CS 6550: Randomized Algorithms

Spring 2019

Lecture 14

Primal Dual Method: Approximate Algorithm for Steiner Forest

February 26, 2019

Lecturer: Vivek Madan

Scribes: Ivan Dario Jimenez

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

14.1 Generic Primal-Dual Algorithm

Algorithm 1: Generic Primal-Dual Algorithm

- 1 Formulate problem as an integer program. Relax it to get a linear program (LP) and its dual(DLP).
- **2** Generate an infeasible solution x_0 to the LP and feasible solution y_0 to the DLP.

3 while x_i is not feasible **do**

4 $y_{i+1} \leftarrow$ update y_i s.t. at least one more dual constraint is tight.

5 $x_{i+1} \leftarrow$ set corresponding primal variable in x_i to be 1

6 return x_{end}

Remark: Primal-dual algorithm does not solve primal or dual programs.

14.2 $2\left(1-\frac{1}{k}\right)$ - approximation algorithm for steiner tree problem

14.2.1 Steiner Tree Problem

Given:

- 1. An undirected graph G = (V, E)
- 2. A cost function $\omega: E \to \mathbb{Q}^{+1}$
- 3. A set of terminal vertices $T \subseteq V$

Solve²:

$$H^* = (V_H^*, E_H^*) = \arg \min_{H = (V_H, E_H)} \sum_{e \in E_H} \omega(e)$$

s.t. $V_H \subseteq V$
 $E_H \subseteq E$

H connects all $t \in T$

¹This is equivalent to assigning a non-negative weight to each edge.

²The minimum cost subgraph that connects all terminal nodes in the graph.

Theorem 14.1 There exists a primal-dual algorithm for the Steiner tree problem with approximation ratio $2\left(1-\frac{1}{k}\right)$

Remark: There exists an algorithm with improved approximation ratio for steiner tree; however, it is not discussed here.

In order to prove theorem 14.1, we will need two useful concepts: separation and δ of a separation.

Definition 14.2 *S separates T means* $S \cap T \neq \emptyset \land S \cap T \neq T \land S \subseteq V$

Definition 14.2 shows when a set S separates T which is useful for thinking about a set of vertices in between some of the terminal nodes. It may be confusing at first glance why a S contains elements of T if it is meant to separate it. Note that if S contains some but not all elements of T then at least some of the elements of S must be added to a steiner tree for T.

Definition 14.3 $\delta(S) = \{e = (v_1, v_2) | e \in E \land v_1 \in S \land v_2 \notin S\}^3$

Meanwhile, $\delta(S)$ can be understood as the set of edges at the boundary of a set of vertices S.

14.2.2 Primal

$$\min \sum_{e \in E} \omega(e) x_e$$

s.t. $\sum_{e \in \delta(S)} x_e \ge 1 \quad \forall_{S \subseteq V} S$ separate T
 $x_e \ge 0$ (14.1)

The primal shown in equation 14.1 is the linear relaxation of the straight forward integer programming formulation of the Steiner Tree problem. The integer programming formulation restricts $x_e \in \{0, 1\}$. The primal variables x_i represent which edges are selected in the tree. When multiplied with $\omega(e)$ the cost computes the sum of the costs of the edges corresponding to the steiner tree. The constraint can be thought of as ensuring that there exists a path connecting all terminals in terms of sets S that separate T. This makes sense when considering that a S = t s.t $t \in T$ separates T. Notice that the minimal subgraph connecting all $t \in T$ must be a tree since you could drop an edge in a cycle and keep all components connected.

14.2.3 Dual

$$\max \sum_{S:S \text{separates}T} y_s$$

s.t $\sum_{e \in \delta(S)} y_s \le \omega(e) \quad \forall e \in E$
 $y_s \ge 0$ (14.2)

The dual variable y_s corresponds to the value of a cut S that separates T. With this we can see that the constraint could be interpreted as ensuring that every edge must pay for the cuts that it traverses by having a greater or equal cost. Notice that is $c_e = 1 \quad \forall e \in E$ then we can understand the dual as finding the largest collection of edge-disjoint cuts.

³The set of all edges with one end point in S and one end point not in S.

14.3 Algorithm

We will use the following in the algorithm:

- The set of components: $\Psi = \{\{x\} : x \in T\}$
- For each component $c \in \Psi$, x_c is the tree on C found in the algorithm:
 - $x_{\{x\}} = \{(\{x\}, \phi) : x \in T\}.$
- Steiner forest initialized to a forest on vertex set T and no edges. At the end F will be a steiner tree.

