CS 6550: Randomized Algorithms

Spring 2019

Lecture 3: Chernoff Bounds

January 15, 2019

Lecturer: Eric Vigoda

Scribes: Federico Bruvacher and Michael Wigal

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

3.1 Chernoff Bounds

3.1.1 Markov and Chebyshev Inequality

For a Random Variable X, we denote $\mathbf{E}[X] = \mu$ and $\mathbf{Var}(X) = \sigma^2$.

Lemma 3.1 (Markov Inequality) Let X be a non-negative random variable, and a > 0, then

$$\Pr(X > a) \le \frac{\mu}{a}$$

Lemma 3.2 (Chebyshev Inequality) Let X be a non-negative random variable for which Var(X) exists, then for all k > 0

$$\Pr(|X - \mu| > k\sigma) \le \frac{1}{k^2}$$

A more general form being,

$$r \ge 0\mathbf{Pr}(|x-\mu| > r) \le \frac{\mathbf{Var}(X)}{r^2}$$

Proof: Note that $Y = (X - \mu)^2$ is a non-negative random variable, we can then apply the Markov Inequality to Y.

Note that Chebyshev does not always give a good bound. We give an example. Let

$$X_i = \begin{cases} 1 \text{ with probability } \frac{1}{2} \\ 0 \text{ with probability } \frac{1}{2} \end{cases}$$

Let $X = \sum_{i=1}^{n} X_i$, then from previous lecture we know $\mathbf{E}[X] = \frac{n}{2}$ and $\mathbf{Var}(X) = \frac{n}{4}$, with $\sigma = \frac{\sqrt{n}}{2}$. Note for n = 1000, $X = \text{Bin}(1000, \frac{1}{2})$ by the Chebyshev Inequality we have,

$$\mathbf{Pr}(X \ge 750) = \frac{1}{2}\mathbf{Pr}(|X - 500| \ge 250) \le \frac{1}{2}\frac{250}{250^2} = 0.002$$

We can calcultate this probability directly,

$$\mathbf{Pr}(X \ge 70) = \sum_{i=750}^{1000} \binom{1000}{i} 2^{-1000} \approx 60 \times 10^{-58}$$

Note that the Chebyshev Inequality is significantly off.

3.1.2 Chernoff "argument" for $Bin(n, \frac{1}{2})$

Note that if $X = Bin(n, \frac{1}{2})$, using Chernoff Bounds we can obtain bounds,

$$\mathbf{Pr}(X \ge \mu + t\frac{\sqrt{n}}{2}) \le e^{-t^2/2}(*)$$
$$\mathbf{Pr}(X \le \mu - t\frac{\sqrt{n}}{2}) \le e^{-t^2/2}$$

We first argue (*) to show the inuition behind the general Chernoff Bound. **Proof:** We first want to transform $X = X_1 + \cdots + X_n$ such that it has mean 0. Let

$$Y_i = -1 + 2X_i = \begin{cases} 1 \text{ with probability } \frac{1}{2} \\ -1 \text{ with probability } \frac{1}{2} \end{cases}$$

Note then that $\mathbf{E}[Y] = 0$. Since $\mathbf{Var}(Y_i) = 1$, this implies $\mathbf{Var}(Y) = n$.

Note that $Y_1 + \cdots + Y_k$ can be interpreted as a unbiased random walk on the integers starting at 0.

The original bound we wanted was $X \ge \frac{n}{2} + t\frac{\sqrt{n}}{2}$, which is equivalent to $Y \ge -n + 2(\frac{n}{2} + 2(\frac{n}{2} + t\frac{\sqrt{n}}{2}) = t\sqrt{n}$. When we are far away from 0, adding 1 can be approximated by instead multiplying by $(1 + \lambda)$ for some tiny λ . If λ is small enough then $(1 + \lambda)(1 + \lambda) = 1 + 2\lambda + \lambda^2 \approx 1 + 2\lambda$.

Let $Z_i = (1 + \lambda)^{Y_i}$ where we will choose λ later. Note

$$Z_i = \begin{cases} 1 + \lambda \text{ with probability } \frac{1}{2} \\ \frac{1}{1+\lambda} \text{ with probability } \frac{1}{2} \end{cases}$$

Note then that $Z = Z_1 \cdot Z_2 \cdots Z_n = (1 + \lambda)^{Y_1} ... (1 + \lambda)^{Y_n} = (1 + \lambda)^Y$.

