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12.1 Preliminaries in number theory

The RSA public key encryption scheme relies on certain important results in number theory, in particular
Fermat’s little theorem and Euler’s theorem.

Theorem 12.1 (Fermat’s little theorem) Let p be any prime number. Then for any a relatively prime
to p, i.e. gcd(a, p) = 1, we have ap−1 ≡ 1 mod p.

Proof: Let S = {1, ..., p − 1}. We let aS denote the set obtained from multiplying each element of S by a
and then mod p , i.e. aS = {a mod p, 2a mod p, ..., (p− 1)a mod p}. We claim that aS = S.

First, we show that any two elements in aS are distinct. Suppose not, given i, j with ai ≡ aj, since a is
relatively prime to p, its multiplicative inverse in Zp exists. In other words, there exists b such that ba ≡ 1
mod p. So we have i ≡ bai ≡ baj ≡ j mod p. A contradiction.

Next we show that 0 /∈ aS. Suppose otherwise, then there exists i ∈ {1, ..., p − 1} such that ai ≡ 0
mod p. But this is impossible since a and p are relatively prime.

Therefore aS = S, and in particular we have
∏
i∈S i =

∏
i∈aS i. In other words,

(p− 1)! ≡ an−1(p− 1)! mod p

Since (p− 1)! is not 0 in Zp, its multiplicative inverse exists, and we have an−1 ≡ 1 mod p.
The generalization of this theorem for non-prime numbers is called the Euler’s theorem, which is closely

related to the Euler totient function.

Definition 12.2 Given any integer n ≥ 2, we define the Euler totient function φ(n) to be the number of
elements in {1, ..., n− 1} that is relatively prime to n.

The main properties we need for Euler totient function is that φ(p) = p − 1 for any prime p, and
φ(pq) = pq − p− q + 1 = (p− 1)(q − 1) for any prime p, q. The Euler’s theorem is the following.

Theorem 12.3 (Euler’s theorem) Given n ≥ 2 and a relatively prime to n. Then for any a relatively
prime to n we have aφ(n) ≡ 1 mod n.

Proof: We omit the proof since it is very similar to the one of Fermat’s little theorem. The set S in this
case is the elements in {1, ..., n− 1} that are relatively prime to n.

12.2 RSA encryption algorithm

The RSA encryption is based on the hardness of factorizing large numbers. In this public key encryption
scheme, Alice encrypts the message using the public key and send encrypted it to Bob, who possesses the
private key that decrypts the message. This algorithm is designed in such a way that it is difficult for any
adversary Eve to decrypt the ciphertext even if she knows the public key used in encryption.
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Algorithm 1: RSA key generation

input : size N
output: public key {M, e} and private key {M,d}

1 Choose p, q to be random N bit prime ;
2 M = pq;
3 Choose e relatively prime to φ(M) = pq − p− q + 1;
4 Compute d satisfying ed ≡ 1 mod φ(M);
5 return public key {M, e}, private key {M,d};

Algorithm 2: RSA encryption

input : public key {M, e}, plaintext m
output: ciphertext c

1 return ciphertext c = me mod M ;

Algorithm 3: RSA decryption

input : private key {M,d}, ciphertext c
output: plaintext m

1 return plaintext m = cd mod M ;

12.2.1 Correctness

For the correctness of this algorithm, we need to show that med ≡ m mod M , where m is any plaintext and
M, e, d are the numbers in public and private keys.

Since ed ≡ 1 mod φ(M), we have ed = 1 + kφ(M) for some integer k. Then med ≡ mkφ(M)m ≡ m
mod M , since mφ(M) ≡ 1 mod M from Euler’s theorem.

12.2.2 Implementation

When we choose e in step 3 of RSA key generation, we can try small primes 3, 5, 7, 11, 13, etc to see whether
any of it is a factor of φ(M). After a fixed number of trials, redo step 1 and 2 if all these small prime numbers
fail.

In step 4, d can be effectively computed using Extended Euclidean algorithm. Notice that the runtime
of step 3 and 4 is polynomial in N , which is the bit size of public key.

Now for step 1, for each p, q we are going to choose a random N bit number and test its primality. We will
show, using the Prime number theorem, that the expected number of trials needed for the chosen number
to be prime is linear in N .

Theorem 12.4 (Prime number theorem) Let X ≥ 55. Then

π(X) >
X

lnX + 2

where π(X) is the number of prime numbers less than or equal to X.

