## Lecture 3: Chernoff Bounds

January 15, 2019
Lecturer: Eric Vigoda
Scribes: Federico Bruvacher and Michael Wigal

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

### 3.1 Chernoff Bounds

### 3.1.1 Markov and Chebyshev Inequality

For a Random Variable $X$, we denote $\mathbf{E}[X]=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$.
Lemma 3.1 (Markov Inequality) Let $X$ be a non-negative random variable, and $a>0$, then

$$
\boldsymbol{P r}(X>a) \leq \frac{\mu}{a}
$$

Lemma 3.2 (Chebyshev Inequality) Let $X$ be a non-negative random variable for which $\operatorname{Var}(X)$ exists, then for all $k>0$

$$
\boldsymbol{P r}(|X-\mu|>k \sigma) \leq \frac{1}{k^{2}}
$$

A more general form being,

$$
r \geq 0 \boldsymbol{P r}(|x-\mu|>r) \leq \frac{\boldsymbol{\operatorname { V a r }}(X)}{r^{2}}
$$

Proof: Note that $Y=(X-\mu)^{2}$ is a non-negative random variable, we can then apply the Markov Inequality to $Y$.

Note that Chebyshev does not always give a good bound. We give an example. Let

$$
X_{i}=\left\{\begin{array}{l}
1 \text { with probability } \frac{1}{2} \\
0 \text { with probability } \frac{1}{2}
\end{array}\right.
$$

Let $X=\sum_{i=1}^{n} X_{i}$, then from previous lecture we know $\mathbf{E}[X]=\frac{n}{2}$ and $\operatorname{Var}(X)=\frac{n}{4}$, with $\sigma=\frac{\sqrt{n}}{2}$.
Note for $n=1000, X=\operatorname{Bin}\left(1000, \frac{1}{2}\right)$ by the Chebyshev Inequality we have,

$$
\operatorname{Pr}(X \geq 750)=\frac{1}{2} \operatorname{Pr}(|X-500| \geq 250) \leq \frac{1}{2} \frac{250}{250^{2}}=0.002
$$

We can calcultate this probability directly,

$$
\operatorname{Pr}(X \geq 70)=\sum_{i=750}^{1000}\binom{1000}{i} 2^{-1000} \approx 60 \times 10^{-58}
$$

Note that the Chebyshev Inequality is significantly off.

### 3.1.2 Chernoff "argument" for $\operatorname{Bin}\left(n, \frac{1}{2}\right)$

Note that if $X=\operatorname{Bin}\left(n, \frac{1}{2}\right)$, using Chernoff Bounds we can obtain bounds,

$$
\begin{array}{r}
\operatorname{Pr}\left(X \geq \mu+t \frac{\sqrt{n}}{2}\right) \leq e^{-t^{2} / 2}(*) \\
\quad \operatorname{Pr}\left(X \leq \mu-t \frac{\sqrt{n}}{2}\right) \leq e^{-t^{2} / 2}
\end{array}
$$

We first argue $\left(^{*}\right)$ to show the inuition behind the general Chernoff Bound.
Proof: We first want to transform $X=X_{1}+\cdots+X_{n}$ such that it has mean 0 . Let

$$
Y_{i}=-1+2 X_{i}=\left\{\begin{array}{l}
1 \text { with probability } \frac{1}{2} \\
-1 \text { with probability } \frac{1}{2}
\end{array}\right.
$$

Note then that $\mathbf{E}[Y]=0$. Since $\operatorname{Var}\left(Y_{i}\right)=1$, this implies $\operatorname{Var}(Y)=n$.
Note that $Y_{1}+\cdots Y_{k}$ can be interpreted as a unbiased random walk on the integers starting at 0 .
The original bound we wanted was $X \geq \frac{n}{2}+t \frac{\sqrt{n}}{2}$, which is equivalent to $Y \geq-n+2\left(\frac{n}{2}+2\left(\frac{n}{2}+t \frac{\sqrt{n}}{2}\right)=t \sqrt{n}\right.$. When we are far away from 0 , adding 1 can be approximated by instead multiplying by $(1+\lambda)$ for some tiny $\lambda$. If $\lambda$ is small enough then $(1+\lambda)(1+\lambda)=1+2 \lambda+\lambda^{2} \approx 1+2 \lambda$.

Let $Z_{i}=(1+\lambda)^{Y_{i}}$ where we will choose $\lambda$ later. Note

$$
Z_{i}=\left\{\begin{array}{l}
1+\lambda \text { with probability } \frac{1}{2} \\
\frac{1}{1+\lambda} \text { with probability } \frac{1}{2}
\end{array}\right.
$$

Note then that $Z=Z_{1} \cdot Z_{2} \cdots Z_{n}=(1+\lambda)^{Y_{1}} \ldots(1+\lambda)^{Y_{n}}=(1+\lambda)^{Y}$.
What we have done is transformed the random walk model, where if the random walk was at $u$, then in the new model the random walk would be at $(1+\lambda)^{u}$. Since $Z$ is now a non-negative random variable, we can now utilize the Markov Inequality. Since $Y_{i}$ are pairwise independent, so are the $Z_{i}$. It follows,

$$
\begin{aligned}
\operatorname{Pr}\left(X \geq \frac{n}{2}+t \frac{\sqrt{n}}{2}\right) & =\operatorname{Pr}(Y \geq t \sqrt{n}) \\
& =\operatorname{Pr}\left(Z \geq(1+\lambda)^{t \sqrt{n}}\right.
\end{aligned}
$$

