Lecture 21: 2-SAT, MC Basics, and Page Rank

April 2, 2019
Lecturer: Eric Vigoda
Scribes: Hyunsu Park

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

21.1 2-SAT

We can solve a 2-SAT problem in a polynomial time by reducing it to finding strongly connected components of a directed graph. Alternatively, we can solve it via a randomized algorithm. Here is a simple algorithm that solves 2-SAT.

21.1.1 A randomized algorithm

This randomized algorithm finds a satisfying assignment of a 2-SAT problem and outputs it.

```
Algorithm 1: Algorithm
    input : 2-SAT problem with clauses \(C_{1}, \ldots, C_{n}\)
    output: a satisfying assignment \(\sigma\), if exists
    start with an arbitrary assignment \(\sigma_{0}\);
    for \(i \leftarrow 1\) to \(k \cdot n^{2}\) do
        take an unsatisfied clause \(C\) of \(\sigma_{i-1}\);
        choose a random literal in \(C\) and satisfy it;
        call the new assignment \(\sigma_{i}\);
        if \(\sigma_{i}\) satisfies the problem then
            output \(\sigma_{i}\)
```


21.1.2 Analysis

Fix a satisfying assignment, and call it τ. Let σ_{t} be the assignment of the algorithm at the t-th iteration. Let $X_{t}=\#$ of variables that agree between σ_{t} and τ. If $X_{t}=n$, then the algorithm found a satisfying assignment. Also, X_{t} is a random walk in $\{0, \ldots, n\}$.

Claim 21.1 $\operatorname{Pr}\left(X_{t+1}=i+1 \mid X_{t}=i\right) \geq \frac{1}{2}$
Proof: Consider the unsatisfied clause C that is updated in $X_{t} \rightarrow X_{t+1}$. We know that τ satisfies C. Hence, one or more of the 2 variables in C have opposite assignments between τ and σ_{t}. Then, one or less of the 2 variables agree between σ_{t} and τ.

Consider an unbiased walk y_{t} such that $\operatorname{Pr}\left(y_{t+1}=i+1 \mid y_{t}=i\right)=\operatorname{Pr}\left(y_{t+1}=i-1 \mid y_{t}=i\right)=\frac{1}{2}$. Couple with X_{t} so that

- If $y_{t}=n$, then $X_{t}=n$ or σ_{t} is a satisfying assignment.
- If $y_{t+1}=y_{t}+1$, then $X_{t+1}=X_{t}+1$.

Let's define

- $T_{j}=$ time to reach $X_{t}=n$ starting from $X_{0}=j$.
- $h_{j}=\mathbb{E}\left[T_{j}\right]$.

Claim 21.2 $h_{0} \leq n^{2}$
Proof: We have the following recurrence relation

$$
h_{j}=1+\frac{1}{2} h_{j+1}+\frac{1}{2} h_{j-1}
$$

It follows that

$$
\begin{aligned}
& h_{j}=1+\frac{1}{2} h_{j+1}+\frac{1}{2} h_{j-1} \\
\Longleftrightarrow & 2 h_{j}=2+h_{j+1}+h_{j-1} \\
\Longleftrightarrow & h_{j}-h_{j+1}=h_{j-1}-h_{j}
\end{aligned}
$$

Given the base case $h_{0}-h_{1}=1, h_{j}-h_{j+1}=2 j+1$. Then,

$$
\begin{aligned}
h_{0} & =\left(h_{0}-h_{1}\right)+\left(h_{1}-h_{2}\right)+\cdots+\left(h_{n-1}-h_{n}\right) \\
& =\sum_{i=0}^{n-1}\left(h_{i}-h_{i+1}\right) \\
& =\sum_{i=0}^{n-1}(2 i+1) \\
& =2\left(\sum_{i=0}^{n-1} i\right)+n \\
& =\frac{2 n(n-1)}{2}+n \\
& =n^{2}-n+n \\
& =n^{2}
\end{aligned}
$$

Consequentially,

$$
h_{0}= \begin{cases}O\left(n^{2}\right), & \text { biased } \\ O(n \log n), & \text { unbiased }\end{cases}
$$

21.2 Markov Chain

21.2.1 Definitions

Definition 21.3 $\operatorname{Pr}\left(X_{t+1} \mid X_{t}=i_{t}, X_{t-1}=i_{t-1}, \cdots, X_{0}=i_{0}\right)=\operatorname{Pr}\left(X_{t+1}=j \mid X_{t}=i_{t}\right)$ is called the Markov property.

Definition 21.4 If a sequence of random variables $X_{1}, X_{2}, \ldots, X_{n}$ satisfies the Markov property, X_{t} is called a Markov chain on $\{0,1, \ldots, n\}$.

Definition 21.5 Let X_{t} be a Markov chain on a state space $\Omega=\{1,2, \ldots, N\}$. Then, the transition matrix $P \in \mathbb{R}^{N \times N}$ is defined by

$$
P(i, j)=\operatorname{Pr}\left(X_{t+1}=j \mid X_{t}=i\right)
$$

Also, it follows that

$$
P^{t}(i, j)=\operatorname{Pr}\left(X_{t}=j \mid X_{0}=i\right)
$$

Definition 21.6 A Markov chain is called irreducible if $\forall i, j \in \Omega, \exists t$ such that $P^{t}(i, j)>0$. In other words, the graph on P^{t} is one strongly connected component.

