
CS 6550: Randomized Algorithms Spring 2019

Lecture 19: #DNF and Network Unreliability

March 26, 2019
Lecturer: Eric Vigoda Scribes: Sherry Sarkar, Samarth Wahal

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

19.1 #DNF

19.1.1 Problem Statement

Definition 19.1 A boolean formula F is said to be in Conjunctive Normal Form (CNF) if it is the con-
junction of clauses C1 ∧ . . . ∧ Cm where each clause is a disjunction of literals.

Definition 19.2 A boolean formula F is said to be in Disjunctive Normal Form (DNF) if it is the disjunction
of clauses C1 ∨ . . . ∨ Cm where each clause is a conjunction of literals.

Example 19.3 The following is a DNF formula:

(x2 ∧ x3 ∧ x1) ∨ (x5) ∨ (x2 ∨ x4 ∨ x3)

Satisfying a DNF formula F is easy since we can simply satisfy all literals in a particular clause Ci
to make it true. A harder problem is computing N(F) — the number of satisfying assignments to F .
This problem is called #DNF. Note that this problem is #P -complete where #P is the counting analog
of NP . This implies that it is unlikely to solve this problem exactly. We will provide a Fully Polynomial
Randomized Approximation Scheme (FPRAS) to solve #DNF. In particular, the FPRAS takes as input a
DNF F , ε > 0, and δ > 0 and outputs OUT s.t. Pr (|OUT −N(F)| ≤ εN(F)) ≥ 1− δ. The running time is
poly(n,m, 1/ε, log(1/δ)). Our FPRAS will make use of the Monte Carlo method.

19.1.2 The Monte Carlo Method

The Monte Carlo method estimates |S| for a given set S. This approach involves choosing a trivial set Ω
s.t. S ⊆ Ω and |Ω| is known. We generate i.i.d. samples X1, . . . , Xt from Ω. Then we construct indicator
random variables Yi for i = 1, . . . , t as follows:

Yi =

{
1 if Xi ∈ S
0 if Xi 6∈ S

Note that µ = E[Yi] = Pr (Xi ∈ S) =
|S|
|Ω|

. Let Y =
1

t

t∑
i=1

Yi. Then E[Y] = µ. We output an estimator

Ŷ = |Ω|Y . So, E[Ŷ] = |Ω|µ = |S|. We would like that, for inputs ε, δ > 0, Pr (|Ŷ − |S|| ≤ ε|S|) ≥ 1 − δ ⇒
Pr (|Ŷ − |S|| > ε|S|) ≤ δ. Using Chernoff bounds, we have the following:

Pr (|Ŷ − |S|| > ε|S|) = Pr

(∣∣∣∣∣ |Ω|t
t∑
i=1

Yi − |Ω|µ

∣∣∣∣∣ ≥ ε|Ω|µ
)

= Pr

(∣∣∣∣∣
t∑
i=1

Yi − tµ

∣∣∣∣∣ ≥ εtµ
)

≤ 2e−ε
2tµ/3

19-1

Lecture 19: #DNF and Network Unreliability 19-2

Therefore, we have that t ≥ 3

µε2
ln

(
2

δ

)
. Observe that we need µ = Ω

(
1

poly(x)

)
where x is the input size

otherwise t is huge. That is, if |S| << |Ω|, then this is a bad scheme.

19.1.3 Applying the Monte Carlo Method to #DNF

We can adapt the approach outlined above to the problem of counting satisfying assignments to a DNF
formula F containing m clauses and n literals. First, we set S = N(F). An obvious choice for Ω is the set
of all possible assignments of the n literals. So, |S| = |N(f)| and |Ω| = 2n. We can generate assignments
σ1, . . . , σt uniformly at random from Ω. Now, we can construct indicator random variables Yi for i = 1, . . . , t
as follows:

Yi =

{
1 if σi satisfies F

0 if not

Note that E[Yi] = Pr (σi satisfies F) =
N(F)

2n
. Letting Y =

1

t

t∑
i=1

Yi, we have that E[Y] =
N(F)

2n
. We output

an estimator Ŷ = 2nY . So, E[Ŷ] = N(F). From our running time analysis in section 19.1.2, we can see that

if
N(F)

2n
≥ 1

poly(n)
, then we have an FPRAS. However, if N(F) << 2n, then this is a bad scheme. Thus,

we will need to come up with a better choice for our sample space Ω.

19.1.4 Choosing a Better Sample Space

Instead, we consider the following multi-set as our sample space

Ω =

m∑
i=1

Si

where Si is the set of assignments which satisfy clause i. Note that we can easily calculate the size of Si —
if there are j variables in clause i, then the number of satisfying assignments for clause i is 2n−j . We also
note that the set of all satisfying assignments of f is S =

⋃m
i=1 Si. Therefore,

|
m⋃
i=1

Si| ≤
m∑
i=1

|Si| ≤ m|S|

where the last inequality follows since each assignment can satisfy up to m clauses. With the above, we have
proven that

|S| ≤ |Ω| ≤ m|S|

which shows us that we have a good sample space.
Next, we understand how to sample from the multi-set Ω. We relabel the elements of Ω to instead be

tuples
Ω := {(i, σ) : σ ∈ Si, 1 ≤ i ≤ m}.