For example, by a smart choice of lambda and Taylor Series approximation, $1+\lambda \approx e^{\frac{1}{\sqrt{n}}}$.

$$
\operatorname{Pr}\left(Z \geq(1+\lambda)^{100 \sqrt{n}}\right)=\operatorname{Pr}\left(Z \geq e^{100}\right)
$$

Note that $e^{100}$ is a big number, thus Markov Inequality would give a good bound. To make things rigorous,

$$
\begin{aligned}
\mathbf{E}\left[Z_{i}\right] & =\frac{1}{2}(1+\lambda)+\frac{1}{2}\left(\frac{1}{1+\lambda}\right. \\
& =\frac{1}{2}\left(\frac{\lambda^{2}+2 \lambda+2}{1+\lambda}\right) \\
& =1+\frac{\lambda^{2}}{2+2 \lambda} \\
& \leq 1+\frac{\lambda^{2}}{2}
\end{aligned}
$$

It follows that $\mathbf{E}[Z] \leq\left(1+\frac{\lambda^{2}}{2}\right)^{n}$. Note then that for $\lambda=\frac{1}{\sqrt{n}}$,

$$
\begin{aligned}
\operatorname{Pr}\left(Z \geq(1+\lambda)^{t \sqrt{n}}\right) & \leq \frac{\mathbf{E}[Z]}{(1+\lambda)^{t \sqrt{n}}} \\
& =\frac{\left(1+\frac{\lambda^{2}}{2}\right)^{n}}{(1+\lambda)^{t \sqrt{n}}} \\
& =\frac{\left(1+\frac{t^{2}}{2 n}\right)^{n}}{\left(1+\frac{t}{\sqrt{n}}\right)^{t \sqrt{n}}} \\
& \leq \frac{e^{\frac{t^{2}}{2}}}{e^{t^{2}}}=e^{\frac{-t^{2}}{2}}
\end{aligned}
$$

where we are cheating on the denominator of $\leq$ inequality.

### 3.1.3 Chernoff Inequality

Now that we have given an intuition on the proof we can move to the rigorous proof.
Let $X_{i}, \cdots, X_{n}$ be Independent Bernoulli R.V.s where $0 \leq X_{i} \leq 1$ Let $X=\sum_{i=1}^{n} X_{i}$ and $\mu=\mathbf{E}[X]$ For all $0<\varepsilon \leq 1$

$$
\begin{aligned}
& \operatorname{Pr}(X \geq \mu(1+\varepsilon)) \leq e^{-\mu \cdot\left(\varepsilon^{2} / 3\right)} \\
& \operatorname{Pr}(X \leq \mu(1-\varepsilon)) \leq e^{-\mu \cdot\left(\varepsilon^{2} / 2\right)}
\end{aligned}
$$

We want to know :

$$
\operatorname{Pr}(X \geq \mu(1+\varepsilon))
$$

Note as $X$ is non-negative, we can choose an arbitrary t, then we exponentiate both sides and raise both sides to the power $t$ for some arbitrary $t$,

$$
\begin{array}{r}
\operatorname{Pr}\left(e^{X} \geq e^{\mu(1+\varepsilon)}\right) \\
\operatorname{Pr}\left(e^{t X} \geq e^{t \mu(1+\varepsilon)}\right)
\end{array}
$$

We know the applying Markov's inequality:

$$
\begin{equation*}
\operatorname{Pr}\left(e^{t X} \geq e^{t \mu(1+\varepsilon)}\right) \leq \frac{\mathbf{E}\left[e^{t X}\right]}{e^{t \mu(1+\varepsilon)}} \tag{A}
\end{equation*}
$$

Because the $X_{i}=\operatorname{Bernoulli}\left(p_{i}\right)$ and $1+x \leq e^{x}$ then

$$
\mathbf{E}\left[e^{t X_{i}}\right]=p_{i} e^{t}+\left(1-p_{i}\right)=1+p_{i}\left(e^{t}-1\right) \leq e^{p_{i}\left(e^{t}-1\right)}
$$

Then the moment generating function:

$$
\begin{equation*}
\mathbf{E}\left[e^{t X}\right] \leq \prod_{i=1}^{n} e^{p_{i}\left(e^{t}-1\right)}=e^{\mu\left(e^{t}-1\right)} \tag{B}
\end{equation*}
$$

Let's substitute B in A:

$$
\begin{equation*}
\operatorname{Pr}\left(e^{t X} \geq e^{t \mu(1+\varepsilon)}\right) \leq\left(\frac{e^{\varepsilon-1}}{e^{t(1+\varepsilon)}}\right)^{\mu}=\left(e^{\varepsilon-(1+\varepsilon) \log (1+\varepsilon)}\right)^{\mu} \tag{C}
\end{equation*}
$$

In the last equality we plugged in $t=\ln (1+\varepsilon)$ to minimize.
Taylor expansion for : $\log (1+\varepsilon)=\varepsilon-\varepsilon^{2} / 2+\varepsilon^{3} / 3+\cdots$ Then: $(1+\varepsilon) \log (1+\varepsilon)=\varepsilon-\varepsilon^{2} / 2+\varepsilon^{2}+\varepsilon^{3} / 3-$ $\varepsilon^{3} / 2+\cdots \geq \varepsilon+\varepsilon^{2} / 2-\varepsilon^{3} / 6=\varepsilon+\varepsilon^{2} / 3$ Using this in $C$ :

$$
\left(\frac{e^{\varepsilon}}{(1+\varepsilon)^{1+\varepsilon}}\right)^{\mu} \leq e^{\varepsilon^{2 / 3} \mu}
$$

