16.1 Algorithmic Lovász Local Lemma

Definition 16.1 Let \(\{x_1, x_2, \ldots, x_m\} \) be a finite set of mutually independent random variables. Let \(\{B_1, B_2, \ldots, B_n\} \) be a finite set of events determined by these variables. For event \(B_i \),
\[
vbl(B_i) := \{x_j : B_i \text{ depends on } x_j\}
\]
\[
D_i := \{B_j : B_j \in \{B_1, B_2, \ldots, B_n\} \setminus \{B_i\} \text{ and } vbl(B_j) \cap vbl(B_i) \neq \emptyset\}
\]
\[
D_i^+ := D_i \cup \{B_i\}
\]
If \(B_i \) occurs, we say \(B_i \) is violated.

We will analyze the following Moser-Tardos Algorithm.

Algorithm 1: Moser-Tardos Algorithm

1. for \(x_j \in \{x_1, x_2, \ldots, x_m\} \) do
2. Choose \(x_j \) from \(\{0, 1\} \) uniformly at random;
3. while \(\exists B_i \in \{B_1, B_2, \ldots, B_n\} \) is violated do
4. Pick an arbitrary violated event \(B_i \);
5. for \(x_j \in vbl(B_i) \) do
6. Choose \(x_j \) randomly from \(\{0, 1\} \);

Our goal is to prove the following Algorithmic Lovász Local Lemma related to Moser-Tardos Algorithm.

Theorem 16.2 Let \(\{B_1, B_2, \ldots, B_n\} \) be a finite set of events. If there exists \(\{\beta_1, \beta_2, \ldots, \beta_n\} \in [0, 1) \), such that,
\[
Pr(B_i) \leq \beta_i \prod_{j \in D_i^+} (1 - \beta_j) \quad \forall i
\]
the Moser-Tardos Algorithm terminates in expected time at most \(\sum_{i=1}^{n} \frac{\beta_i}{1 - \beta_i} \).

16.2 Witness trees

Definition 16.3 An execution of Moser-Tardos Algorithm is a sequence \(E := E(1), E(2), \ldots, E(T) \), where \(E(t) \) is the violated event \(B_i \) resampled at step \(t \) of the algorithm. (The execution may be either finite, if the algorithm terminates, or infinite in length.) For convenience, let \(D^+(E[t]) \) denote \(D_i^+ \).
Definition 16.4 For a tree T, let $V(T)$ denote the set of its vertices. For $v \in V(T)$, let $d(v)$ denote the depth of v (distance from v to the root r of tree T). For example, $d(r) = 0$, and its children have depth 1.

Given an execution E, now we define a witness tree $T(t)$ for each step t of E as follows.

Algorithm 2: Witness Tree

1. Label the root of tree $T(t)$ with event $E(t)$;
2. for $t' \leftarrow t - 1$ to 1 do
 3. if \exists a vertex in the current tree with label $E[i]$ such that $E[t'] \in D^+(E[i])$ then
 4. Choose among all such vertices the one which has the maximum depth, and break ties arbitrarily;
 5. Add $E(t')$ as a child of the vertex;
 6. else
 7. Do not add a vertex for $E[t']$ to tree $T(t)$;

Claim 16.5 In a witness tree, the labels on all children of any vertex are distinct and independent. Besides, at each depth, an event B_i occurs at most once and all labels are independent.

Proof: When adding B_i, if it already occurs at depth d, then we can add B_i as a child of that vertex at depth d or a vertex with higher depth. Thus the labels on all children of any vertex are distinct and an event B_i occurs at most once at each depth.

If there is an event B_j at depth d and B_j is dependent with B_i, then we can add B_i as a child of the vertex at depth d or a vertex with higher depth. Thus the labels on all children of any vertex are independent and all labels are independent at each level.

We say that a witness tree T appears in E if $T = T(t)$ for some t.

Lemma 16.6 Let T be a witness tree and E a random execution of the algorithm. Then

$$\Pr(T \text{ appears in } E) \leq \prod_{v \in V(T)} \Pr(B_v)$$

where B_v denotes the event labeling node $v \in V(T)$.

Proof: Fix a witness tree T.

Define an evaluation for T. In reverse BFS order, visit $v \in V(T)$ and resample their variables $\text{vbl}(B_v)$ (independently of previous resamplings).

We say that T was violated, if for all $v \in V(T)$, event B_v was violated by resampling of B_v. Obviously,

$$\Pr(T \text{ was violated}) = \prod_{v \in V(T)} \Pr(B_v)$$

For each variable x_j, image an infinite list of independent random resamplings. Then, when x_j needs to be resampled, it takes the next value in this sequence, and thus the Moser-Tardos Algorithm and the evaluation both take the same value for a given variable if it has been sampled the same number of times in
both processes.

