Lecture 24: Counting via Sampling, Canonical Paths

April 11, 2019
Lecturer: Eric Vigoda
Scribes: Sungtae An
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

24.1 Sampling and Counting

Given a graph $G=(V, E)$, let $M(G)=$ all matchings of G with any size. Then, we can consider the following two problems:

- Sampling problem: generate (sample) a matching from $\pi=\operatorname{uniform}(M(G))$.
- Counting problem: estimate (usually with FPRAs) $|M(G)|=\#$ of matchings.

First, we can construct a Markov chain for sampling problem:

- Let $\Omega=M(G)=$ a collection of all matchings of input graph G.
- From $X_{t} \in \Omega$,

1. Choose an edge $e=(v, w) \epsilon_{R} E$, where ϵ_{R} means that we sample an element uniformly at random.
2. Set $X^{\prime}=\left\{\begin{array}{cl}X_{t} \backslash e, & \text { if } e \in X_{t} ; \\ X_{t} \cup e, & \text { if } e \notin X_{t} .\end{array}\right.$
3. If $X^{\prime} \in \Omega$, then $X_{t+1}=X^{\prime}$ with probability $1 / 2$, otherwise $X_{t+1}=X_{t}$.

Note that this Markov Chain (MC) is ergodic and symmetric. Hence, the stationary distribution π for this MC is given by

$$
\pi=\operatorname{Uniform}(\Omega)
$$

Moreover, we will show in the next lecture that the mixing time $T_{\text {mix }}$ for this MC is given by

$$
T_{\mathrm{mix}}=\operatorname{poly}(n) \quad \text { for all } G
$$

Now, we will use this sampling algorithm to approximate the counting problem, i.e., estimating $|M(G)|$. First, order the edges

$$
E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}
$$

in an arbitrary order. Also, let

$$
\begin{aligned}
G_{0} & =G \\
G_{i} & =G_{i-1} \backslash e_{i}, \quad \text { for } i>0
\end{aligned}
$$

Thus, $G_{m}=\varnothing$ (empty graph) on n vertices, and thus $\left|M\left(G_{m}\right)\right|=1$.
Note that

$$
\begin{equation*}
|M(G)|=\underbrace{\frac{\left|M\left(G_{0}\right)\right|}{\left|M\left(G_{1}\right)\right|}}_{\alpha_{1}^{-1}} \times \underbrace{\frac{\left|M\left(G_{1}\right)\right|}{\left|M\left(G_{2}\right)\right|}}_{\alpha_{2}^{-1}} \times \cdots \times \underbrace{\frac{\left|M\left(G_{m-1}\right)\right|}{\left|M\left(G_{m}\right)\right|}}_{\alpha_{m}^{-1}} \times\left.\not M\left(G_{m}\right)\right|^{1} \tag{24.1}
\end{equation*}
$$

and let

$$
\alpha_{i}=\frac{\left|M\left(G_{i}\right)\right|}{\left|M\left(G_{i-1}\right)\right|}
$$

Claim 24.1 $\frac{1}{2} \leqslant \alpha_{i} \leqslant 1$.
Proof: From Eq. (24.1),

$$
|M(G)|=\frac{1}{\alpha_{1} \alpha_{2} \cdots \alpha_{m}}
$$

Note, $M\left(G_{i}\right) \subseteq M\left(G_{i-1}\right)$ since $M \in M\left(G_{i}\right)$ is also in $M\left(G_{i-1}\right)$, and thus $\alpha_{i} \leqslant 1$. Moreover, $\alpha_{i} \geqslant 1 / 2$ because $\left|M\left(G_{i-1}\right) \backslash M\left(G_{i}\right)\right| \leqslant\left|M\left(G_{i}\right)\right|$ by mapping $f: M\left(G_{i-1}\right) \backslash M\left(G_{i}\right) \rightarrow M\left(G_{i}\right)$ as $f(M)=M \backslash e_{i}$. Therefore, $\frac{1}{2} \leqslant \alpha_{i} \leqslant 1$.

To estimate $\alpha_{i}=\frac{\left|M\left(G_{i}\right)\right|}{\left|M\left(G_{i-1}\right)\right|}$, generate samples $M_{i, 1}, M_{i, 2}, \ldots, M_{i, l}$ from $\operatorname{Uniform}\left(M\left(G_{i-1}\right)\right)$. Also, we can define indicator variables

$$
X_{i, j}= \begin{cases}1, & \text { if } M_{i, j} \in M\left(G_{i}\right) \\ 0, & \text { if not. }\end{cases}
$$

Note that $\mathbb{E}\left[X_{i, j}\right]=\alpha_{i}$. Then, we can have an estimate for α_{i} by calculate

$$
N=\left(\overline{X_{1}} \overline{X_{2}} \cdots \overline{X_{m}}\right)^{-1}
$$

where

$$
\overline{X_{i}}=\frac{1}{l} \sum_{j=1}^{l} X_{i, j}
$$

By Chebyshev's, for $l=O\left(\frac{m}{\epsilon^{2}}\right), N$ is an $(1 \pm \epsilon)$-approx. for $|M(G)|$ with probability $\geqslant 3 / 4$.