Therefore, the probability that a random N bit number is prime is at least

2X/(lnX + 2)

2X
=

1

2 +N ln 2
= Θ(1/N)

Therefore in expectation, Θ(N) trials suffices. In the next section, we will describe a randomized algo-
rithm that tests whether a given number is prime.



Lecture 12: RSA Encryption and Primality Testing 12-3

12.3 Primality testing

12.3.1 Fermat witness

Due to Fermat’s little theorem, if a number n is prime, then for any 1 ≤ a < n, we have an−1 ≡ 1 mod n.
Therefore, if there exists an a ∈ [1, n − 1] with an−1 6≡ 1 mod n, then n is certified to be not prime. This
is called a Fermat witness. Now if a and n have a common factor, then obviously an−1 6≡ 1 mod n since it
will be a multiple of gcd(a, n). Such a Fermat witness will be called trivial. These concepts are formalized
in the following definition.

Definition 12.5 Let n be a composite number. A number a ∈ [1, n − 1] is a Fermat witness if an−1 6≡ 1
mod n. A nontrivial Fermat witness is a Fermat witness a such that gcd(a, n) = 1.

Definition 12.6 (Carmichael Number) A Carmichael Number is a composite n with no nontrivial Fer-
mat witness. 1

For example, the first and smallest Charmichael Number is 561 = 3 · 11 · 17

Lemma 12.7 If n has ≥ 1 nontrivial Fermat witness, then the number of g ∈ {1, . . . , n − 1} which are
Fermat witness is ≥ (n− 1)/2.

Proof:
We prove by showing the size of non-Fermat witnesses of n is ≤ that of Fermat witnesses of n:
Let a be a non-trivial Fermat witness for n, and we define B and G as follows:

B = {b ∈ {1, . . . , n− 1} : bn−1 ≡ 1 mod n}

G = {g ∈ {1, . . . , n− 1} : gn−1 6≡ 1 mod n}

Then, we denote a nontrivial Fermat witness of n as a and we use a to construct an injective function
f : B → G as follows:

• From the definition of a, we have:

gcd(a, n) = 1, an−1 6≡ 1 mod n

• Then, for every b ∈ B, we construct f(b) as follows:

f(n) ≡ ba mod n

fn−1(n) ≡ bn−1an−1 ≡ an−1 6≡ 1 mod n

Hence, we have f(b) ∈ G.

• Now, let’s prove that f is an injective function. Suppose we have b, b′ satisfies the following:

f(b) ≡ f(b′) mod n

Then we have the following:
ba mod b′a mod n

Notice that for non-trivial Fermat witness a, it has a multiplicative inverse, multiply this number for
both sides of the equation, and then we have the following:

b ≡ b′ mod n

Since b, b′ ∈ [n], it immediately follows that b = b′. Hence f is an injective function and |B| ≤ |G|
1Ignoring Charmichaels, then every composite n has ≥ 1 nontrivial Fermat witness.
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Then, we have B ∩G = ∅, B ∪G = {1, . . . , n− 1} and |B| ≤ |G|. Hence, we have:

|G| ≥ (n− 1)/2

The number of g ∈ {1, . . . , n− 1} which are Fermat witness is ≥ (n− 1)/2.

Definition 12.8 (Square Root) If a2 ≡ 1 mod n, then a is a square root of 1 mod n. Moreover, 1 and
-1 are always square roots of 1 mod n

Lemma 12.9 For prime p, 1 and -1 are the only square roots of 1 mod p.

Proof: Suppose a2 ≡ 1 mod p, then there exists k ∈ Z+, such that:

a2 = 1 + kp

It immediately follows that:
(a+ 1)(a− 1) = kp

Hence, a ≡ ±1 mod p.

12.3.2 Primality Test when n is not Carmichael

Algorithm 4: Primality Test (not Carmichael)

input : N-bit number x, number of rounds k
output: x is prime/composite

1 Choose a1, . . . , ak uniformly at random from {1, . . . , x− 1} ;
2 if for i = 1 . . . k, (ai)

x−1 ≡ 1 mod x then
3 return x is prime;
4 else
5 return x is composite;

12.3.2.1 Correctness

For x is not Carmichael, from Lemma 12.7, we know that for a random chosen ai, its probability of being a
Fermat witness is ≥ 0.5 by the following:

Pr(output composite| x is composite and not Carmichael)
=Pr(ai is a Fermat witness of x |x is composite and not Carmichael)

