
CS 6550: Randomized Algorithms Spring 2019

Lecture 2: Median Finding

January 10, 2019
Lecturer: Eric Vigoda Scribes: Daniel Hathcock, Shyamal Patel

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

2.1 Classical Median Finding Algorithms

Given an unsorted list of n numbers S = [S1, . . . , Sn], find the median (n is assumed to be odd for conve-
nience). There are many algorithms to do this:

• Easy: sort in O(n log n) time, output middle element.

• Non-trivial: median of medians algorithm, deterministically finds median in O(n) time via divide
and conquer, originally by Blum et. al [2].

• Trivial (randomized): quickselect algorithm finds median in O(n) expected time

• Non-trivial (randomized): the main algorithm presented here finds the median in O(n) with high
probability (whp).

Definition 2.1. An event An which depends on some parameter n occurs with high probability (whp) if

P(An) ≥ 1− 1

nc

for some c > 0. Or sometimes, alternatively, if

P(An) ≥ 1− o(1)

The randomized quickselect approach to finding the median of S is to choose some “good” pivot p, then
partition S into S<p, S=p, and S>p. Then recurse, using the sizes of parts to determine which contains the
median.

What does it mean to have a good pivot? |S<p| ≤ 3
4n and |S>p| ≤ 3

4n. If this is the case, then the
running time has the recurrence relation T (n) ≤ T (3

4n) +O(n) which is O(n) by the master theorem. (note
that 3

4 is arbitrary. Any constant larger than 1
2 and less than 1 is fine).

To find a good pivot, choose randomly. Half of the elements are good pivots, so in expectation, we will
have to choose two pivots. Since the pivot is good in expectation after only O(1) trials, then the algorithms
finishes in expected O(n) time. However, if we want to get O(n) time with high probability instead, then
we need a different algorithm.

2.2 Find Median With High Probability

Idea: Suppose m is the median. Choose some ` and u such that ` ≤ m ≤ u, and both ` and u are “close” to
m. Consider the set

C = {x ∈ S | ` ≤ x ≤ u}, with |C| = o

(
n

log n

)

2-1

Lecture 2: Median Finding 2-2

C contains the median by our assumption on ` and u, and it is small enough to sort efficiently. So, we sort
C and find the (n+1

2 − |S<`|)th smallest element, which is the median of S.

To find ` and u, choose a random subset R ⊆ S of size n3/4, and sort it. It is hard to sample a true
subset, so instead choose R by sampling n3/4 elements randomly with replacement, creating a multiset. We
let

` =

(
n3/4

2
−
√
n

)th

smallest element and u =

(
n3/4

2
+
√
n

)th

smallest element

using
√
n intuitively as the standard deviation (and also because this is what makes the analysis work out

nicely). This is the entire algorithm, with the condition that the algorithm returns failure if the randomly
chosen ` and u are not good enough (either the median is not between them, or they are too far apart):

Algorithm 1: Randomized Find Median with high probability

input : List S of n integers, n odd
output: The median of S, or FAIL

1 R ← choose n3/4 elements from S (u.a.r. and with replacement);
2 sort R;

3 ` ←
(

n3/4

2 −
√
n
)th

smallest element of R;

4 u ←
(

n3/4

2 +
√
n
)th

smallest element of R;

5 C ← {x ∈ S | ` ≤ x ≤ u}, S<` ← {x ∈ S | x < `}, S>u ← {x ∈ S | x > u};
6 if |S<`| ≥ n

2 or |S>u| ≥ n
2 then

7 output FAIL;

8 if |C| > 4n3/4 then
9 output FAIL;

10 else
11 sort C;

12 output
(
n+1
2 − |S<`|

)th
smallest element of C;

Note that the above algorithms works as long as the elements in S are distinct (consider the case where
S contains only many copies of 1, then C will always have size n) If S is allowed to have repeat elements,
then the algorithm must be slightly modified so that in line 5, the comparisons being done take into account
a total order defined on the elements (for example, where ties are broken based on the original index in the
list S).

2.3 Analysis

2.3.1 Runtime Analysis

Claim 2.2. The randomized find median with high probability algorithm runs in O(n) time.

Proof. Sampling n3/4 elements with replacement takes o(n) time. Then, sorting R takes

O(n3/4 log n3/4) = o(n) time

After sorting, finding ` and u are both O(1) operations. Partitioning S into C, S<`, and S>u can easily
(naively) be done by passing over S and comparing each element to both ` and u. This clearly takes O(n)
time. Checking the sizes of each of the sets in the partition is constant time, and assuming FAIL was not
outputted, then sorting C takes

O(4n3/4 log 4n3/4) = o(n) time

Lecture 2: Median Finding 2-3

Finally, finding the median of S from the sorted list C is constant time. So, in total, each of the constant
number of steps is O(n), so the entire algorithm takes O(n) time

There is a lower bound proved on the number of comparisons required for deterministic median finding
algorithms in the worst case: 2n + o(n) [1]. A single run of the presented randomized algorithm (assuming
it succeeds), can be shown to perform better (by a constant factor) if line 5 of the algorithm is implemented
slightly more efficiently.

Claim 2.3. The randomized median finding algorithm performs 3
2n + o(n) comparisons in the worst case

(assuming success).

Proof. The only comparisons performed in the algorithm are in the steps which sort R, sort C, and partition
S. Assuming success, sorting R and C both take o(n) comparisons.

