Lecture 4: Streaming: Frequency moments

January 17, 2019

Lecturer: Eric Vigoda
Scribes: Mengfei Yang, Yatharth Dubey

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

Theorem 4.1 Chernoff bounds: Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent variables, where $0 \leq X_{i} \leq 1$. Let

$$
X=\sum_{i=1}^{n} X_{i}, \quad \mu=E[X]
$$

Then for $0 \leq \delta \leq 1$,

$$
\begin{aligned}
& \operatorname{Pr}[X \geq(1+\delta) \mu] \leq e^{-\frac{\delta^{2} \mu}{3}} \\
& \operatorname{Pr}[X \leq(1-\delta) \mu] \leq e^{-\frac{\delta^{2} \mu}{2}}
\end{aligned}
$$

4.1 Warm-up example: Median estimate

4.1.1 Problem definition

Definition 4.2ϵ-approximate median: Given unordered list $S=\left[X_{1}, X_{2}, \ldots, X_{m}\right]$, for simplicity, assume $X_{i}^{\prime} s$ are distinct.
The rank of y is given by

$$
\operatorname{rank}(y)=|\{x \in S: x \leq y\}|
$$

The goal is to find an ϵ - approximate median of S. That is, given $\epsilon>0$, find $y \in S$ where

$$
\frac{m}{2}-\epsilon m<\operatorname{rank}(y)<\frac{m}{2}+\epsilon m
$$

4.1.2 Solution

The intuition is choose some random elements from the list, and output the median of these elements. Then prove this median is ϵ-approximate median.
algorithm 1 select $t \geq \frac{2}{\epsilon^{2}} \log \frac{1}{\delta}$ random elements from S, then sort these random elements and output the median.

```
Algorithm 1: Find median
    input : An unordered list \(S=\left[X_{1}, X_{2}, \ldots, X_{m}\right]\).
    output: One integer represents the median
    \(R=\left[r_{1}, r_{2}, \ldots, r_{t}\right] \longleftarrow\) choose \(t\) random elements from \(S ;\)
    sort(R);
    return median( R )
```


4.1.3 Analysis

Claim 4.3 Assume p is the median returned by Algorithm 1.

$$
\operatorname{Pr}[p \text { is } \epsilon-\text { approximate median }] \geq 1-\delta
$$

This means p is an (ϵ, δ) - approximation of the median.
Proof: Divide S into 3 parts:

$$
\begin{aligned}
S_{L} & =\left\{y \in S: \operatorname{rank}(y) \leq \frac{m}{2}-\epsilon m\right\} \\
S_{M} & =\left\{y \in S: \frac{m}{2}-\epsilon m<\operatorname{rank}(y)<\frac{m}{2}+\epsilon m\right\} \\
S_{U} & =\left\{y \in S: \operatorname{rank}(y) \geq \frac{m}{2}+\epsilon m\right\}
\end{aligned}
$$

If both $\left|R \cap S_{L}\right|<\frac{t}{2}$ and $\left|R \cap S_{U}\right|<\frac{t}{2}$ hold, then $p=r_{\frac{t}{2}} \in S_{M}$, which means p is ϵ - approximate median. We will only show $\left|R \cap S_{L}\right|<\frac{t}{2}$. The other inequality will follow by an analogous argument.
Set random variables X_{i} to indicate whether element r_{i} is belong to S_{L}, and X to the summation of X_{i}.

$$
\begin{aligned}
X_{i} & = \begin{cases}1, & \text { if } r_{i} \in S_{L} ; \\
0, & \text { otherwise }\end{cases} \\
X & =\sum_{i=1}^{t} X_{i} \\
E\left[X_{i}\right] & =\frac{\frac{m}{2}-\epsilon m}{m}=\frac{1}{2}-\epsilon \\
\mu & =E[X]=t\left(\frac{1}{2}-\epsilon\right)
\end{aligned}
$$

Now we can use Chernoff bounds

$$
\begin{aligned}
\operatorname{Pr}\left[X \geq \frac{t}{2}\right] & =\operatorname{Pr}[X \geq \mu+\epsilon t] \\
& \leq \operatorname{Pr}[X \geq \mu(1+2 \epsilon)] \\
& \leq e^{-(2 \epsilon)^{2} \frac{\left(\frac{1}{2}-\epsilon\right) t}{3}} \\
& \leq e^{-\frac{4 \epsilon^{2}}{7} t} \\
& \leq \frac{\delta}{2}
\end{aligned}
$$

