
CS 6550: Randomized Algorithms Spring 2019

Lecture 4: Streaming: Frequency moments

January 17, 2019
Lecturer: Eric Vigoda Scribes: Mengfei Yang, Yatharth Dubey

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

Theorem 4.1 Chernoff bounds: Let X1, X2, ..., Xn be independent variables, where 0 ≤ Xi ≤ 1. Let

X =

n∑
i=1

Xi, µ = E[X]

.
Then for 0 ≤ δ ≤ 1,

Pr[X ≥ (1 + δ)µ] ≤ e−
δ2µ
3

Pr[X ≤ (1− δ)µ] ≤ e−
δ2µ
2

4.1 Warm-up example: Median estimate

4.1.1 Problem definition

Definition 4.2 ε− approximate median: Given unordered list S = [X1, X2, ..., Xm], for simplicity, assume
X ′is are distinct.
The rank of y is given by

rank(y) = |{x ∈ S : x ≤ y}|

The goal is to find an ε− approximate median of S. That is, given ε > 0, find y ∈ S where

m

2
− εm < rank(y) <

m

2
+ εm

4.1.2 Solution

The intuition is choose some random elements from the list, and output the median of these elements. Then
prove this median is ε− approximate median.
algorithm 1 select t ≥ 2

ε2 log
1
δ random elements from S, then sort these random elements and output the

median.

Algorithm 1: Find median

input : An unordered list S = [X1, X2, ..., Xm].
output: One integer represents the median

1 R = [r1, r2, ..., rt]←−choose t random elements from S;
2 sort(R);
3 return median(R)
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4.1.3 Analysis

Claim 4.3 Assume p is the median returned by Algorithm 1.

Pr[p is ε− approximate median] ≥ 1− δ

This means p is an (ε, δ)− approximation of the median.

Proof: Divide S into 3 parts:

SL = {y ∈ S : rank(y) ≤ m

2
− εm}

SM = {y ∈ S :
m

2
− εm < rank(y) <

m

2
+ εm}

SU = {y ∈ S : rank(y) ≥ m

2
+ εm}

If both |R ∩ SL| < t
2 and |R ∩ SU | < t

2 hold, then p = r t
2
∈ SM , which means p is ε− approximate median.

We will only show |R ∩ SL| < t
2 . The other inequality will follow by an analogous argument.

Set random variables Xi to indicate whether element ri is belong to SL, and X to the summation of Xi.

Xi =

{
1, if ri ∈ SL;

0, otherwise.

X =

t∑
i=1

Xi

E[Xi] =
m
2 − εm
m

=
1

2
− ε

µ = E[X] = t(
1

2
− ε)

Now we can use Chernoff bounds

Pr[X ≥ t

2
] = Pr[X ≥ µ+ εt]

≤ Pr[X ≥ µ(1 + 2ε)]

≤ e−(2ε)
2 ( 1

2
−ε)t
3

≤ e− 4ε2

7 t

≤ δ

2

Hence,

Pr[|R ∩ SL| ≥
t

2
] ≤ δ

2

Similarly,

Pr[|R ∩ SU | ≥
t

2
] ≤ δ

2

Pr[|R ∩ SL| ≤
t

2
and |R ∩ SU | ≤

t

2
] ≤ δ

2
+
δ

2
= δ

Pr[p is ε− approximate median] ≥ 1− δ
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4.2 Streaming

4.2.1 Problem definition

Definition 4.4 Streaming: get one-by-one m elements X1, X2, ..., Xm, where Xi ∈ {1, 2, ..., n}(Xi is repeatable).
m is huge so we can’t store the entire stream.

Let fi be the frequency of number i in the stream. Set f = (f1, f2, ..., fn)

Definition 4.5 Reservoir Sampling: choose an element S uniformly at random from {X1, X2, ..., Xm} with-
out knowing m beforehand.

The problem is, give a function g(fi), where g(0) = 0, compute
∑n
i=1 g(fi)

4.2.2 Solution

Algorithm 2 resolves Reservoir Sampling problem. Detailed analysis is given in later section.

