Lecture 5: Pairwise Independence and streaming

January 22, 2019
Lecturer: Eric Vigoda
Scribes: Aditi Laddha, He Jia
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

5.1 Pairwise Independent

Suppose X_{1}, \ldots, X_{n} are n random variables on Ω.
Definition 5.1 X_{1}, \ldots, X_{n} are mutually independent if for all $\alpha_{2}, \ldots, \alpha_{n} \in \Omega$

$$
\operatorname{Pr}\left(X_{1}=\alpha_{1}, \ldots, X_{n}=\alpha_{n}\right)=\prod_{i=1}^{n} \operatorname{Pr}\left(X_{i}=\alpha_{i}\right)
$$

Definition 5.2 X_{1}, \ldots, X_{n} are pairwise independent if for all $i, j \in\{1, \ldots, n\}, \alpha, \beta \in \Omega$

$$
\operatorname{Pr}\left(X_{i}=\alpha_{1}, X_{j}=\beta\right)=\operatorname{Pr}\left(X_{i}=\alpha\right) \operatorname{Pr}\left(X_{j}=\beta\right)
$$

Next we give two examples of pairwise independent variables.

5.1.1 Simple Construction

Suppose $X_{1}, \ldots, X_{m} \in\{0,1\}$ are m mutually independent random bits with Bernoulli distribution of $p=1 / 2$. We will make $2^{m}-1$ pairwise independent random variables $Y_{1}, \ldots, Y_{2^{m}-1} \in\{0,1\}$. Enumerate all non-empty subsets of $\{1, \ldots, m\}$ as $S_{1}, \ldots, S_{2^{m}-1}$. Let

$$
Y_{i}=\underset{j \in S_{i}}{\oplus} X_{j}=\sum_{j \in S_{i}} X_{j} \quad \bmod 2
$$

Lemma $5.3 Y_{1}, \ldots, Y_{2^{m}-1}$ are pairwise independent.
Proof: (Uniform) First show that $\operatorname{Pr}\left(Y_{i}=0\right)=\operatorname{Pr}\left(Y_{i}=1\right)=1 / 2$.
Suppose $S_{i}=\left\{t_{1}, \ldots, t_{\ell}\right\} \subset\{1, \ldots, m\}$. Then

$$
Y_{i}=\sum_{j=1}^{\ell} X_{t_{j}} \quad \bmod 2=\left(\sum_{j=1}^{\ell-1} X_{t_{j}} \quad \bmod 2+X_{t_{\ell}}\right) \quad \bmod 2
$$

Reveal $X_{t_{1}}, \ldots, X_{t_{\ell-1}}$. We can see

$$
\operatorname{Pr}\left(Y_{i}=1\right)=\operatorname{Pr}\left(X_{t_{\ell}}=0 \cap \sum_{j=1}^{\ell-1} X_{t_{j}} \quad \bmod 2=1\right)+\operatorname{Pr}\left(X_{t_{\ell}}=1 \cap \sum_{j=1}^{\ell-1} X_{t_{j}} \quad \bmod 2=0\right)=\frac{1}{2}
$$

(Pairwise independent) For any $i \neq j$, without loss of generality, we may assume $S_{i} \backslash S_{j} \neq \emptyset$. Then

$$
\operatorname{Pr}\left(Y_{i}=\alpha, Y_{j}=\beta\right)=\operatorname{Pr}\left(Y_{i}=\alpha \mid Y_{j}=\beta\right) \operatorname{Pr}\left(Y_{j}=\beta\right)=\operatorname{Pr}\left(Y_{i}=\alpha \mid Y_{j}=\beta\right) \times \frac{1}{2}
$$

Take $t \in S_{i} \backslash S_{j}$. Reveal $\left\{X_{1}, \ldots, X_{m}\right\} \backslash\left\{X_{t}\right\}$. Then with probability $1 / 2, X_{t}=1$ and Y_{j} flips; with probability $1 / 2, X_{t}=0$ and Y_{j} is the same. Therefore,

$$
\left.\operatorname{Pr}\left(Y_{i}=\alpha \mid Y_{j}=\beta\right)\right)=\operatorname{Pr}\left(Y_{i}=\alpha \mid X_{1}, \ldots, X_{m} \backslash X_{t}\right)=\frac{1}{2}
$$

