CS 6550: Randomized Algorithms Spring 2019

Lecture 19: #DNF and Network Unreliability
March 26, 2019

Lecturer: Eric Vigoda Scribes: Sherry Sarkar, Samarth Wahal

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

19.1 #DNF

19.1.1 Problem Statement

Definition 19.1 A boolean formula F is said to be in Conjunctive Normal Form (CNF) if it is the con-
junction of clauses C1 A ... A Cyp, where each clause is a disjunction of literals.

Definition 19.2 A boolean formula F is said to be in Disjunctive Normal Form (DNF) if it is the disjunction
of clauses C1 V ...V C,, where each clause is a conjunction of literals.

Example 19.3 The following is a DNF formula:
(JZQ/\Q?g /\ﬂ) V (.565) V(@Vﬂ\/afg)

Satisfying a DNF formula F' is easy since we can simply satisfy all literals in a particular clause Cj
to make it true. A harder problem is computing N(F) — the number of satisfying assignments to F'.
This problem is called #DNF. Note that this problem is # P-complete where # P is the counting analog
of NP. This implies that it is unlikely to solve this problem exactly. We will provide a Fully Polynomial
Randomized Approximation Scheme (FPRAS) to solve #DNF. In particular, the FPRAS takes as input a
DNF F, € > 0, and 6 > 0 and outputs OUT s.t. Pr (|OUT — N(F)| < eN(F)) > 1—4¢. The running time is
poly(n,m,1/e log(1/5)). Our FPRAS will make use of the Monte Carlo method.

19.1.2 The Monte Carlo Method

The Monte Carlo method estimates |S| for a given set S. This approach involves choosing a trivial set

s.t. S C Q and || is known. We generate i.i.d. samples Xi,...,X; from Q. Then we construct indicator
random variables Y; for i = 1,...,t as follows:
0 ifX; ¢85
El BN
Note that u = E[Y;] = Pr(X; € 5) = 1 Let Y = EZY; Then E[Y] = u. We output an estimator
i=1

Y = QY. So, E[Y] = |Q|u = |S]. We would like that, for inputs €,6 > 0, Pr(|[Y —|S|| <€|lS]) >1 -6 =
Pr(|Y —|S|| > €|S|) < 4. Using Chernoff bounds, we have the following;:

. Q <
Pr(|V = IS > ¢|S]) = Pr (B S v i > emm)
i=1
t
:Pr(ZY}—t,u Zet,u>
i=1

< 2e~ < tn/3

19-1

Lecture 19: #DNF and Network Unreliability 19-2

3 2
Therefore, we have that ¢t > — In | = |. Observe that we need u = Q
pe? poly(z)

)
otherwise ¢ is huge. That is, if |S| << |€2|, then this is a bad scheme.

) where z is the input size

19.1.3 Applying the Monte Carlo Method to #DNF

We can adapt the approach outlined above to the problem of counting satisfying assignments to a DN F
formula F' containing m clauses and n literals. First, we set S = N(F). An obvious choice for 2 is the set
of all possible assignments of the n literals. So, |S| = |[N(f)| and |[2] = 2". We can generate assignments
01, - -.,0¢ uniformly at random from 2. Now, we can construct indicator random variables Y; for i = 1,... ¢
as follows:

v — 1 if o; satisfies I
"0 ifnot

N(F 1¢ N(F
Note that E[Y;] = Pr (0; satisfies F) = % Letting Y = EZK’ we have that E[Y] = % We output
i=1
an estimator Y = 2"Y. So, E[Y] = N(F). From our running time analysis in section 19.1.2, we can see that

N(F 1
if 2() 2 o) then we have an FPRAS. However, if N(F) << 2", then this is a bad scheme. Thus,
n poly(n
we will need to come up with a better choice for our sample space §2.

19.1.4 Choosing a Better Sample Space

Instead, we consider the following multi-set as our sample space

where S; is the set of assignments which satisfy clause i. Note that we can easily calculate the size of S; —
if there are j variables in clause i, then the number of satisfying assignments for clause ¢ is 2”77. We also
note that the set of all satisfying assignments of f is S = J;~, S;. Therefore,

| U S| < Z|Sz| < m|S]
i=1 i=1

where the last inequality follows since each assignment can satisfy up to m clauses. With the above, we have

proven that
S| < 192 < m|S|

which shows us that we have a good sample space.
Next, we understand how to sample from the multi-set 2. We relabel the elements of 2 to instead be
tuples
Q:={(i,0):0€ 5,1 <i<m}.