Hence,

$$
\operatorname{Pr}\left[\left|R \cap S_{L}\right| \geq \frac{t}{2}\right] \leq \frac{\delta}{2}
$$

Similarly,

$$
\begin{gathered}
\operatorname{Pr}\left[\left|R \cap S_{U}\right| \geq \frac{t}{2}\right] \leq \frac{\delta}{2} \\
\operatorname{Pr}\left[\left|R \cap S_{L}\right| \leq \frac{t}{2} \text { and }\left|R \cap S_{U}\right| \leq \frac{t}{2}\right] \leq \frac{\delta}{2}+\frac{\delta}{2}=\delta
\end{gathered}
$$

$\operatorname{Pr}[p$ is $\epsilon-$ approximate median $] \geq 1-\delta$

4.2 Streaming

4.2.1 Problem definition

Definition 4.4 Streaming: get one-by-one m elements $X_{1}, X_{2}, \ldots, X_{m}$, where $X_{i} \in\{1,2, \ldots, n\}\left(X_{i}\right.$ is repeatable $)$. m is huge so we can't store the entire stream.
Let f_{i} be the frequency of number i in the stream. Set $f=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$
Definition 4.5 Reservoir Sampling: choose an element S uniformly at random from $\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}$ without knowing m beforehand.
The problem is, give a function $g\left(f_{i}\right)$, where $g(0)=0$, compute $\sum_{i=1}^{n} g\left(f_{i}\right)$

4.2.2 Solution

Algorithm 2 resolves Reservoir Sampling problem. Detailed analysis is given in later section.

```
Algorithm 2: Reservoir Sampling
    input : streaming elements \(X_{1}, X_{2}, \ldots\)
    output: one randomly chosen integer.
    set \(S \leftarrow X_{1}\);
    for \(t>1\) do
        upon seeing \(t^{t h}\) elements \(X_{t}\), with probability \(\frac{1}{t}\) set \(S=X_{t}\)
    return S
```

To compute $\sum_{i=1}^{n} g\left(f_{i}\right)$, we introduce the unbiased estimator: a random variable X , where

$$
E[X]=\sum_{i=1}^{n} g\left(f_{i}\right)
$$

Algorithm 3 is AMS algorithm [AMS], shows how to calculate X.

```
Algorithm 3: AMS algorithm
    input : streaming elements \(X_{1}, X_{2}, \ldots\)
    output: Integer X
    use Reservoir Sampling to choose random index \(J \in\{1,2, \ldots, m\}\);
    \(r \leftarrow\left|\left\{j \geq J: X_{j}=X_{J}\right\}\right| ; \quad / /\) of occurrences of \(x_{J}\) after J
    \(X \leftarrow m \times(g(r)-g(r-1)) ;\)
    return X ;
```


4.2.3 Analysis

For algorithm 2, $S=X_{i}$ means set S while seeing $i^{\text {th }}$ element, and never set S after that. The probability that $S=X_{i}$ for some time $t \geq i$ is

$$
\begin{aligned}
\operatorname{Pr}\left[S=X_{i}\right] & =\frac{1}{i} \times\left(1-\frac{1}{i+1}\right) \times\left(1-\frac{1}{i+2}\right) \times \ldots \times\left(1-\frac{1}{t}\right) \\
& =\frac{1}{i} \times \frac{i}{i+1} \times \frac{i+1}{i+2} \times \ldots \times \frac{t-1}{t} \\
& =\frac{1}{t}
\end{aligned}
$$

We only need to keep track of one number S, so it takes $O(\operatorname{logn})$ bits of space to get S. It will take $O(k \log n)$ bits of space to get k samples.
Now analyze algorithm 3, X is the output of this algorithm.