Thus

$$
\operatorname{Pr}\left(Y_{i}=\alpha, Y_{j}=\beta\right)=\frac{1}{4}
$$

5.1.2 Hashing

For prime p, given a, b which are independent and uniform over $\{0, \ldots, p-1\}$. We construct Y_{0}, \ldots, Y_{p-1} which are pairwise independent and uniform over $\{0, \ldots, p-1\}$. Namely, let

$$
Y_{i}=a+i b \quad \bmod p
$$

Lemma 5.4 Y_{0}, \ldots, Y_{p-1} are pairwise independent.
Proof: (Uniform) First show that $\operatorname{Pr}\left(Y_{i}=\alpha\right)=1 / p$.
For any $b, i, \alpha \in\{0, \ldots, p-1\}$

$$
\operatorname{Pr}\left(Y_{i}=\alpha\right)=\operatorname{Pr}(a+i b \equiv \alpha \quad \bmod p)=\operatorname{Pr}(a \equiv \alpha-i b \quad \bmod p)=\frac{1}{p}
$$

since there is a unique such $a \in\{0, \ldots, p-1\}$.
(Pairwise independent) Consider $i, j \in\{0, \ldots, p-1\}, i \neq j$ and $\alpha, \beta \in\{0, \ldots, p-1\}$, we will show

$$
\begin{gathered}
\operatorname{Pr}\left(Y_{i}=\alpha, Y_{j}=\beta\right)=\frac{1}{p^{2}} \\
Y_{i}=\alpha \Longleftrightarrow a+i b \equiv \alpha \quad \bmod p \\
Y_{j}=\beta \Longleftrightarrow a+j b \equiv \beta \quad \bmod p
\end{gathered}
$$

Thus

$$
\begin{aligned}
\alpha-\beta & \equiv(a+i b)-(a+j b) \quad \bmod p \\
\alpha-\beta & \equiv b(i-j) \quad \bmod p \\
b & \equiv \frac{\alpha-\beta}{i-j} \\
a & \equiv \alpha-i b \quad \bmod p
\end{aligned}
$$

So there is a unique (a, b) pair so that $Y_{i}=\alpha, Y_{j}=\beta$. Therefore,

$$
\operatorname{Pr}\left(Y_{i}=\alpha, Y_{j}=\beta\right)=\operatorname{Pr}\left(b \equiv \frac{\alpha-\beta}{i-j}, a \equiv \alpha-i b \quad \bmod p\right)=\frac{1}{p^{2}}
$$

5.2 Application: Streaming

Given a stream $S=\left\{s_{1}, s_{2}, \ldots, s_{m}\right\}$ where $\forall i, s_{i} \in\{1, \ldots, n\}$ and m is a very large number. The elements of the sequence are given one by one and cannot be stored. Define $f_{i}=\left|\left\{s_{j} \in S: s_{j}=i\right\}\right|$. For an integer $k \geq 1$, the k th frequency moment is defined as

$$
F_{k}=\sum_{i=1}^{n} f_{i}^{k}
$$

F_{0} is the number of distinct elements in $S=\left|\left\{i: f_{i}>0\right\}\right|$
Definition 5.5 For integer $k, z \operatorname{eros}(k)=\#$ trailing zeros in binary representation of $k=\max _{l \geq 0}\left\{l: 2^{l}\right.$ divides $\left.k\right\}$

5.2.1 The AMS algorithm

Find a prime p such that $n \leq p<2 n$. Pad f such that $f_{i}=0, \forall i \in\{n+1, \ldots, p\}$.

```
Algorithm 1: AMS Algorithm for estimating \(F_{0}\)
    input : \(S=\left\{s_{1}, s_{2}, \ldots, s_{m}\right\}\) where \(s_{i} \in\{1, \ldots, n\}\).
    output: \(\hat{d}\), a \((3,0.96)\) approximation of \(F_{0}\).
    Choose \(a, b\) randomly from \(\{0,1, \ldots, p-1\}\) and define \(h(k)=a+k b \bmod p\);
    \(\mathrm{z}=0\);
    for \(i \leftarrow 1\) to \(m\) do
        compute \(\operatorname{zeros}\left(h\left(s_{i}\right)\right)\);
        if \(\operatorname{zeros}\left(h\left(s_{i}\right)\right)>z\) then
            \(z=z \operatorname{eros}\left(h\left(s_{i}\right)\right)\)
    Output \(2^{z+1 / 2}\);
```


5.3 Analysis of Algorithm

5.3.1 Space Complexity

$a, b \leq p \leq 2 n$, so space needed to store a, b is $O(\log (n))$ and $z \leq \log (n)$, so space needed to store z is $O(\log \log (n))$.

Overall space needed is $O(\log (n))$.

5.3.2 Failure Probability

Let $F_{0}=d=\left|\left\{i: f_{i}>0\right\}\right|$ and let the output of the Algorithm 1 be \hat{d}.
Lemma 5.6

$$
\operatorname{Pr}\left(\hat{d} \geq 3 d \text { or } d \leq \frac{\hat{d}}{3}\right) \leq 0.96
$$

For $k \in\{1, \ldots, p\}$ and integer $l \geq 0$,

$$
\operatorname{Pr}(\operatorname{zeros}(h(k)) \geq l)=\operatorname{Pr}(\text { last } l \text { bits of } h(k) \text { are all } 0)=\frac{1}{2^{l}}
$$

because $h(k)$ is a uniformly random bit string.
We cannot use Chernoff bounds on $h(k)$ as they are not mutually independent only pairwise independent.