For a vertex \(v \in V(T) \), consider the resampling of \(\text{vbl}(B_v) \) in evaluation for \(T \). Consider \(x_j \in \text{vbl}(B_v) \). According to the previous claim, \(x_j \) does not occur again on the same level of \(T \). Thus, by reverse BFS ordering, the number of times \(x_j \) has been sampled prior to the resampling at \(v \) is equal to the number of vertices that have greater depth than \(\text{depth}(v) \) and depend on variable \(x_j \), and let \(n_{j,v} \) denote this number.

Then consider the resamplings of \(B_v \) in the execution \(E \) of Moser-Tardos Algorithm. The number of times \(x_j \) has been resampled prior to the resampling of \(B_v \) is \(n_{j,v} + 1 \), since \(x_j \) was sampled for the initial setting and then at all the other times corresponding to vertices that have greater depth than \(\text{depth}(v) \) in the tree.

So we define a coupling between the evaluation of \(T \) and the execution \(E \): for the random choice of variables \(\{x_1, x_2, \ldots, x_m\} \), using them for the tree \(T \) evaluation and then the Moser-Tardos Algorithm with setting immediately prior to its resampling of \(B_v \) as well so that the first resampling of \(x_j \) in the tree \(T \) evaluation gives the initial setting of \(x_j \) in \(E \).

In this way, if \(B_v \) is violated in \(T \), in \(E \) at the corresponding time the event \(B_v \) will be violated prior to this time since otherwise the algorithm would not select \(B_v \) for resampling.

Therefore,

\[
\Pr(T \text{ appears in } E) \leq \Pr(T \text{ was violated}) = \prod_{v \in V(T)} \Pr(B_v)
\]

\[\blacksquare\]

16.3 Proof of Algorithmic Lovász Local Lemma

Definition 16.7 For event \(B_i \), let \(N_i \) denote the number of times that \(B_i \) appears in original algorithm \(E \). Thus \(N_i \) is the number of trees with root \(B_i \) in execution \(E \).

Consider the following Galton-Watson process to build a tree \(T \) randomly:

<table>
<thead>
<tr>
<th>Algorithm 3: Galton-Watson Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Fix the root to be (B_i);</td>
</tr>
<tr>
<td>2 for (B_j \in D_i^+) do</td>
</tr>
<tr>
<td>3 Add (B_j) as a child of (B_i) with probability (\beta_j);</td>
</tr>
<tr>
<td>4 Leave out (B_j) with probability (1 - \beta_j);</td>
</tr>
<tr>
<td>5 Repeat if (B_j) is added</td>
</tr>
</tbody>
</table>

Fix a tree with root \(B_i \) and let \(P_T = \Pr(\text{Galton-Watson process produces } T) \). We have the following lemma:

Lemma 16.8

\[
P_T = \frac{\beta_i}{1 - \beta_i} \prod_{v \in V(T)} \beta'_v
\]

where

\[
\beta'_v = \beta_v \prod_{j \in D_v} (1 - \beta_j)
\]
Proof: For $v \in V(T)$, let w_v denote dependencies of \mathcal{B}_v which are not children of v in T, namely, $w_v = D^+_v \setminus N^-_T(v)$ where $N^-_T(v)$ denotes the children of v in T. Then

$$P_T = \frac{1}{\beta_i} \prod_{v \in V(T)} \beta_v \prod_{j \in w_v} (1 - \beta_j)$$

$$= \frac{1 - \beta_i}{\beta_i} \prod_{v \in V(T)} \beta_v \prod_{j \in D^+_v} (1 - \beta_j)$$

$$= \frac{1 - \beta_i}{\beta_i} \prod_{v \in V(T)} \beta'_v$$

Now, we are in a position to bound $\mathbb{E}[N_i]$.

Lemma 16.9

$$\mathbb{E}[N_i] \leq \frac{\beta_i}{1 - \beta_i}$$

Proof:

$$\mathbb{E}[N_i] = \sum_T \Pr(T \text{ appears in } E)$$

$$\leq \sum_T \prod_{v \in V(T)} \Pr(\mathcal{B}_v)$$

$$\leq \sum_T \prod_{v \in V(T)} \beta_v \prod_{j \in D_v} (1 - \beta_j)$$

$$\leq \sum_T \prod_{v \in V(T)} \beta'_v$$

$$= \frac{\beta_i}{1 - \beta_i} \sum_T P_T$$

$$= \frac{\beta_i}{1 - \beta_i}$$

as the Galton-Watson Process produces 1 tree.

Note the running time of the algorithm is proportional to $\sum_{i=1}^n N_i$. As $\mathbb{E}[N_i] \leq \frac{\beta_i}{1 - \beta_i}$, we have proved the algorithmic version of Lovász Local Lemma.

References
