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5.1 Pairwise Independent

Suppose X1, ..., X, are n random variables on (2.

Definition 5.1 Xi,..., X, are mutually independent if for all as, ..., a, € Q

n
Pr(X;=ay,.... X, =a,) = HPr(XZ- = ;).

i=1
Definition 5.2 X1,...,X,, are pairwise independent if for all i,5 € {1,...,n}, a,8 € Q
Pr(X, = an, X; = ) = Pr(X; = a) Pr(X; = ).

Next we give two examples of pairwise independent variables.

5.1.1 Simple Construction

Suppose X1, ..., X;n € {0,1} are m mutually independent random bits with Bernoulli distribution of p = 1/2.
We will make 2™ —1 pairwise independent random variables Y7, ..., Yom 1 € {0,1}. Enumerate all non-empty
subsets of {1,...,m} as S1,...,Sam_1. Let

Y= & X; =Y X; mod 2.

Jjesi jES,

Lemma 5.3 Y7,...,Yom 1 are pairwise independent.

Proof: (Uniform) First show that Pr(Y; =0) =Pr(Y; =1) =1/2.
Suppose S; = {t1,...,t} C{1,...,m}. Then

Y, = zé:th mod 2 = ([zf Xi, mod 2+ X;,) mod 2.
j=1 j=1
Reveal Xy,,...,X;, ,. We can see
-1 -1 1
Pr(Y; = 1) = Pr(X;, =0N ;th mod 2 = 1) + Pr(X;, = 1 m;th mod 2.=0) = .

(Pairwise independent) For any i # j, without loss of generality, we may assume S; \ S; # (). Then
1
Pr(Y; = a,Y; = ) = Pr(¥i = | Y, = A)Pr(Y; = B) = Pr(¥i = a| Y; = §) x .

5-1
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Take t € S; \ Sj. Reveal {X1,..., X} \ {X:}. Then with probability 1/2, X; = 1 and Y; flips; with
probability 1/2, X; = 0 and Yj is the same. Therefore,

1
Pr(YZ-:a|Yj:6)):Pr(Yi:a\Xl,...,Xm\Xt):§.

Thus 1
Pr(Y; = oY) = B) = 1

5.1.2 Hashing

For prime p, given a,b which are independent and uniform over {0,...,p — 1}. We construct Yp,...,Y,_1
which are pairwise independent and uniform over {0,...,p — 1}. Namely, let

Y, =a+ib mod p.

Lemma 5.4 Yy,...,Y,_1 are pairwise independent.

Proof: (Uniform) First show that Pr(Y; = a) = 1/p.
For any b,i,« € {0,...,p — 1}

1
Pr(Y; =a) =Pr(a+ib=a mod p)=Pr(a=a—1ib modp)=—
p
since there is a unique such a € {0,...,p — 1}.
(Pairwise independent) Consider ¢,5 € {0,...,p—1},i # j and o, 8 € {0,...,p — 1}, we will show
1

PT(YE:aan:ﬂ):F~
Y=a <= a+ib=a modp
Yi=8 < a+j b= modp
Thus
a—p=(a+1ib) — (a+jb) mod p
a—B=b(i—j) modp

bzq_@
t—7
and a=a—1ib modp

So there is a unique (a, b) pair so that Y; = a,Y; = 3. Therefore,

— 1
Pr(Y,=a,Y; =) =Pr(b= i_f,aza—ib modp):P.
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5.2 Application: Streaming

Given a stream S = {s1, 82,..., 8, } where Vi,s; € {1,...,n} and m is a very large number. The elements
of the sequence are given one by one and cannot be stored. Define f; = |{s; € S : s; = i}|. For an integer
k > 1, the kth frequency moment is defined as

i=1

F, is the number of distinct elements in S = |[{i : f; > 0}

Definition 5.5 Forinteger k, zeros(k) = # trailing zeros in binary representation of k = 1{133({1 : 2! divides k}

5.2.1 The AMS algorithm

Find a prime p such that n < p < 2n. Pad f such that f; =0,Vi€ {n+1,...,p}.
Algorithm 1: AMS Algorithm for estimating Fj

input : S ={s1,52,...,8,} where s; € {1,...,n}.
output: d, a (3,0.96) approximation of Fp.
Choose a,b randomly from {0,1,...,p — 1} and define h(k) = a + kb mod p;
z = 0;
for : < 1 to m do

compute zeros(h(s;));

if zeros(h(s;)) > = then

|z = zeros(h(s;))

[<2 0 N VU I

~

Output 2+1/2;

5.3 Analysis of Algorithm

5.3.1 Space Complexity

a,b < p < 2n, so space needed to store a,b is O(log(n)) and z < log(n), so space needed to store z is

O(loglog(n)).
Overall space needed is O(log(n)).

5.3.2 Failure Probability
Let Fo = d = |{i : f; > 0}| and let the output of the Algorithm 1 be d.

Lemma 5.6

SN

Pr(d > 3d ord < =) < 0.96.

w

For k € {1,...,p} and integer [ > 0,

1
Pr(zeros(h(k)) > 1) = Pr(last [ bits of h(k) are all 0) = o

because h(k) is a uniformly random bit string.
We cannot use Chernoff bounds on h(k) as they are not mutually independent only pairwise independent.
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For k € {1,...,n} and integer [ > 0, define a random variable

1 if zeros(h(k)) > 1
sz{ (h(k)) >

0 otherwise

Let
Y, = Z Xk
k:fi.>0
If 2271/2 is the output of algorithm 1, then
z2>21lsY >0
z<l-1<Y, =0

For a fixed I, X1,..., X, are pairwise independent due to the construction of h from last section.

E(Xk,) = Pr[zeros(h(k)) > 1] = %

and 1
var(Xeg) = E(X7 ;) — E(Xi)® <E(XZ)) = of

EYV)=E( > Xp)= > ]E(X’“l):%

k:fr>0 k:fk>0
Var(Y;) = Var( Y Xpi)= Y Var(Xgy)
k:fr >0 k:fr >0

d
Linearity of variance holds over pairwise independent variables too. So, var(Y;) < o
By Markov’s inequality,
Pr(Y; > 0) = Pr(Y; > 1)
_EM)
-1
<d27

Using Chebyshev’s inequality,
Pr(Y; = 0) < Pr()Y; — E[Yi]| > d27")

< Var(Y)

~ (d27)?
2l

T d

d .
We want 3 < d < 3d. Let a be the smallest integer such that 2¢t1/2 > 3d and let b be the largest integer
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such that 2°+1/2 < d/3. Then,

and

Pr(d

IN
&
~
=

= Pr[z < b
= Pr[Yb+1 = 0}

2b+1
<z
— d
2b+1

< 3.2b+1/2

vz

3
< 0.48

This gives a 3-approximation algorithm with error probability 0.96.
To get a 3-approximation algorithm with error probability < d, we can boost the algorithm by running it

1 L. . o .
r= O(log(g)). Let the outputs be dy,ds, . ..,d,. Then with probability > 1 —§, the median of dy, ds, ..., d,

1
is a 3-approximation of d. This takes O(log(g) log(n)) bits. For every run of the AMS algorithm, we select

a new hash function making each run independent of the others.
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