Algorithm 2: Reservoir Sampling

input : streaming elements X1, X2, ...
output: one randomly chosen integer.

1 set S ← X1;
2 for t > 1 do
3 upon seeing tth elements Xt, with probability 1

t set S = Xt

4 return S

To compute
∑n
i=1 g(fi), we introduce the unbiased estimator: a random variable X, where

E[X] =

n∑
i=1

g(fi)

Algorithm 3 is AMS algorithm [AMS], shows how to calculate X.

Algorithm 3: AMS algorithm

input : streaming elements X1, X2, ...
output: Integer X

1 use Reservoir Sampling to choose random index J ∈ {1, 2, ...,m};
2 r ← |{j ≥ J : Xj = XJ}|; // of occurrences of xJ after J

3 X ← m× (g(r)− g(r − 1));
4 return X;

4.2.3 Analysis

For algorithm 2, S = Xi means set S while seeing ith element, and never set S after that. The probability
that S = Xi for some time t ≥ i is

Pr[S = Xi] =
1

i
× (1− 1

i+ 1
)× (1− 1

i+ 2
)× ...× (1− 1

t
)

=
1

i
× i

i+ 1
× i+ 1

i+ 2
× ...× t− 1

t

=
1

t
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We only need to keep track of one number S, so it takes O(logn) bits of space to get S. It will take O(klogn)
bits of space to get k samples.
Now analyze algorithm 3, X is the output of this algorithm.

Claim 4.6

E[X] =

n∑
i=1

g(fi)

Proof:

E[X] = Pr[XJ = i]E[X|XJ = i]

=
∑
i

fi
m

fi∑
r=1

m(g(r)− g(r − 1))

fi

=
∑
i

g(fi)

4.3 Example: Frequency Moments

For integer k ≥ 1, the k-th frequency moment is denoted

Fk =

n∑
i=1

fki .

Computing an (ε, δ)-approximation of Fk will be the goal of this section. Note that g(r) = rk, where g plays
the same role as in the previous section. We can now apply the AMS algorithms from the previous section
to this function g. Then

X = m(rk − (r − 1)k).

We know that E[X] = Fk. Then, we can conduct l independent trials to get X1, ..., Xl, and output 1
l

∑l
i=1Xi,

an unbiased estimator for E[X] and therefore for Fk. To show that these are close with high probability,
we plan to show that Var[X] is small and apply Chebyshev’s Inequality. For this we employ the following
lemma.

Lemma 4.7 Var[X] ≤ kn1−1/kF 2
k .

Then for

l =
3Var[X]

ε2E[X]2
≤ 3kn1−1/kF 2

k

ε2F 2
k

= 3kn1− 1
k ε−2,

let Y = 1
l

∑l
i=1Xi, the mean of l independent trials. Now we compute the expected value and variance of

Y .
E[Y ] = E[Xi] = Fk

Var[Y ] =
1

l2

l∑
i=1

Var[Xi] =
Var[X]

l
=
ε2E[X]2

3
=
ε2F 2

k

3

Then by Chebyshev’s Inequality, we have

Pr [|Y − E[Y ]| ≥ εE[Y ]] = Pr[|Y − Fk| ≥ εFk]
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≤ Var[Y ]

(εFk)2
=

1

3
.

So with probability at least 2/3, Y is an ε-approximation of Fk. How can we boost this probability to at
least 1 − δ? We repeat the above procedure T times and take the median of the T estimates. Suppose we
do this T = c log(1/δ) times and get estimates Y1, ..., YT . Then, consider the indicator random variable for
Yj being an ε-approximation

Zj =

{
1 |Yj − Fk| ≤ εFk
0 otherwise

.

Then, for Z =
∑
j Zj , we have E[Z] ≥ 2

3 t. Note that if Z ≥ t
2 , the median of Y1, ..., YT must be an

ε-approximation. We now analyze the probability of this event

Pr[Z <
t

2
] ≤ Pr[Z ≤ E[Z](1− 1

6
)]

≤ e−
1
62

t
3

1
3

= e−
t

6232

≤ δ,

where the last inequality holds for c ≥ 6232.
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