24.2 Canonical Path

How can we bound mixing time? We can use conductance, which is a normalized edge expansion of MC.
A graph of MC is defined by:

- Vertices $=\Omega=$ state space
- Edges $=\{x \rightarrow y: P(x, y)>0\}$

For set $S \subset \Omega$,

$$
\begin{aligned}
\Phi(S) & =\operatorname{Pr}\left(X_{t+1} \notin S \mid X_{t} \in S, X_{t} \sim \pi\right) \\
& =\frac{\sum_{x \in S, y \notin S} \pi(x) P(x, y)}{\pi(S)}
\end{aligned}
$$

Let

$$
\Phi=\min _{S \in \Omega: \pi(S) \leqslant 1 / 2} \Phi(S)
$$

Theorem 24.2

$$
\Omega\left(\frac{1}{\Phi}\right) \leqslant T_{\operatorname{mix}} \leqslant O\left(\frac{1}{\Phi^{2}} \log \left(\frac{1}{\pi_{\min }}\right)\right)
$$

where $\pi_{\text {min }}=\min _{X \in \Omega} \pi(X)$

Proof: Easy inequality: since $\pi(S) \leqslant 1 / 2$, to get close to π have to at least visit \bar{S}. Setting $X_{0} \in S, X_{0} \sim \pi$, $\Phi(S)$ is the probability of leaving in 1 step, and $\frac{1}{\Phi(S)}$ is the expected number of steps to leave S and visit \bar{S}.

To lower bound the mixing time, find a set S with bad conductance. To upper bound the mixing time, prove that the conductance $\Phi(S) \geqslant 1 / \operatorname{poly}(n)$ for every $S \subset \Omega$. However, it doesn't give as tight bounds as coupling.

Now, we give a definition of canonical paths as follows.
Definition 24.3 For every pair $I, F \in \Omega$, define a path $\gamma_{I F}$ along edges in (Ω, P). $\gamma_{I F}$ is a sequence of transitions from $I \rightarrow F$. We assume that a transition $M \rightarrow M^{\prime}: P\left(M, M^{\prime}\right)=\frac{1}{|2 E(G)|}=\frac{1}{2 m}$.

How many paths $\gamma_{I F}$ go through edge $T=M \rightarrow M^{\prime}$?

$$
\begin{aligned}
C P(T) & =\left\{(I, F): \gamma_{I F} \ni T\right\} \\
& =\text { a set of paths that go though } T
\end{aligned}
$$

Also, we can define its congestion by

$$
\rho(T)=\frac{|C P(T)|}{|\Omega|}
$$

and

$$
\rho=\max _{T} \rho(T)
$$

Lemma 24.4 $\Phi \geqslant \frac{1}{2 m \rho}$ where $m=|E(G)|$.
Lemma 24.4 implies that $T_{\text {mix }}=O\left(m^{2} \rho^{2} \log \left(\frac{1}{\pi_{\text {min }}}\right)\right)$. We give a proof for Lemma 24.4 below.
Proof: Fix $S \subset \Omega$ where $\pi(S) \leqslant 1 / 2$ and thus $|S| \leqslant|\bar{S}|$ and $|\bar{S}| \geqslant \frac{|\Omega|}{2}$. Then, we bound $\mid E(S, \bar{S} \mid$ as follows. There are $|S| \times|\bar{S}|$ paths, i.e., pairs (I, F) with $I \in S, F \in \bar{S}$, and each of these crosses $S \rightarrow \bar{S}$ at least once on $\gamma_{I F}$. The number of times transition $T=S \rightarrow \bar{S} \in E(S, \bar{S})$ is crossed $\leqslant \rho|\Omega|$. Therefore, $\mid E(S, \bar{S} \mid$ is bounded by

$$
\left\lvert\, E\left(S, \bar{S} \left\lvert\, \geqslant \frac{|S| \cdot|\bar{S}|}{\rho \cdot|\Omega|} \geqslant \frac{|S|}{2 \rho}\right.\right.\right.
$$

24.2.1 Example: Random walk on hypercube

Now, we consider an example of random walk on hyper-cube where the state space is $\Omega=\{0,1\}^{n}$.

- From $X_{t} \in \Omega$,

1. Choose $i \in_{R}\{1, \ldots, n\}$ and $b \in_{R} 0,1$.
2. For all $j \neq i, X_{t+1}(j)=X_{t}(j)$
3. Set $X_{t+1}=b$

- For $I, F \in \Omega$,
$-X_{0}=I$
- for $i=1 \rightarrow n$:
* change X_{i} from $I(i) \rightarrow F(i)$

Let's consider transition $T=X \rightarrow X^{\prime}$, which flips $i^{\text {th }}$ bit. Set $E=(I(1), \ldots, I(i), F(i+1), \ldots, F(n))$.

Claim 24.5 $E: C P(T) \rightarrow \Omega$ and E is injective where $C P(T)=\left\{(I, F): \gamma_{I F} \ni T\right\}$
Proof: Note that transition T agrees with F on $1^{\text {th }} i-1$ bits, and with I on the last bits $i+1, \ldots, n$. Thus, from E and T can infer F on all bits and I on all bits. In other words, given transitions $X \rightarrow X^{\prime}$, we can get $I(i)$ and $F(i)$. Therefore, E is injective and clearly $E \in \Omega$.

Thus, $|C P(T)| \leqslant|\Omega|$, and so $\rho=O(1)$. Also, this implies $\Phi \geqslant \Omega\left(\frac{1}{n}\right)$. Finally, $T_{\text {mix }}=O\left(n^{3}\right)$ since $\pi_{\min }=2^{-n}$ (and $m=n$ in this problem). Note, using coupling, we got an $O(n \log n)$ bound on the mixing time.

