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24.1 Sampling and Counting

Given a graph G “ pV,Eq, let MpGq “ all matchings of G with any size. Then, we can consider the following
two problems:

• Sampling problem: generate (sample) a matching from π “ uniformpMpGqq.

• Counting problem: estimate (usually with FPRAs) |MpGq| “ # of matchings.

First, we can construct a Markov chain for sampling problem:

• Let Ω “MpGq = a collection of all matchings of input graph G.

• From Xt P Ω,

1. Choose an edge e “ pv, wq PR E, where PR means that we sample an element uniformly at random.

2. Set X 1 “

#

Xtze, if e P Xt;

Xt Y e, if e R Xt.

3. If X 1 P Ω, then Xt`1 “ X 1 with probability 1{2,
otherwise Xt`1 “ Xt..

Note that this Markov Chain (MC) is ergodic and symmetric. Hence, the stationary distribution π for this
MC is given by

π “ UniformpΩq.

Moreover, we will show in the next lecture that the mixing time Tmix for this MC is given by

Tmix “ polypnq for all G.

Now, we will use this sampling algorithm to approximate the counting problem, i.e., estimating |MpGq|.
First, order the edges

E “ te1, e2, ..., emu

in an arbitrary order. Also, let

G0 “ G

Gi “ Gi´1zei, for i ą 0.

Thus, Gm “ ∅ (empty graph) on n vertices, and thus |MpGmq| “ 1.
Note that

|MpGq| “
|MpG0q|

|MpG1q|
loooomoooon

α´1
1

ˆ
|MpG1q|

|MpG2q|
loooomoooon

α´1
2

ˆ ¨ ¨ ¨ ˆ
|MpGm´1q|

|MpGmq|
loooooomoooooon

α´1
m

ˆ���
��:1

|MpGmq| , (24.1)
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and let

αi “
|MpGiq|

|MpGi´1q|
.

Claim 24.1 1
2 ď αi ď 1.

Proof: From Eq. (24.1),

|MpGq| “
1

α1α2 ¨ ¨ ¨αm
.

Note, MpGiq ĎMpGi´1q since M PMpGiq is also in MpGi´1q, and thus αi ď 1. Moreover, αi ě 1{2 because
|MpGi´1qzMpGiq| ď |MpGiq| by mapping f : MpGi´1qzMpGiq Ñ MpGiq as fpMq “ Mzei. Therefore,
1
2 ď αi ď 1.

To estimate αi “
|MpGiq|

|MpGi´1q|
, generate samples Mi,1,Mi,2, ...,Mi,l from UniformpMpGi´1qq. Also, we can

define indicator variables

Xi,j “

#

1, if Mi,j PMpGiq;

0, if not.

Note that ErXi,js “ αi. Then, we can have an estimate for αi by calculate

N “
`

ĎX1
ĎX2 ¨ ¨ ¨ĚXm

˘´1

where

ĎXi “
1

l

l
ÿ

j“1

Xi,j .

By Chebyshev’s, for l “ Opmε2 q, N is an p1˘ εq-approx. for |MpGq| with probability ě 3{4.

24.2 Canonical Path

How can we bound mixing time? We can use conductance, which is a normalized edge expansion of MC.
A graph of MC is defined by:

• Vertices = Ω = state space

• Edges = txÑ y : P px, yq ą 0u

For set S Ă Ω,

ΦpSq “ PrpXt`1 R S|Xt P S,Xt „ πq

“

ř

xPS,yRS πpxqP px, yq

πpSq

Let
Φ “ min

SPΩ:πpSqď1{2
ΦpSq

Theorem 24.2

Ω

ˆ

1

Φ

˙

ď Tmix ď O

ˆ

1

Φ2
logp

1

πmin
q

˙

where πmin “ minXPΩ πpXq
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Proof: Easy inequality: since πpSq ď 1{2, to get close to π have to at least visit sS. Setting X0 P S,X0 „ π,
ΦpSq is the probability of leaving in 1 step, and 1

ΦpSq is the expected number of steps to leave S and visit sS.

To lower bound the mixing time, find a set S with bad conductance. To upper bound the mixing time,
prove that the conductance ΦpSq ě 1{polypnq for every S Ă Ω. However, it doesn’t give as tight bounds as
coupling.

Now, we give a definition of canonical paths as follows.

Definition 24.3 For every pair I, F P Ω, define a path γIF along edges in pΩ, P q. γIF is a sequence of
transitions from I Ñ F . We assume that a transition M ÑM 1 : P pM,M 1q “ 1

|2EpGq| “
1

2m .

How many paths γIF go through edge T “M ÑM 1?

CP pT q “ tpI, F q : γIF Q T u

“ a set of paths that go though T

Also, we can define its congestion by

ρpT q “
|CP pT q|

|Ω|

and
ρ “ max

T
ρpT q.

Lemma 24.4 Φ ě 1
2mρ where m “ |EpGq|.

Lemma 24.4 implies that Tmix “ O
´

m2ρ2 logp 1
πmin

q

¯

. We give a proof for Lemma 24.4 below.

Proof: Fix S Ă Ω where πpSq ď 1{2 and thus |S| ď |S̄| and |S̄| ě |Ω|
2 . Then, we bound |EpS, S̄| as follows.

There are |S| ˆ |S̄| paths, i.e., pairs pI, F q with I P S, F P S̄, and each of these crosses S Ñ S̄ at least once
on γIF . The number of times transition T “ S Ñ S̄ P EpS, S̄q is crossed ď ρ|Ω|. Therefore, |EpS, S̄| is
bounded by

|EpS, S̄| ě
|S| ¨ |S̄|

ρ ¨ |Ω|
ě
|S|

2ρ

24.2.1 Example: Random walk on hypercube

Now, we consider an example of random walk on hyper-cube where the state space is Ω “ t0, 1un.

• From Xt P Ω,

1. Choose i PR t1, ..., nu and b PR 0, 1.

2. For all j ‰ i,Xt`1pjq “ Xtpjq

3. Set Xt`1 “ b

• For I, F P Ω,

– X0 “ I

– for i “ 1 Ñ n:

∗ change Xi from Ipiq Ñ F piq

Let’s consider transition T “ X Ñ X 1, which flips ith bit. Set E “ pIp1q, ..., Ipiq, F pi` 1q, ..., F pnqq.
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Claim 24.5 E : CP pT q Ñ Ω and E is injective where CP pT q “ tpI, F q : γIF Q T u

Proof: Note that transition T agrees with F on 1thi´ 1 bits, and with I on the last bits i` 1, ..., n. Thus,
from E and T can infer F on all bits and I on all bits. In other words, given transitions X Ñ X 1, we can
get Ipiq and F piq. Therefore, E is injective and clearly E P Ω.

Thus, |CP pT q| ď |Ω|, and so ρ “ Op1q. Also, this implies Φ ě Ωp 1
n q. Finally, Tmix “ Opn3q since

πmin “ 2´n (and m “ n in this problem). Note, using coupling, we got an Opn log nq bound on the mixing
time.
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