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5.1 Pairwise Independent

Suppose X1, . . . , Xn are n random variables on Ω.

Definition 5.1 X1, . . . , Xn are mutually independent if for all α2, . . . , αn ∈ Ω

Pr(X1 = α1, . . . , Xn = αn) =

n∏
i=1

Pr(Xi = αi).

Definition 5.2 X1, . . . , Xn are pairwise independent if for all i, j ∈ {1, . . . , n}, α, β ∈ Ω

Pr(Xi = α1, Xj = β) = Pr(Xi = α) Pr(Xj = β).

Next we give two examples of pairwise independent variables.

5.1.1 Simple Construction

SupposeX1, . . . , Xm ∈ {0, 1} aremmutually independent random bits with Bernoulli distribution of p = 1/2.
We will make 2m−1 pairwise independent random variables Y1, . . . , Y2m−1 ∈ {0, 1}. Enumerate all non-empty
subsets of {1, . . . ,m} as S1, . . . , S2m−1. Let

Yi = ⊕
j∈Si

Xj =
∑
j∈Si

Xj mod 2.

Lemma 5.3 Y1, . . . , Y2m−1 are pairwise independent.

Proof: (Uniform) First show that Pr(Yi = 0) = Pr(Yi = 1) = 1/2.
Suppose Si = {t1, . . . , t`} ⊂ {1, . . . ,m}. Then

Yi =
∑̀
j=1

Xtj mod 2 = (

`−1∑
j=1

Xtj mod 2 +Xt`) mod 2.

Reveal Xt1 , . . . , Xt`−1
. We can see

Pr(Yi = 1) = Pr(Xt` = 0 ∩
`−1∑
j=1

Xtj mod 2 = 1) + Pr(Xt` = 1 ∩
`−1∑
j=1

Xtj mod 2 = 0) =
1

2
.

(Pairwise independent) For any i 6= j, without loss of generality, we may assume Si \ Sj 6= ∅. Then

Pr(Yi = α, Yj = β) = Pr(Yi = α | Yj = β) Pr(Yj = β) = Pr(Yi = α | Yj = β)× 1

2
.
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Take t ∈ Si \ Sj . Reveal {X1, . . . , Xm} \ {Xt}. Then with probability 1/2, Xt = 1 and Yj flips; with
probability 1/2, Xt = 0 and Yj is the same. Therefore,

Pr(Yi = α | Yj = β)) = Pr(Yi = α | X1, . . . , Xm \Xt) =
1

2
.

Thus

Pr(Yi = α, Yj = β) =
1

4
.

5.1.2 Hashing

For prime p, given a, b which are independent and uniform over {0, . . . , p − 1}. We construct Y0, . . . , Yp−1
which are pairwise independent and uniform over {0, . . . , p− 1}. Namely, let

Yi = a+ ib mod p.

Lemma 5.4 Y0, . . . , Yp−1 are pairwise independent.

Proof: (Uniform) First show that Pr(Yi = α) = 1/p.
For any b, i, α ∈ {0, . . . , p− 1}

Pr(Yi = α) = Pr(a+ ib ≡ α mod p) = Pr(a ≡ α− ib mod p) =
1

p

since there is a unique such a ∈ {0, . . . , p− 1}.
(Pairwise independent) Consider i, j ∈ {0, . . . , p− 1}, i 6= j and α, β ∈ {0, . . . , p− 1}, we will show

Pr(Yi = α, Yj = β) =
1

p2
.

Yi = α ⇐⇒ a+ ib ≡ α mod p

Yj = β ⇐⇒ a+ jb ≡ β mod p

Thus

α− β ≡ (a+ ib)− (a+ jb) mod p

α− β ≡ b(i− j) mod p

b ≡ α− β
i− j

and a ≡ α− ib mod p

So there is a unique (a, b) pair so that Yi = α, Yj = β. Therefore,

Pr(Yi = α, Yj = β) = Pr(b ≡ α− β
i− j

, a ≡ α− ib mod p) =
1

p2
.
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5.2 Application: Streaming

Given a stream S = {s1, s2, . . . , sm} where ∀i, si ∈ {1, . . . , n} and m is a very large number. The elements
of the sequence are given one by one and cannot be stored. Define fi = |{sj ∈ S : sj = i}|. For an integer
k ≥ 1, the kth frequency moment is defined as

Fk =

n∑
i=1

fki

F0 is the number of distinct elements in S = |{i : fi > 0}|

Definition 5.5 For integer k, zeros(k) = # trailing zeros in binary representation of k = max
l≥0
{l : 2l divides k}

5.2.1 The AMS algorithm

Find a prime p such that n ≤ p < 2n. Pad f such that fi = 0,∀i ∈ {n+ 1, . . . , p}.
Algorithm 1: AMS Algorithm for estimating F0

input : S = {s1, s2, . . . , sm} where si ∈ {1, . . . , n}.
output: d̂, a (3,0.96) approximation of F0.