Partitioning S can be done by passing over S once, comparing each element to `, and only comparing it
to u if it is greater than `. This results in

n + (n− |S<`|) comparisons

However, notice that

|S<`| <
n

2
− 4n3/4 =⇒ |S>u| >

n

2
or |C| > 4n3/4 =⇒ output FAIL

Since we assumed that the algorithm does not output fail, this means that |S<`| ≥ n
2 − 4n3/4 = n

2 − o(n).
So, the total number of comparisons is

2o(n) + n + (n− |S<`|) ≤ 2o(n) + 2n− n

2
+ o(n) =

3

2
n + o(n)

2.3.2 Failure Probability

We will show that the probability of failure P(FAIL) < n−1/4. Showing this statement in turn implies that
we succeed with high probability. To show this we first define the following events:

E1 := |S<`| ≥
n

2

E2 := |S>u| ≥
n

2

E3 := |C| > 4n3/4

We will show that

Claim 2.4. P(E1),P(E2) < 1
4n

−1/4

Claim 2.5. P(E3) < 1
2n

−1/4

Using a union bound argument, we then get that these two claims imply

P(FAIL) ≤ P(E1) + P(E2) + P(E3) < n−1/4

as desired.

Lecture 2: Median Finding 2-4

2.3.2.1 Bernoulli Random Variables and Chebychev’s Inequality

Before we proceed with the proofs, we will first recall some facts about Bernoulli random variables. Recall
that if Xi ∼ Bernoulli(p) then

Xi =

{
1 with probability p

0 otherwise

E[Xi] = p

Var(Xi) = E[X2
i]− (E[Xi])

2 = p− p2 = p(1− p)

Moreover, if the variables X1, X2, ..., Xs are independent and we let Z = X1 + ... + Xs then

Var(Z) = sp(1− p)

Another fact that will be key in proving the two claims is

Theorem 2.6 (Chebychev’s Inequality). For a random variable, X, we have that:

P
(∣∣X − E[X]

∣∣ ≥ a
)
≤ Var(X)

a2

2.3.2.2 Proofs

We will first show that P(E1) and P(E2) are both small, which implies that the center will likely contain the
median.

Proof of Claim 2.4. We will only show P(E1) < 1
4n

−1/4. The other inequality will follow by an analogous
argument.

Notice that in order to have that |S<`| ≥ n
2 we must have that |{r ∈ R : r ≤ m}| < n3/4

2 −
√
n. So now

let R = {r1, ..., rn3/4} and define the random variable Xi such that

Xi =

{
1 if ri ≤ m

0 otherwise

And let Y =
∑n3/4

i=1 Xi. Now notice that the random variables Xi are Bernoulli random variables. As
such we can calculate the expectations and variance for each Xi and Y .

E[Xi] = P(Xi = 1) =
n−1
2 + 1

n
=

1

2
+

1

2n

E[Y] = n3/4

(
1

2
+

1

2n

)
=

n3/4

2
+

1

2n1/4

Var(Y) = n3/4

(
1

2
+

1

2n

)(
1

2
− 1

2n

)
=

n3/4

4
− 1

4n5/4
<

n3/4

4

Now by Chebychev’s Inequality we have that

P(E1) ≤ P(Y <
n3/4

2
−
√
n) ≤ P(|Y − E[Y]| >

√
n) ≤ Var(Y)

n
<

n3/4

4n
=

1

4n1/4

which completes the proof.

So now it only remains to show that the center will be small with high probability.

Lecture 2: Median Finding 2-5

Proof of Claim 2.5. Notice that if |C| > 4n3/4 then we must have that either |{x ∈ C : x ≥ m}| > 2n3/4 or
|{x ∈ C : x ≤ m}| > 2n3/4. We will show that P(|{x ∈ C : x ≥ m}| > 2n3/4) < 1

4n1/4 .

Notice that if we have that |{x ∈ C : x ≥ m}| > 2n3/4 then we must have that u is one of the n
2 − 2n3/4

largest elements of S. Hence at least n3/4

2 −
√
n elements of R, namely the elements of R that are bigger

than u, are from the n
2 − 2n3/4 largest elements of S. So now let:

Xi =

{
1 if ri ≥ n

2 + 2n3/4 smallest element of S

0 otherwise

Then we have that

E[Xi] =
n
2 − 2n3/4

n
=

1

2
− 2

n1/4

If we again define Y =
∑n3/4

i=1 Xi then it follows that

E[Y] = n3/4

(
1

2
− 2

n1/4

)
=

n3/4

2
− 2
√
n

Var(Y) = n3/4

(
1

2
+

2

n1/4

)(
1

2
− 2

n1/4

)
=

n3/4

4
− 4n1/4 <

n3/4

4

So by Chebychev’s Inequality we have that

P(Y ≥ n3/4

2
−
√
n) ≤ P

(∣∣Y − E[Y]
∣∣ ≥ √n) ≤ Var(Y)

n
<

n3/4

4n
=

1

4n1/4

By an analogous argument, we have that P(|{x ∈ C : x ≤ m}| > 2n3/4) < 1
4n1/4 . Hence, by another union

bound argument, we have that

P (E3) <
1

4n1/4
+

1

4n1/4
=

1

2n1/4

References

[1] S. Bent and J. John. Finding the median requires 2n comparisons. In Proceedings of the 17th Annual
ACM Symposium on Theory of Computing, Providence, Rhode Island, pages 213216, 1985

[2] M. Blum, R.W. Floyd , V. Pratt , R.L. Rivest , and R.E. Tarjan. Time bounds for selection. Journal of
Computer and System Sciences, v.7 n.4, pages 448–461, 1973.

	Classical Median Finding Algorithms
	Find Median With High Probability
	Analysis
	Runtime Analysis
	Failure Probability
	Bernoulli Random Variables and Chebychev's Inequality
	Proofs