 $F = (T, \phi)$

• During the algorithm, we would grow components by adding edges and vertices. However, not all the edges added to these components are part of the steiner tree F we return at the end. We only add edges to F when two components merge:

```
(x_c, c \in \Psi) \neq F
```

Algorithm 2: Algorithm to solve Steiner Tree Problem:

input : G, T, ω output: F 1 $\Psi = \{\{x\} : x \in T\}$ **2** $x_{\{x\}} = \{(\{x\}, \emptyset) : x \in T\}$ **3** $F = (T, \emptyset)$ 4 $y_s = 0 \quad \forall S \subseteq V : S \text{ separates } T$ **5** t = 06 $M_{\{x\}} = \{\{x\}\}$ 7 while $|\Psi| > 1$ do while $\sum_{s:separatesT, e \in \delta(S)} y_s \leq x_e$ is not tight for some new $e = (u, v) \in E$ do 8 $| \forall c \in \Psi \text{ increase } y_c \leftarrow y_c + \Delta t$ 9 if $\exists_{C_i,C_i\in\Psi}$ $u\in C_i \land v\in C_j$ then 10 Add $C_i \cup C_j$ to Ψ 11 Delete C_i, C_j from Ψ 12 $x_{C_i \cup C_i} = x_{C_i} \cup x_{C_i} + e$ $\mathbf{13}$ Let p be a path connecting $F \cap C_i$ and $F \cap C_j$ in $X_{C_i \cup C_i}$ $\mathbf{14}$ $F = F \cup p$ (add edges and vertices of p to F $\mathbf{15}$ $M_{c_i \cup c_j} = M_{c_i} \cup M_{c_i} \cup \{C_i \cup C_j\}$ 16 if $u \in C_i$ for some $C_i \in \Psi, v \notin C_j$ for any $C_j \in \Psi$ then 17 add $c_i + v$ to Ψ 18 delete c_i from Ψ 19 $x_{c_i+v} = x_{c_i} + e$ (add vertex v and edge e to c_i) $\mathbf{20}$ $M_{c_i} = M_{c_i} \cup \{c_i + v\}$ 21 if Neither then $\mathbf{22}$ $t \leftarrow t + \Delta t$ 23 24 return F

Algorithm 2 is divided into three parts after initialization. Notice that in the algorithm we initialize a most variable M and a time variable t that are useful for analysis but not necessary for

the computation of a Steiner Tree. After initializing we start a while loop that will end when $|\Psi|$, the number of active separating sets, is reduced to one. The while loop in lines 8 to 10 increases the dual variables by Δt until a new constraint is tight. When the constraint becomes tight, it will be tight for some edge e which we will keep track of for the remaining two parts. Next we handle two cases for e: either e is between two existing active cuts in Ψ or it is a new edge. If the edge is between two cuts in Ψ , we merge them with the necessary bookkeeping. Otherwise we simply add the edge to the component C_i it connects to and do the necessary bookkeeping. Notice that when we merge two sets, part of the bookkeeping ensure that F contains an updated steiner forest.

14.4 Analysis

Lemma 14.4 At any time t, for any $C \in \Psi$, x_c is a tree.

Lemma 14.5 At the end of the algorithm, F is a steiner tree.

Lemma 14.6 At any time t, $\{y_s : S \text{ separates } T\}$ is a feasible dual solution.

Lemmas 14.4, 14.5 and 14.6 can be proved by induction.

Lemma 14.7 At time $t \ge 0$, for $C \in \Psi$, let F_c be the edges of F (at time t) with both end points in C.

$$Z(C) = \sum_{s \in M_c} y_s$$
$$Cost(C) = \sum_{e \in F_c} w_e$$

Then, $Cost(c) \leq 2(Z(C) - t)$

Proof: At time t = 0, $F = (T, \phi)$, $\Psi = \{\{x\} : x \in T\}$, $y_s = 0$, $\forall S : S$ separates T Hence, Cost(C) = 0, $Z(C) = 0 \ \forall C \in \Psi \rightarrow Cost(C) \le 2(Z(C) - t)$ at t = 0

- For ease of exposition, we divide the events into three cases:
 - 1. t increases by Δt and no change in the set of components.
 - 2. A vertex v is added to some component C_i at time t.
 - 3. Two components C_i, C_j merge at time t.
- <u>Case 1:</u> Set of components Ψ does not change. By induction, $\operatorname{Cost}(C) \geq 2(Z(C) t)$ at time t. y_c increases Δt for each $C \in \Psi$. $Z(C) = \sum_{S \in M_C} y_s$ increases by Δt since $C \in M_C$. F does not change. Hence, $\operatorname{Cost}(C)$ does not change. Therefore $\operatorname{Cost}(C) \leq 2(Z(C) t)$ at time $t + \Delta t$.
- <u>Case 2</u>: A vertex v is added to C_i (t does not change) $C_i + v$ is added to Ψ and C_i is deleted. By induction, $\operatorname{Cost}(C_i) \leq 2(Z(C_i) t)$.