1 Choose a, b randomly from {0, 1, . . . , p− 1} and define h(k) = a+ kb mod p;
2 z = 0;
3 for i← 1 to m do
4 compute zeros(h(si));
5 if zeros(h(si)) > z then
6 z = zeros(h(si))

7 Output 2z+1/2;

5.3 Analysis of Algorithm

5.3.1 Space Complexity

a, b ≤ p ≤ 2n, so space needed to store a, b is O(log(n)) and z ≤ log(n), so space needed to store z is
O(log log(n)).

Overall space needed is O(log(n)).

5.3.2 Failure Probability

Let F0 = d = |{i : fi > 0}| and let the output of the Algorithm 1 be d̂.

Lemma 5.6

Pr(d̂ ≥ 3d or d ≤ d̂

3
) ≤ 0.96.

For k ∈ {1, . . . , p} and integer l ≥ 0,

Pr(zeros(h(k)) ≥ l) = Pr(last l bits of h(k) are all 0) =
1

2l

because h(k) is a uniformly random bit string.
We cannot use Chernoff bounds on h(k) as they are not mutually independent only pairwise independent.



Lecture 5: Pairwise Independence and streaming 5-4

For k ∈ {1, . . . , n} and integer l ≥ 0, define a random variable

Xk,l =

{
1 if zeros(h(k)) ≥ l
0 otherwise

Let
Yl =

∑
k:fk>0

Xk,l

If 2z+1/2 is the output of algorithm 1, then

z ≥ l⇔ Yl > 0

z ≤ l − 1⇔ Yl = 0

For a fixed l, X1,l, . . . , Xn,l are pairwise independent due to the construction of h from last section.

E(Xk,l) = Pr[zeros(h(k)) ≥ l] =
1

2l

and

var(Xk,l) = E(X2
k,l)− E(Xk,l)

2 ≤ E(X2
k,l) =

1

2l

E(Yl) = E(
∑

k:fk>0

Xk,l) =
∑

k:fk>0

E(Xk,l) =
d

2l

Var(Yl) = Var(
∑

k:fk>0

Xk,l) =
∑

k:fk>0

Var(Xk,l)

Linearity of variance holds over pairwise independent variables too. So, var(Yl) ≤
d

2l
.

By Markov’s inequality,

Pr(Yl > 0) = Pr(Yl ≥ 1)

≤ E(Yl)

1

≤ d2−l

Using Chebyshev’s inequality,

Pr(Yl = 0) ≤ Pr(|Yl − E[Yl]| ≥ d2−l)

≤ Var(Yl)

(d2−l)2

=
2l

d

We want
d̂

3
≤ d ≤ 3d̂. Let a be the smallest integer such that 2a+1/2 ≥ 3d and let b be the largest integer
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such that 2b+1/2 ≤ d/3. Then,

Pr(d̂ ≥ 3d) = Pr[z ≥ a]

= Pr(Ya > 0)

≤ d

2a

≤ 2a+1/2

3.2a

=

√
2

3
< 0.48

and

Pr(d̂ ≤ d/3) = Pr[z ≤ b]
= Pr[Yb+1 = 0]

≤ 2b+1

d

≤ 2b+1

3.2b+1/2

=

√
2

3
< 0.48

This gives a 3-approximation algorithm with error probability 0.96.
To get a 3-approximation algorithm with error probability ≤ δ, we can boost the algorithm by running it

r = O(log(
1

δ
)). Let the outputs be d̂1, d̂2, . . . , d̂r. Then with probability ≥ 1− δ, the median of d̂1, d̂2, . . . , d̂r

is a 3-approximation of d. This takes O(log(
1

δ
) log(n)) bits. For every run of the AMS algorithm, we select

a new hash function making each run independent of the others.
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