What we have done is transformed the random walk model, where if the random walk was at u, then in the new model the random walk would be at $(1 + \lambda)^u$. Since Z is now a non-negative random variable, we can now utilize the Markov Inequality. Since Y_i are pairwise independent, so are the Z_i . It follows,

$$\mathbf{Pr}(X \ge \frac{n}{2} + t\frac{\sqrt{n}}{2}) = \mathbf{Pr}(Y \ge t\sqrt{n})$$
$$= \mathbf{Pr}(Z \ge (1+\lambda)^{t\sqrt{n}})$$

For example, by a smart choice of lambda and Taylor Series approximation, $1 + \lambda \approx e^{\frac{1}{\sqrt{n}}}$.

$$\mathbf{Pr}(Z \ge (1+\lambda)^{100\sqrt{n}}) = \mathbf{Pr}(Z \ge e^{100})$$

Note that e^{100} is a big number, thus Markov Inequality would give a good bound. To make things rigorous,

$$\begin{split} \mathbf{E}[Z_i] &= \frac{1}{2}(1+\lambda) + \frac{1}{2}(\frac{1}{1+\lambda}) \\ &= \frac{1}{2}(\frac{\lambda^2 + 2\lambda + 2}{1+\lambda}) \\ &= 1 + \frac{\lambda^2}{2+2\lambda} \\ &\leq 1 + \frac{\lambda^2}{2} \end{split}$$

It follows that $\mathbf{E}[Z] \leq (1 + \frac{\lambda^2}{2})^n$. Note then that for $\lambda = \frac{1}{\sqrt{n}}$,

$$\begin{aligned} \mathbf{Pr}(Z \ge (1+\lambda)^{t\sqrt{n}}) &\leq \frac{\mathbf{E}[Z]}{(1+\lambda)^{t\sqrt{n}}} \\ &= \frac{(1+\frac{\lambda^2}{2})^n}{(1+\lambda)^{t\sqrt{n}}} \\ &= \frac{(1+\frac{t^2}{2n})^n}{(1+\frac{t^2}{\sqrt{n}})^{t\sqrt{n}}} \\ &\leq \frac{e^{\frac{t^2}{2}}}{e^{t^2}} = e^{\frac{-t^2}{2}}. \end{aligned}$$

where we are cheating on the denominator of \leq inequality.

3.1.3 Chernoff Inequality

Now that we have given an intuition on the proof we can move to the rigorous proof.

Let X_i, \dots, X_n be Independent Bernoulli R.V.s where $0 \le X_i \le 1$ Let $X = \sum_{i=1}^n X_i$ and $\mu = \mathbf{E}[X]$ For all $0 < \varepsilon \le 1$

$$\mathbf{Pr}(X \ge \mu(1+\varepsilon)) \le e^{-\mu \cdot (\varepsilon^2/3)}$$
$$\mathbf{Pr}(X \le \mu(1-\varepsilon)) \le e^{-\mu \cdot (\varepsilon^2/2)}$$

We want to know :

$$\mathbf{Pr}(X \ge \mu(1+\varepsilon))$$

Note as X is non-negative, we can choose an arbitrary t, then we exponentiate both sides and raise both sides to the power t for some arbitrary t,

$$\mathbf{Pr}(e^X \ge e^{\mu(1+\varepsilon)})$$
$$\mathbf{Pr}(e^{tX} \ge e^{t\mu(1+\varepsilon)})$$

We know the applying Markov's inequality:

$$\mathbf{Pr}(e^{tX} \ge e^{t\mu(1+\varepsilon)}) \le \frac{\mathbf{E}[e^{tX}]}{e^{t\mu(1+\varepsilon)}} \tag{A}$$

Because the $X_i = \text{Bernoulli}(p_i)$ and $1 + x \le e^x$ then

$$\mathbf{E}[e^{tX_i}] = p_i e^t + (1 - p_i) = 1 + p_i(e^t - 1) \le e^{p_i(e^t - 1)}$$

Then the moment generating function:

$$\mathbf{E}[e^{tX}] \le \prod_{i=1}^{n} e^{p_i(e^t - 1)} = e^{\mu(e^t - 1)}$$
(B)

Let's substitute B in A:

$$\mathbf{Pr}(e^{tX} \ge e^{t\mu(1+\varepsilon)}) \le \left(\frac{e^{\varepsilon-1}}{e^{t(1+\varepsilon)}}\right)^{\mu} = \left(e^{\varepsilon-(1+\varepsilon)\log(1+\varepsilon)}\right)^{\mu} \tag{C}$$

In the last equality we plugged in $t = ln(1 + \varepsilon)$ to minimize. Taylor expansion for : $\log(1 + \varepsilon) = \varepsilon - \varepsilon^2/2 + \varepsilon^3/3 + \cdots$ Then: $(1 + \varepsilon)\log(1 + \varepsilon) = \varepsilon - \varepsilon^2/2 + \varepsilon^2 + \varepsilon^3/3 - \varepsilon^3/2 + \cdots \ge \varepsilon + \varepsilon^2/2 - \varepsilon^3/6 = \varepsilon + \varepsilon^2/3$ Using this in C:

$$(\frac{e^{\varepsilon}}{(1+\varepsilon)^{1+\varepsilon}})^{\mu} \le e^{\varepsilon^{2/3}\mu}$$