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16.1 Algorithmic Lovász Local Lemma

Definition 16.1 Let {x1, x2, . . . , xm} be a finite set of mutually independent random variables. Let {B1,B2, . . . ,Bn}
be a finite set of events determined by these variables. For event Bi,

vbl(Bi) := {xj : Bi depends on xj}

Di := {Bj : Bj ∈ {B1,B2, . . . ,Bn}\{Bi} & vbl(Bj) ∩ vbl(Bj) 6= ∅}

D+
i := Di ∪ {Bi}

If Bi occurs, we say Bi is violated.

We will analyze the following Moser-Tardos Algorithm.

Algorithm 1: Moser-Tardos Algorithm

1 for xj ∈ {x1, x2, . . . , xm} do
2 Choose xj from {0,1} uniformly at random;

3 while ∃Bi ∈ {B1,B2, . . . ,Bn} is violated do
4 Pick an arbitrary violated event Bi;
5 for xj ∈ vbl{Bi} do
6 Choose xj randomly from {0,1} ;

Our goal is to prove the following Algorithmic Lovász Local Lemma related to Moser-Tardos Algorithm.

Theorem 16.2 Let {B1,B2, . . . ,Bn} be a finite set of events. If there exists {β1, β2, . . . , βn} ∈ [0, 1), such
that,

Pr(Bi) ≤ βi
∏
j∈Di

(1− βj) ∀i

the Moser-Tardos Algorithm terminates in expected time at most
∑n
i=1

βi

1−βi
.

16.2 Witness trees

Definition 16.3 An execution of Moser-Tardos Algorithm is a sequence E := E(1), E(2), . . . , E(T ), where
E(t) is the violated event Bi resampled at step t of the algorithm. (The execution may be either finite, if the
algorithm terminates, or infinite in length.) For convenience, let D+(E[t]) denote D+

i .
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Definition 16.4 For a tree T , let V (T ) denote the set of its vertices. For v ∈ V (T ), let d(v) denote the
depth of v (distance from v to the root r of tree T ). For example, d(r) = 0, and its children have depth 1.

Given an execution E, now we define a witness tree T (t) for each step t of E as follows.

Algorithm 2: Witness Tree

1 Label the root of tree T (t) with event E(t);
2 for t′ ← t− 1 to 1 do
3 if ∃ a vertex in the current tree with label E[i] such that E[t′] ∈ D+(E[i]) then
4 Choose among all such vertices the one which has the maximum depth, and break ties

arbitrarily;
5 Add E(t′) as a child of the vertex;

6 else
7 Do not add a vertex for E[t′] to tree T (t);

Claim 16.5 In a witness tree, the labels on all children of any vertex are distinct and independent. Besides,
at each depth, an event Bi occurs at most once and all labels are independent.

Proof: When adding Bi, if it already occurs at depth d, then we can add Bi as a child of that vertex
at depth d or a vertex with higher depth. Thus the labels on all children of any vertex are distinct and an
event Bi occurs at most once at each depth.

If there is an event Bj at depth d and Bj is dependent with Bi, then we can add Bi as a child of the vertex
at depth d or a vertex with higher depth. Thus the labels on all children of any vertex are independent and
all labels are independent at each level.

We say that a witness tree T appears in E if T = T (t) for some t.

Lemma 16.6 Let T be a witness tree and E a random execution of the algorithm. Then

Pr(T appears in E) ≤
∏

v∈V (T )

Pr(Bv)

where Bv denotes the event labeling node v ∈ V (T ).

Proof: Fix a witness tree T .

Define an evaluation for T . In reverse BFS order, visit v ∈ V (T ) and resample their variables vbl(Bv)
(independently of previous resamplings).

We say that T was violated, if for all v ∈ V (T ), event Bv was violated by resampling of Bv. Obviously,

Pr(T was violated) =
∏

v∈V (T )

Pr(Bv)

For each variable xj , image an infinite list of independent random resamplings. Then, when xj needs
to be resampled, it takes the next value in this sequence, and thus the Moser-Tardos Algorithm and the
evaluation both take the same value for a given variable if it has been sampled the same number of times in
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both processes.

For a vertex v ∈ V (T ), consider the resampling of vbl(Bv) in evaluation for T . Consider xj ∈ vbl(Bv).
According to the previous claim, xj does not occur again on the same level of T . Thus, by reverse BFS
ordering, the number of times xj has been sampled prior to the resampling at v is equal to the number of
vertices that have greater depth than depth(v) and depend on variable xj , and let nj,v denote this number.

Then consider the resamplings of Bv in the execution E of Moser-Tardos Algorithm. The number of
times xj has been resampled prior to the resampling of Bv is nj,v + 1, since xj was sampled for the initial
setting and then at all the other times corresponding to vertices that have greater depth than depth(v) in
the tree.

So we define a coupling between the evaluation of T and the execution E: for the random choice of
variables {x1, x2, . . . , xm}, using them for the tree T evaluation and then the Moser-Tardos Algorithm with
setting immediately prior to its resampling of Bv as well so that the first resampling of xj in the tree T
evaluation gives the initial setting of xj in E.

In this way, if Bv is violated in T , in E at the corresponding time the event Bv will be violated prior to
this time since otherwise the algorithm would not select Bv for resampling.

Therefore,

Pr(T appears in E) ≤ Pr(T was violated) =
∏

v∈V (T )

Pr(Bv)

16.3 Proof of Algorithmic Lovász Local Lemma

Definition 16.7 For event Bi, let Ni denote the number of times that Bi appears in original algorithm E.
Thus Ni is the number of trees with root Bi in execution E.

Consider the following Galton-Watson process to build a tree T randomly:

Algorithm 3: Galton-Watson Process

1 Fix the root to be Bi;
2 for Bj ∈ D+

i do
3 Add Bj as a child of Bi with probability βj ;
4 Leave out Bj with probability 1− βj ;
5 Repeat if Bj is added

Fix a tree with root Bi and let PT = Pr(Galton-Watson process produces T ). We have the following lemma:

Lemma 16.8

PT =
βi

1− βi

∏
v∈V (T )

β′v

where
β′v = βv

∏
j∈Dv

(1− βj)
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Proof: For v ∈ V (T ), let wv denote dependencies of Bv which are not children of v in T , namely,
wv = D+

v \N−T (v) where N−T (v) denotes the children of v in T . Then

PT =
1

βi

∏
v∈V (T )

βv
∏
j∈wv

(1− βj)

=
1− βi
βi

∏
v∈V (T )

βv
1− βv

∏
j∈D+

v

(1− βj)

=
1− βi
βi

∏
v∈V (T )

βv
∏
j∈Dv

(1− βj)

=
1− βi
βi

∏
v∈V (T )

β′v

Now, we are in a position to bound E[Ni].

Lemma 16.9

E[Ni] ≤
βi

1− βi
Proof:

E[Ni] =
∑
T

Pr(T appears in E)

≤
∑
T

∏
v∈V (T )

Pr(Bv)

≤
∑
T

∏
v∈V (T )

βv
∏
j∈Dv

(1− βj)

≤
∑
T

∏
v∈V (T )

β′v

=
βi

1− βi

∑
T

PT

=
βi

1− βi

as the Galton-Watson Process produces 1 tree.

Note the running time of the algorithm is proportional to
∑n
i=1Ni. As E[Ni] ≤ βi

1−βi
, we have proved the

algorithmic version of Lovász Local Lemma.
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