We sample from Ω by first sampling i with probability proportional to how many satisfying assignments
satisfy clause i, and then by sampling the actual assignment. In particular, we choose i with probability
|Si|
m∑
j=1

|Sj |
=
|Si|
|Ω|

. To sample the actual assignment, we simply decide the value of each literal not in clause i

independently and uniformly at random. So, we pick the assignment with probability
1

|Si|
. Therefore, we

Lecture 19: #DNF and Network Unreliability 19-3

have that for a fixed (i, σ) tuple:

Pr (Picking (i, σ)) =
|Si|
|Ω|

1

|Si|
=

1

|Ω|

i.e. uniform over Ω. Using this sampling technique, we generate t i.i.d samples (i1, σ1), . . . , (it, σt) from Ω.
Let V be the set of all tuples (i, σi) s.t. clause i is the first clause satisfied by σi whenever σi is a satisfying
assignment to F . Note that |V | = |S| = N(F) since any σ ∈ S satisfies a least indexed clause l which
implies that (σ, l) ∈ V , and for any (σ, l) ∈ V , σ ∈ S since it satisfies some clause l in F satisfies F . Now,
we construct indicator random variables Yj for j = 1, . . . , t as follows:

Yj =

{
1 (j, σj) ∈ V
0 (j, σj) 6∈ V

So, we have the following:

µ = E[Yj] =
|V |
|Ω|

=
N(F)

|Ω|
=
|S|
|Ω|
≥ 1

m

Let Y =
1

t

t∑
i=1

Yi. Then E[Y] =
|S|
|Ω|

. We output an estimator Ŷ = |Ω|Y which implies that E[Ŷ] = |S| =

N(F). Finally, from the running time analysis in section 19.1.2, we have the following:

3m

ε2
ln

(
2

δ

)
≥ 3

µε2
ln

(
2

δ

)

By setting t ≥ 3m

ε2
ln

(
2

δ

)
, we satisfy that Pr (|Ŷ −N(F)| ≤ εN(F)) ≥ 1 − δ. We also have that t is

polynomial in m,
1

ε
, and ln

(
1

δ

)
. Since our sampling step takes polynomial time as well, we have an FPRAS

for #DNF.

19.2 The Network Unreliability Problem

The Network Unreliability Problem is as follows: we have an undirected graph G = (V,E) and some
parameter 0 ≤ p ≤ 1. We run through all edges of the graph and delete each edge with probability p. Let
H denote the resulting sub-graph. We define

FAILG(p) = Pr (H is disconnected)

We want to create an FPRAS to find FAILG(p).
We could use a trivial scheme: run the experiment multiple times and check whether the graph is

disconnected. This is the same as performing a Monte Carlo simulation. Let µ = FAILG(p). If we run the
experiment t ≥ O(1

ε2µ log 1
δ) and we say

Yi =

{
1 if Hi is disconnected

0 if not

Then, E(Yi) = µ. Let the size of the min cut of G be c. All edges of this cut vanish (and therefore leave the
graph disconnected) with probability pc. Therefore, if µ > pc > n−4, then we can run the trivial scheme and

get a running time of O(n
4

ε2 log 1
δ) [Karger]. However, if pc < n−4, we will have to use something other than

the trivial scheme.

Lecture 19: #DNF and Network Unreliability 19-4

Recall that when deriving Karger’s algorithm, the probability of finding a single min cut was 1
n2 which

in turn implied there were less than n2 min cuts in any given graph G. Similarly, if we consider the number
of cuts of size αc where α ≥ 1, then

Pr (cut of size at most αc is found) <
1

n2α

since we can just run Karger’s algorithm down to 2α vertices. Therefore, the number of cuts of size at most
αc is n2α.

Intuitively, when calculating the probability H is disconnected, the size of “large” cuts do not matter. If
we let α = 2 + ln(2

ε), then we say that cuts with size greater than αc do not matter (theorem 2.9 and 2.10
[Karger]). We enumerate all cuts with size less than or equal to αc and we say H is disconnected if at least
one of these cuts is satisfied.

At this point, we apply #DNF. We construct a DNF formula f where the edges are the variables xi and
the cuts are the clauses. Then,

xi =

{
1 with probability p

0 with probability 1− p

which would mean
Pr (f is satisfied) ≤ FAILG(p)

(the value is within ε
2 of FAILG(p)). Note that the probability that f is satisfied is∑

σ:σis a sat. assign

ppos(σ)(1− p)neg(σ)

where pos(σ) and neg(σ) indicate the number of clauses in f which are satisfied and the number of clauses
in f which are not, respectively. This can be calculated using a variant of the #DNF scheme in the previous
section. Since our #DNF scheme runs in polynomial time, this clever scheme also runs in polynomial time.

In summary, our FPRAS for estimating FAILG(p) is as follows: find c, the size of the minimum cut of G.
If pc > n−4, then run the experiment O(1

ε2µ log 1
δ) times and calculate the proportion of times in which the

resulting sub-graph H is disconnected. Else, use Karger’s algorithm to enumerate all cuts of size at most αc
and construct a corresponding DNF formula. The probability the DNF formula is satisfied is a polynomial
time close estimate for FAILG(p) according to section 19.1.

References

[1] D. R. Karger. A randomized fully polynomial time approximation scheme for the all-terminal network
reliability problem. SIAM J. Comput., 29(2):492514, 1999.

	#DNF
	Problem Statement
	The Monte Carlo Method
	Applying the Monte Carlo Method to #DNF
	Choosing a Better Sample Space

	The Network Unreliability Problem