$$Cost(C_i + v) = Cost(C_i) \text{ since, no edges are added to } F \text{ and } F_{C_i+v} = F_{C_i}$$
$$Z(C_i + v) = \sum_{S \in M_{C_i+v}} y_S = \sum_{s \in M_{C_i}} y_S + y_{C_i+v}$$
when v is added to $C_i, y_{C_i+v} = 0$. Hence, $Z_{C_i+v} = Z_{C_i}, Cost(C_i + v) = Cost(C_i)$.
$$\rightarrow Cost(C_i + v) \leq 2(Z(C_i + v) - t)$$

 $\begin{array}{lll} \underline{Case \; 3:} & \text{Two components } C_i, C_j \in \Psi \text{ merge } (t \text{ does not change}). \\ & C_i \cup C_j \text{ is added to } \Psi, C_i, C_j \text{ are deleted from } \Psi. \text{ By induction,} \\ & \text{Cost_old}(C_i) \leq 2(Z(C_i) - t) \\ & \text{Cost_old}(C_j) \leq 2(Z(C_j) - t) \\ & \text{Where _old denotes before merging.} \\ & \text{Cost_new}(C_i \cup C_j) \leq \text{Cost_old}(C_i) + \text{Cost_old}(c_j) + 2t \leq 2(Z(C_i) + Z(C_j) - t) \\ & Z(C_i \cup C_j) = \sum_{s \in M_{C_i \cup C_j}} y_s = \sum_{s \in M_{c_i}} y_s + \sum_{s \in M_{c_j}} y_s + y_{c_i \cup c_j} \\ & \text{Since, } C_i \cup C_j \text{ is just added to } M_{C_i \cup C_j}, \; y_{C_i \cup C_j} = 0. \\ & \text{Hence,} \\ & Z_{C_i \cup C_j} = Z(C_i) + Z(C_j) \\ & \rightarrow & \text{Cost_new}(C_i \cup C_j) \leq 2(Z(C_i \cup C_j) - t) \text{ end of Lemma 4s proof.} \end{array}$

Theorem 14.8 Optimal Steiner-tree Cost:

$$\sum_{e \in E(F)} w_e \le 2(1 - \frac{1}{|T|})$$

Proof: At the end of the algorithm (t = end) let the component in Ψ be C^* . Then, at $t = t_{end}$,

$$\operatorname{Cost}(C^*) = \sum_{e \in F_{C^*}} w_e = \sum_{e \in E(F)} w_e$$
$$Z(c^*) = \sum_{s \in M_{C^*}} y_s = \sum_{s:s \text{ separate } T} y_s$$

Hence, by lemma 4,

$$\sum_{e \in E(F)} w_e \le 2 \left(\sum_{s:s \text{ separates } T} y_s - t_{\text{end}} \right)$$

At any given time t, the number of components in Ψ is at most |T|. Hence, when t increases by Δt , $\sum_{s: \text{ separates } T}$ increases by at most $|T|\Delta T$

$$\rightarrow \sum_{s:s \text{ separates } T} y_s \leq |T| t_{\text{end}} \text{ or } t_{end} \geq \frac{\sum_{s:s \text{ separates } T} y_{-s}}{|T|} \text{ substituting in 1.}$$
$$\rightarrow \sum_{e \in E(F)} w_e \leq 2(1 - \frac{1}{|T|} \sum_{s:s \text{ separates } T} y_s)$$

Since $\{y_S : S \text{separates}T\}$ is a feasible dual solution, $\sum_{s:separatesT} y_s \leq \text{optimal-dual-value}$. By strong duality, optimal-dual-value = optimal-primal-value. Since, primal is a relaxation of the steiner tree problem, optimal-primal-value \leq optimal-steiner-tree-cost. Combining, all four inequalities, we get $\sum_{e \in E(F)} w_e \leq 2(1 - \frac{1}{|T|})$ optimal-steiner-tree-cost.

Therefore, we get a $2(1-\frac{1}{|T|})$ approximation algorithm for the steiner tree problem.

References

[1] Ravi, R. "A primal-dual approximation algorithm for the Steiner forest problem." Information processing letters 50.4 (1994): 185-189.