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24.1 Sampling and Counting

Given a graph G = (V, E), let M(G) = all matchings of G with any size. Then, we can consider the following
two problems:

e Sampling problem: generate (sample) a matching from 7 = uniform(M (G)).
e Counting problem: estimate (usually with FPRAs) |M(G)| = # of matchings.
First, we can construct a Markov chain for sampling problem:
e Let Q = M(G) = a collection of all matchings of input graph G.
e From X; € ,
1. Choose an edge e = (v, w) €g F, where €z means that we sample an element uniformly at random.
Xi\e, ifee Xy
Xive, ifeé¢ X;.

3. If X' € Q, then X;,1 = X’ with probability 1/2,
otherwise X1 = Xs..

2. Set X'—{

Note that this Markov Chain (MC) is ergodic and symmetric. Hence, the stationary distribution 7 for this
MC is given by
7 = Uniform(Q2).

Moreover, we will show in the next lecture that the mixing time Ty, for this MC is given by
Tmix = poly(n) for all G.

Now, we will use this sampling algorithm to approximate the counting problem, i.e., estimating |M(G)].
First, order the edges
E = {e1,e9,....,em}

in an arbitrary order. Also, let
Go =G
GZ' = Gifl\ei, for ¢ > 0.

Thus, G, = @ (empty graph) on n vertices, and thus |M(G.,)| = 1.

Note that
M(G)| MG M(Gony)| 1
M(G)| = X X oo X ———— X gy , 24.1
MO = Rr@n * 71Gy) MGy~ AHERT (24.1)
—1 -1 -1
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and let
M@
[M(Gi-1)
Claim 24.1 { <a; < 1.
Proof: From Eq. (24.1),
1

[M(G)| =

a1a2...am.

Note, M(G;) € M(G;—1) since M € M(G;) is also in M (G;_1), and thus «; < 1. Moreover, a; > 1/2 because
|M(Gi—1)\M(G;)| < |M(G;)| by mapping f : M(G;—1)\M(G;) — M(G;) as f(M) = M\e;. Therefore,
L<a; <1 [
2 X T x 1.

To estimate a; = %, generate samples M; 1, M; o, ..., M;; from Uniform(M (G;—1)). Also, we can

define indicator variables

17 lf Mi,j EM(GZ),
Xij = .
’ 0, if not.

Note that E[X; ;] = o;. Then, we can have an estimate for o; by calculate
N=(XiXsXn)
where
1 d
Xi=7 > X
j=1

By Chebyshev’s, for [ = O(%), N is an (1 + €)-approx. for |[M(G)| with probability > 3/4.

24.2 Canonical Path

How can we bound mixing time? We can use conductance, which is a normalized edge expansion of MC.

A graph of MC is defined by:

e Vertices = {2 = state space

e Edges = {x — y: P(z,y) > 0}
For set S < Q,

(I)(S) = PI‘(Xt+1 ¢ S|Xt € S, Xt ~ 7T)

erS,yqéS m(z)P(x,y)
m(S)

Let

o = min  ®(S5)
SeQ:m(S)<1/2

Theorem 24.2

where i, = minxeq 7(X)
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Proof: Easy inequality: since 7(S) < 1/2, to get close to 7 have to at least visit S. Setting Xy € S, Xo ~ M,
®(S) is the probability of leaving in 1 step, and ﬁ is the expected number of steps to leave S and visit S.
|

To lower bound the mixing time, find a set S with bad conductance. To upper bound the mixing time,
prove that the conductance ®(S) = 1/poly(n) for every S < . However, it doesn’t give as tight bounds as

coupling.

Now, we give a definition of canonical paths as follows.

Definition 24.3 For every pair I, F € Q, define a path vir along edges in (2, P). i is a sequence of
_ 1

transitions from I — F. We assume that a transition M — M’ : P(M, M') = ‘2E1(G)| =

%.
How many paths v;r go through edge T'= M — M'?

CP(T)={(I,F):~vr>T}
= a set of paths that go though T’

Also, we can define its congestion by

_ |CP(T)|
and
p= mjz}xp(T).

Lemma 24.4 ¢ > ﬁ where m = |E(G)|.

Lemma 24.4 implies that T, = O (7712/)2 1og(%)). We give a proof for Lemma 24.4 below.

Proof: Fix S < Q where 7(S) < 1/2 and thus |S| < |S| and |S| > % Then, we bound |E(S, S| as follows.

There are |S| x |S| paths, i.e., pairs (I, F') with [ € 5, F € S, and each of these crosses S — S at least once
on yrr. The number of times transition T = S — S € E(S,S) is crossed < p|Q}|. Therefore, |E(S, S| is
bounded by ~
= S|-|S S

|E(S,S’|>‘ -] |>u

p- 12— 2p

24.2.1 Example: Random walk on hypercube
Now, we consider an example of random walk on hyper-cube where the state space is Q = {0, 1}".
e From X; € (),

1. Choose i €g {1,...,n} and beg 0, 1.
2. For all j # 4, Xy11(j) = Xu(j)
3. Set X¢p1 =0
e For I, F e,
- Xo=1
—fori=1-mn:
* change X; from I(i) — F(i)

Let’s consider transition T = X — X', which flips i*! bit. Set E = (I(1),...,I1(i), F(i + 1), ..., F(n)).
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Claim 24.5 F: CP(T) — Q and E is injective where CP(T) = {(I, F) : vir 3 T}

Proof: Note that transition 7" agrees with F on 1" — 1 bits, and with I on the last bits i + 1, ...,n. Thus,
from E and T can infer F' on all bits and I on all bits. In other words, given transitions X — X', we can
get I(i) and F(i). Therefore, E is injective and clearly E € . [

Thus, |CP(T)| < ||, and so p = O(1). Also, this implies ® > Q(%) Finally, Tmix = O(n?) since
Tmin = 27" (and m = n in this problem). Note, using coupling, we got an O(nlogn) bound on the mixing
time.
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