≥0.5(x− 1)

x− 1
=

1

2

Thus, for fixed k, the probability that our algorithm will output prime when x is composite and not
Carmichael is:

Pr(output prime| x is composite and not Carmichael)

=

k∏
i=1

Pr(ai is not a Fermat witness of x |x is composite and not Carmichael)

≤ 1

2k
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12.3.3 MillerRabin Primality Test

While computing each modular exponentiation, the algorithm looks for a nontrivial square root of 1, modulo
n, during the final set of squarings. If it finds one, it stops and returns “x is composite”. [1]

Algorithm 5: Primality Test(Carmichael)

input : N-bit number x, number of rounds k
output: x is prime/composite

1 Write x as 2l ·m+ 1 with m odd (by factoring out powers of 2 from n− 1) ;
2 Choose a1, . . . , ak uniformly at random from {1, . . . , x− 1} ;
3 for i=1,. . . ,k do
4 x0 = ami mod x ;
5 for j = 1, . . . , l, do
6 xj = x2j−1 mod x ;

7 if xj == 1 and xj−1 6= 1 and xj−1 6= −1 then
8 return x is composite

9 if xl 6= 1 then
10 return x is composite

11 return x is prime ;

For the sake of efficiency, we list out a few lemmas below without proving it, the proof ot lemmas can be
found in [1].

12.3.3.1 Correctness

Lemma 12.10 The equation ax ≡ b mod p is solvable for the unknown x iff d|b, where d = gcd(a, n).

Lemma 12.11 If S′ is a proper subgroup of a finite group S, then |S′| ≤ |S|/2.

Lemma 12.12 (A nonempty closed subset of a finite group is a subgroup) If (S,⊕) is a finite group
and S′ is any nonempty subset of S such that a⊕ b ∈ S′ for all a, b ∈ S′, then (S′,⊕) is a subgroup of (S,⊕).

Lemma 12.13 The values of n > 1 for which Z∗n is cyclic are 2, 4, pe, and 2pe, for all primes p > 2 and all
positive intergers e.

Lemma 12.14 (Discrete logarithm theorem) If g is a primitive root of Z∗n, then the equation gx ≡ gy

mod n holds if and only if the equation x ≡ y mod φ(n) holds.

Theorem 12.15 (Lagranges theorem) If (S,⊕) is a finite group and (S′,⊕) is a subgroup of (S,⊕), then
|S′| is a divisor of |S|.

Lemma 12.16 If n1, n2, . . . , nk are pairwise relatively prime and n = n1n2 . . . nk, then for all integers x
and a,

x ≡ a mod n1 ⇐⇒ x ≡ a mod n

Lemma 12.17 If n1, n2, . . . , nk are pairwise relatively prime and n = n1 . . . nk, then for any integers
a1, a2 . . . , ak, the set of simultaneous equations x ≡ ai mod ni, for i = 1, 2, . . . , k has a unique solution
modulo n for the unknown x.

Theorem 12.18 (Miller-Robin) 2 3.
If n ≥ 4 is composite, then

(n− 1)

2
≤ |Fermat Witness of x|

2This proof is in [1].
3The proof of 3/4 can be found in [2]
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Proof:
We prove that the number of nonwitnesses is at most (n− 1)/2, which implies the theorem.4

We start by claiming that any nonwitness must be a member of Z∗n. Consider any nonwitness a, it must
satisfy an−1 ≡ 1 mod n. Thus, the equation ay ≡ 1 mod x has a solution, namely an−2. By Lemma 12.10,
gcd(a, n)|1 =⇒ gcd(a, n) = 1. Therefore, a is a member of Z∗n; all nonwitness belong to Z∗n.

To complete the proof, we show that not only are all nonwitness contained in Z∗n, they are all contained
in a proper subgroup B of Z∗n.

By Lemma 12.11, we then have |B| ≤ |Z∗n|/2. Since |Z∗n| ≤ n− 1, we obtain |B| ≤ (n− 1)/2. Therefore,
the number of nonwitnesses is at most (n− 1)/2, so that the number of witnesses must be at least (n− 1)/2.

We now show how to find a proper subgroup B of Z∗n containing all of the nonwitnesses. We break the
proof into two cases.

1. There exists an x ∈ Z∗n such that
xn−1 6≡ 1 mod n

In other words, n is not a Carmichael number.

