname{Pr}($ unique $) \geq 1-m / l$