We sample from 2 by first sampling ¢ with probability proportional to how many satisfying assignments
satisfy clause 4, and then by sampling the actual assignment. In particular, we choose i with probability
1Sl _ 1S4l
m - [e) .
Sis

Jj=1

To sample the actual assignment, we simply decide the value of each literal not in clause @

1
independently and uniformly at random. So, we pick the assignment with probability m Therefore, we
i

Lecture 19: #DNF and Network Unreliability 19-3

have that for a fixed (i,0) tuple:

L . |Si| 1 1
Pr (Picking (i,0)) = = —
Q15| 1€
i.e. uniform over €. Using this sampling technique, we generate ¢ i.i.d samples (i1,01), ..., (it,0¢) from .

Let V be the set of all tuples (¢, 0;) s.t. clause 4 is the first clause satisfied by o; whenever o; is a satisfying
assignment to F. Note that |V| = |S| = N(F) since any o € S satisfies a least indexed clause | which
implies that (o,l) € V, and for any (0,l) € V, o0 € S since it satisfies some clause [in F satisfies F. Now,

we construct indicator random variables Y; for j = 1,...,t as follows:
1 (o) eV
! 0 (]7 Jj) ¢ Vv

So, we have the following:

_WVI_NE) _IS|

1
— ElY:] = -\ il
pEENI= G T T T T

t
1 S - .
Let Y = 7 E Y;. Then E[Y] = ||Q|| We output an estimator Y = |Q|Y which implies that E[Y] = |S| =
i=1

N(F). Finally, from the running time analysis in section 19.1.2, we have the following:

Bm, (2) L 8 (2
€2 6) = pe?)

2 .
By setting ¢ > 3—Tznln (5>, we satisfy that Pr(]Y — N(F)| <eN(F)) > 1 — 3. We also have that ¢ is
€

1 1
polynomial in m, —, and In (5) . Since our sampling step takes polynomial time as well, we have an FPRAS
€

for #DNF.

19.2 The Network Unreliability Problem

The Network Unreliability Problem is as follows: we have an undirected graph G = (V, E) and some
parameter 0 < p < 1. We run through all edges of the graph and delete each edge with probability p. Let
H denote the resulting sub-graph. We define

FAILq(p) = Pr(H is disconnected)

We want to create an FPRAS to find FAILg(p).
We could use a trivial scheme: run the experiment multiple times and check whether the graph is
disconnected. This is the same as performing a Monte Carlo simulation. Let u = FAILg(p). If we run the

experiment ¢ > O(ﬁ log) and we say

1 if H; is disconnected
" 10 ifnot

Then, E(Y;) = p. Let the size of the min cut of G be ¢. All edges of this cut vanish (and therefore leave the
graph disconnected) with probability p¢. Therefore, if 1 > p¢ > n~%, then we can run the trivial scheme and

get a running time of O(Z—; log %) [Karger]. However, if p° < n~%, we will have to use something other than
the trivial scheme.

Lecture 19: #DNF and Network Unreliability 19-4

Recall that when deriving Karger’s algorithm, the probability of finding a single min cut was # which
in turn implied there were less than n? min cuts in any given graph G. Similarly, if we consider the number
of cuts of size ac where o > 1, then

1
Pr (cut of size at most ac is found) < ——
n

since we can just run Karger’s algorithm down to 2« vertices. Therefore, the number of cuts of size at most
ac is n?®.

Intuitively, when calculating the probability H is disconnected, the size of “large” cuts do not matter. If
we let v = 2+ In(2), then we say that cuts with size greater than ac do not matter (theorem 2.9 and 2.10
[Karger]). We enumerate all cuts with size less than or equal to ac and we say H is disconnected if at least
one of these cuts is satisfied.

At this point, we apply #DNF. We construct a DNF formula f where the edges are the variables x; and
the cuts are the clauses. Then,

- {1 with probability p
;=

0 with probability 1 —p

which would mean

Pr (f is satisfied) < FAILg(p)
(the value is within § of FAILg(p)). Note that the probability that f is satisfied is

) pPoo) (1 — pynes(o)

o:ois a sat. assign

where pos(o) and neg(o) indicate the number of clauses in f which are satisfied and the number of clauses
in f which are not, respectively. This can be calculated using a variant of the #DNF scheme in the previous
section. Since our #DNF scheme runs in polynomial time, this clever scheme also runs in polynomial time.

In summary, our FPRAS for estimating FAI L (p) is as follows: find ¢, the size of the minimum cut of G.
If p¢ > n~*, then run the experiment (’)(ﬁ log %) times and calculate the proportion of times in which the
resulting sub-graph H is disconnected. Else, use Karger’s algorithm to enumerate all cuts of size at most ac
and construct a corresponding DNF formula. The probability the DNF formula is satisfied is a polynomial
time close estimate for F'AI Lo (p) according to section 19.1.

References

[1] D. R. Karger. A randomized fully polynomial time approximation scheme for the all-terminal network
reliability problem. SIAM J. Comput., 29(2):492514, 1999.

	#DNF
	Problem Statement
	The Monte Carlo Method
	Applying the Monte Carlo Method to #DNF
	Choosing a Better Sample Space

	The Network Unreliability Problem