For $k \in\{1, \ldots, n\}$ and integer $l \geq 0$, define a random variable

$$
X_{k, l}= \begin{cases}1 & \text { if } \operatorname{zeros}(h(k)) \geq l \\ 0 & \text { otherwise }\end{cases}
$$

Let

$$
Y_{l}=\sum_{k: f_{k}>0} X_{k, l}
$$

If $2^{z+1 / 2}$ is the output of algorithm 1 , then

$$
\begin{array}{r}
z \geq l \Leftrightarrow Y_{l}>0 \\
z \leq l-1 \Leftrightarrow Y_{l}=0
\end{array}
$$

For a fixed $l, X_{1, l}, \ldots, X_{n, l}$ are pairwise independent due to the construction of h from last section.

$$
\mathbb{E}\left(X_{k, l}\right)=\operatorname{Pr}[\operatorname{zeros}(h(k)) \geq l]=\frac{1}{2^{l}}
$$

and

$$
\begin{gathered}
\operatorname{var}\left(X_{k, l}\right)=\mathbb{E}\left(X_{k, l}^{2}\right)-\mathbb{E}\left(X_{k, l}\right)^{2} \leq \mathbb{E}\left(X_{k, l}^{2}\right)=\frac{1}{2^{l}} \\
\mathbb{E}\left(Y_{l}\right)=\mathbb{E}\left(\sum_{k: f_{k}>0} X_{k, l}\right)=\sum_{k: f_{k}>0} \mathbb{E}\left(X_{k, l}\right)=\frac{d}{2^{l}} \\
\operatorname{Var}\left(Y_{l}\right)=\operatorname{Var}\left(\sum_{k: f_{k}>0} X_{k, l}\right)=\sum_{k: f_{k}>0} \operatorname{Var}\left(X_{k, l}\right)
\end{gathered}
$$

Linearity of variance holds over pairwise independent variables too. So, $\operatorname{var}\left(Y_{l}\right) \leq \frac{d}{2^{l}}$.
By Markov's inequality,

$$
\begin{aligned}
\operatorname{Pr}\left(Y_{l}>0\right) & =\operatorname{Pr}\left(Y_{l} \geq 1\right) \\
& \leq \frac{\mathbb{E}\left(Y_{l}\right)}{1} \\
& \leq d 2^{-l}
\end{aligned}
$$

Using Chebyshev's inequality,

$$
\begin{aligned}
\operatorname{Pr}\left(Y_{l}=0\right) & \leq \operatorname{Pr}\left(\left|Y_{l}-\mathbb{E}\left[Y_{l}\right]\right| \geq d 2^{-l}\right) \\
& \leq \frac{\operatorname{Var}\left(Y_{l}\right)}{\left(d 2^{-l}\right)^{2}} \\
& =\frac{2^{l}}{d}
\end{aligned}
$$

We want $\frac{\hat{d}}{3} \leq d \leq 3 \hat{d}$. Let a be the smallest integer such that $2^{a+1 / 2} \geq 3 d$ and let b be the largest integer
such that $2^{b+1 / 2} \leq d / 3$. Then,

$$
\begin{aligned}
\operatorname{Pr}(\hat{d} \geq 3 d) & =\operatorname{Pr}[z \geq a] \\
& =\operatorname{Pr}\left(Y_{a}>0\right) \\
& \leq \frac{d}{2^{a}} \\
& \leq \frac{2^{a+1 / 2}}{3.2^{a}} \\
& =\frac{\sqrt{2}}{3} \\
& <0.48
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Pr}(\hat{d} \leq d / 3) & =\operatorname{Pr}[z \leq b] \\
& =\operatorname{Pr}\left[Y_{b+1}=0\right] \\
& \leq \frac{2^{b+1}}{d} \\
& \leq \frac{2^{b+1}}{3.2^{b+1 / 2}} \\
& =\frac{\sqrt{2}}{3} \\
& <0.48
\end{aligned}
$$

This gives a 3 -approximation algorithm with error probability 0.96 .
To get a 3 -approximation algorithm with error probability $\leq \delta$, we can boost the algorithm by running it $r=O\left(\log \left(\frac{1}{\delta}\right)\right)$. Let the outputs be $\hat{d}_{1}, \hat{d}_{2}, \ldots, \hat{d}_{r}$. Then with probability $\geq 1-\delta$, the median of $\hat{d}_{1}, \hat{d}_{2}, \ldots, \hat{d}_{r}$ is a 3-approximation of d. This takes $O\left(\log \left(\frac{1}{\delta}\right) \log (n)\right)$ bits. For every run of the AMS algorithm, we select a new hash function making each run independent of the others.

References

[1] Alon, N. \& Matias, Y. \& Szegedy, M. The space complexity of approximating the frequency moments. Journal of Computer and system sciences, pages 137-147, 1999