Claim 4.6

$$
E[X]=\sum_{i=1}^{n} g\left(f_{i}\right)
$$

Proof:

$$
\begin{aligned}
E[X] & =\operatorname{Pr}\left[X_{J}=i\right] E\left[X \mid X_{J}=i\right] \\
& =\sum_{i} \frac{f_{i}}{m} \sum_{r=1}^{f_{i}} \frac{m(g(r)-g(r-1))}{f_{i}} \\
& =\sum_{i} g\left(f_{i}\right)
\end{aligned}
$$

4.3 Example: Frequency Moments

For integer $k \geq 1$, the k -th frequency moment is denoted

$$
F_{k}=\sum_{i=1}^{n} f_{i}^{k}
$$

Computing an (ϵ, δ)-approximation of F_{k} will be the goal of this section. Note that $g(r)=r^{k}$, where g plays the same role as in the previous section. We can now apply the AMS algorithms from the previous section to this function g. Then

$$
X=m\left(r^{k}-(r-1)^{k}\right)
$$

We know that $\mathrm{E}[X]=F_{k}$. Then, we can conduct l independent trials to get X_{1}, \ldots, X_{l}, and output $\frac{1}{l} \sum_{i=1}^{l} X_{i}$, an unbiased estimator for $\mathrm{E}[X]$ and therefore for F_{k}. To show that these are close with high probability, we plan to show that $\operatorname{Var}[X]$ is small and apply Chebyshev's Inequality. For this we employ the following lemma.

Lemma 4.7 $\operatorname{Var}[X] \leq k n^{1-1 / k} F_{k}^{2}$.
Then for

$$
l=\frac{3 \operatorname{Var}[X]}{\epsilon^{2} \mathrm{E}[X]^{2}} \leq \frac{3 k n^{1-1 / k} F_{k}^{2}}{\epsilon^{2} F_{k}^{2}}=3 k n^{1-\frac{1}{k}} \epsilon^{-2}
$$

let $Y=\frac{1}{l} \sum_{i=1}^{l} X_{i}$, the mean of l independent trials. Now we compute the expected value and variance of Y.

$$
\begin{gathered}
\mathrm{E}[Y]=\mathrm{E}\left[X_{i}\right]=F_{k} \\
\operatorname{Var}[Y]=\frac{1}{l^{2}} \sum_{i=1}^{l} \operatorname{Var}\left[X_{i}\right]=\frac{\operatorname{Var}[X]}{l}=\frac{\epsilon^{2} \mathrm{E}[X]^{2}}{3}=\frac{\epsilon^{2} F_{k}^{2}}{3}
\end{gathered}
$$

Then by Chebyshev's Inequality, we have

$$
\operatorname{Pr}[|Y-\mathrm{E}[Y]| \geq \epsilon \mathrm{E}[Y]]=\operatorname{Pr}\left[\left|Y-F_{k}\right| \geq \epsilon F_{k}\right]
$$

$$
\leq \frac{\operatorname{Var}[Y]}{\left(\epsilon F_{k}\right)^{2}}=\frac{1}{3}
$$

So with probability at least $2 / 3, Y$ is an ϵ-approximation of F_{k}. How can we boost this probability to at least $1-\delta$? We repeat the above procedure T times and take the median of the T estimates. Suppose we do this $T=c \log (1 / \delta)$ times and get estimates Y_{1}, \ldots, Y_{T}. Then, consider the indicator random variable for Y_{j} being an ϵ-approximation

$$
Z_{j}= \begin{cases}1 & \left|Y_{j}-F_{k}\right| \leq \epsilon F_{k} \\ 0 & \text { otherwise }\end{cases}
$$

Then, for $Z=\sum_{j} Z_{j}$, we have $\mathrm{E}[Z] \geq \frac{2}{3} t$. Note that if $Z \geq \frac{t}{2}$, the median of Y_{1}, \ldots, Y_{T} must be an ϵ-approximation. We now analyze the probability of this event

$$
\begin{aligned}
\operatorname{Pr}\left[Z<\frac{t}{2}\right] & \leq \operatorname{Pr}\left[Z \leq \mathrm{E}[Z]\left(1-\frac{1}{6}\right)\right] \\
& \leq e^{-\frac{1}{6^{2} \frac{t}{3} \frac{1}{3}}} \\
& =e^{-\frac{t}{6^{2} 3^{2}}} \\
& \leq \delta,
\end{aligned}
$$

where the last inequality holds for $c \geq 6^{2} 3^{2}$.

References

[1] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the frequency moments. J. Comput. Syst. Sci., 58(1):137147, 1999.