Definition 21.7 A Markov chain is called aperiodic if $\forall i \in \Omega$, its period $=1$. The period of a state i is defined by $\operatorname{gcd}\left(t: p^{t}(i, i)>0\right)$.

Definition 21.8 A Markov chain is ergodic if and only if it is both irreducible and aperiodic.
Definition 21.9 A stationary distribution π of a Markov chain is a distribution of state probabilities satisfying $\pi P=\pi$.

Example:

$$
P=\left[\begin{array}{cccc}
0.5 & 0.5 & 0 & 0 \\
0.2 & 0 & 0.5 & 0.3 \\
0 & 0.3 & 0.7 & 0 \\
0.7 & 0 & 0 & 0.3
\end{array}\right]
$$

Then,

$$
P^{20}=\left[\begin{array}{llll}
0.244190 & 0.244187 & 0.406971 & 0.104652 \\
0.244187 & 0.244186 & 0.406975 & 0.104651 \\
0.244181 & 0.244185 & 0.406984 & 0.104650 \\
0.244195 & 0.244188 & 0.406966 & 0.104652
\end{array}\right] \text { and } \pi=\lim _{t \rightarrow \infty} P^{t} \approx\left[\begin{array}{c}
0.2442 \\
0.2442 \\
0.4070 \\
0.10465
\end{array}\right]
$$

21.2.2 Properties

Theorem 21.10 An ergonic, finite Markov chain has a unique stationary distribution π. Also, for all $x_{0} \in \Omega, j \in \Omega, \lim _{t \rightarrow \infty} \operatorname{Pr}\left(X_{t} \mid X_{0}\right)=\pi(j)$.

In order to find a stationary distribution π, we need Gaussian Elimination. However, $|\Omega|$ is usually very big.
Claim 21.11 If P is symmetric, then $\pi=$ uniform (Ω).
Proof: Let's verify that for $\pi(i)=\frac{1}{N}, \pi P=\pi$.

$$
\begin{aligned}
(\pi P)(i) & =\sum_{k \in \Omega} \pi(k) P(k, i) & \\
& =\frac{1}{N} \sum_{k \in \Omega} P(k, i) & \\
& =\frac{1}{N} \sum_{k \in \Omega} P(i, k) & (P \text { is symmetric }) \\
& =\frac{1}{N} \quad & (P \text { is stochastic })
\end{aligned}
$$

Claim 21.12 P is reversible with respect to π if

$$
\forall i, j \in \Omega, \pi(i) P(i, j)=\pi(j) P(j, i)
$$

In the equation above, π is a stationary distribution.

Proof:

$$
\begin{aligned}
(\pi P)(i) & =\sum_{k \in \Omega} \pi(k) P(k, i) \\
& =\sum_{k \in \Omega} \pi(i) P(i, k) \\
& =\pi(i) \sum_{k \in \Omega} \\
& =\pi(i)
\end{aligned}
$$

Example: Consider a random walk on a d-regular undirected graph G. For edge (i, j),

$$
P(i, j)=P(j, i)=\frac{1}{d}
$$

So, it is symmetric and

$$
\pi(i)=\frac{1}{n} \text { for } n=|V|
$$

Now, consider a random walk on a non-regular undirected graph G. Then,

$$
\pi(i)=\frac{d(i)}{z}
$$

where $d(i)=$ degree of i, and $z=\sum_{j} d(j)=2 m$. It follows that

$$
\pi(i) P(i, j)=\frac{d(i)}{z} \cdot \frac{1}{d(i)}=\frac{1}{z}=\pi(j) P(j, i)
$$

21.3 PageRank

PageRank is a method to assign "importance" to webpages.

21.3.1 Problem Statement

Consider a graph G, where $V=$ webpages and $E=$ directed edges corresponding to hyperlinks.

- Idea 1: A link is a citation, so count the number of in-edges.
- Idea 2: Weight outgoing links by the number of hyperlinks on t. So, if page x has d outgoing links, then each gets $\frac{1}{d}$ of a citation. Hence, it is like a random walk

$$
\pi(y)=\sum_{x: \vec{x} \in E} \frac{1}{d(x)}
$$

- Idea 3: Weight a page by its $\pi(x)$, hence:

$$
\pi(y)=\sum_{x: x>y \in E} \frac{\pi(x)}{d(x)}
$$

This corresponds to the stationary distribution of the random walk on the web graph. The stationary distribution π is not necessarily unique because the graph may not be ergodic. In order to make it ergodic,

1. Choose $0<\alpha<1$.
2. From page $x \in V$,

- with prob α, choose a random out-edge.
- with prob $1-\alpha$, choose a random vertex in the whole graph.

Then, G is clearly ergodic and has a unique stationary distribution π. Also, π is the PageRank vector.

References

[1] Norris, James R. Markov Chains. In Cambridge University Press, 1997.