Let B = {b ∈ Z∗n : bn−1 ≡ 1 mod n}. Clearly, B is nonempty, since 1 ∈ B. Since B is closed
under multiplication modulo n, we have that B is a subgroup of Z∗n by Lemma 12.12. Note that every
nonwitness belongs to B, since a non-witness a satisfies an−1 ≡ 1 mod n. Since x ∈ Z∗n −B, we have
that B is a proper subgroup of Z∗n.

2. For all x ∈ Z∗n,
xn−1 ≡ 1 mod n

In other words, n is a Carmichael number. (extremely rare in practice). In this case, n cannot be a
prime power. To see why, let us suppose to the contrary that n = pe , where p is a prime and e > 1.
We derive a contradiction as follows. Since we assume that n is odd, p must also be odd. Lemma 12.13
implies that Z∗n is a cyclic group: it contains a generator g such that ordn(g) = |Z∗n| = φ(n).Hence,
we have gn−1 ≡ 1 mod n. Then the discrete logarithm theorem (Lemma 12.14, taking y = 0) implies
that n− 1 ≡ 0 mod φ(n), or,

(p− 1)pe−1|pe − 1

This is a contradiction for e > 1, since (p− 1)pe−1 is divisible by the prime p but pe − 1 is not. Thus,
n is not a prime power.

Since the odd composite number n is not a prime power, we decompose it into a product n1n2 , where
n1 and n2 are odd numbers greater than 1 that are relatively prime to each other. (There may be
several ways to choose n1, n2)

Recall that we define l and m so that n − 1 = 2lm, where m is odd and l ≥ 1, and that for an input
ai, our process computes the sequence.

X = [ami , a
2m
i , . . . , a2

lm] mod n

Let us call a pair (v, j) of integers acceptable is v ∈ Z∗n, j ∈ {0, . . . , l}, and v2
jm ≡ −1 mod n.

Acceptable pairs certainly exist since u is odd; we can choose v = n − 1 and j = 1, so that (n − 1, 0)
is an acceptable pair. Now pick the largest possible j such that there exists an acceptable pair (v, j)
and fix v so that (v, j) is an acceptable pair. Let

B = {x ∈ Z∗n : x2
ju≡±1 mod n}

Since B is closed under multiplication modulo n, it is a subgroup of Z∗n . By Lagranges theorem,
therefore, |B| divides |Z∗n|. Every nonwitness must be a member of B, n since the sequence X produced

4The x in algorithm is n in the proof
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by a nonwitness must either be all 1’s or else contain a − 1 no later than the jth position, by the
maximality of j . (If (a, j′) is acceptable, where a is a nonwitness, we must have j′ ≤ j by how we
chose j .)

We now use the existence of v to demonstrate that there exists a w ∈ Z∗n − B, and hence that B is

a proper subgroup of Z∗n. Since v2
jm ≡ −1 mod n, we have v2

jm ≡ −1 mod n1 by Lemma 12.16
to the Chinese remainder theorem. By Lemma 12.16, there exists a w simultaneously satisfying the
equations

w ≡ v mod n1

w ≡ 1 mod n2

Therefore,

w2jm ≡ −1 mod n1

w2jm ≡ 1 mod n2

By cor 31.29, w2jm 6≡ 1 mod n1 implies w2jm 6≡ 1 mod n, and w2jm 6≡ −1 mod n2 implies w2jm 6≡
−1 mod n. Hence, we conclude that w2jm 6≡ ±1 mod n, and so w /∈ B.

It remains to show that w ∈ Z∗n, which we do by first working separately modulo n1 and modulo
n2. Working modulo n1, we observe that since v ∈ Z∗n, we have that gcd(v, n) = 1, and so also
gcd(v, n1) = 1; if v does not have any common divisors with n, then it certainly does not have any
common divisors with n1. Sicne w ≡ v mod n1, we see that gcd(w, n1) = 1. Working modulo n2, we
observe that w ≡ 1 mod n2 implies gcd(w, n2) = 1. To combine these results, we use thm 31.6, which
implies that gcd(w, n1n2) = gcd(w, n) = 1. That is, w ∈ Z∗n.

Therefore w ∈ Z∗n −B, and we finish case 2 with the conclusion that B is a proper subgroup of Z∗n.

In either case, we see that the number of witnesses to the compositeness of n is at least (n-1)/2.

Theorem 12.19 For any odd integer n > 2 and positive integer k, the probability that M-R errors is at
most 2−k.

Proof:
Following the same idea as 12.3.2.1, it’s easy to show that the probability that M-R errors is at most

2−k.
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