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7.1 Derandomization of an Algorithm

Idea: Present a randomized algorithm that works with constant probability and only uses pairwise inde-
pendent random variables. Then we can iterate through all possible choices of those pairwise independent
random variables to find a deterministic choice that is guaranteed to succeed.

7.2 Maximal Independent Set Algorithm

7.2.1 Sequential Algorithm

Definition 7.1 For graph G = (V,E), the independent set (IS) is some set of vertices S ⊂ V such that
∀(v, w) ∈ E, V /∈ S or w /∈ S.

Definition 7.2 The maximal independent set (MIS) S of graph G = (V,E) is the one that it is not a subset
of any other independent sets. In other words, it satisfies: ∀v ∈ V , v ∈ S or N(v) ∩ S 6= ∅ (N(v) is the
neighborhood of v in G).

Consider the following sequential algorithm, which may take O(n) rounds:

Algorithm 1: Sequential Algorithm for Maximal Independent Set

input : A graph G = (V,E)
output: A maximal independent set I

1 Initialization: I = ∅, V ′ = V ;
2 while V ′ 6= ∅ do
3 Choose any v ∈ V ′;
4 Set I ← I ∪ {v};
5 Set V ′ ← V ′\

(
{v} ∪N(v)

)
6 Output I;

7.2.2 Parallel Algorithm

[Luby ’85] Parallel algorithm for MIS with O(log n) rounds and poly(n) processes under CREW PRAM
model (concurrent read & exclusive write).

Goal: Instead of adding single vertex to I in each round, we add an independent set S of G′ to I. If
S ∪N(S) is a constant fraction of G′, then we only need O(log n) rounds.
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How to find S? Every vertex v ∈ G′ adds itself to S with probability p(v) independently (or pairwise
independently). To make sure that S is an independent set: For all edges (v, w) ∈ E, if v and w are in S,
then remove the lower degree vertex from S.

This idea yields the following algorithm:

Algorithm 2: Parallel Algorithm for Maximal Independent Set

input : A graph G = (V,E)
output: A maximal independent set I

1 Initialization: I = ∅, G′ = G, V ′ = V ;
2 while V ′ 6= ∅ do
3 Set S = ∅;
4 for each v ∈ V ′ do

5 Add v to S with probability
1

2dG′(v)
, where dG′(v) is the degree of v in G′;

6 for each edge (v, w) ∈ G′ do
7 if v ∈ S,w ∈ S then
8 Drop the lower degree vertex in {v, w} (If tie, pick a random one);

9 Let S′ be the remaining vertices;

10 I ← I ∪ S′, V ′ ← V ′\
(
{s} ∪N(S′)

)
, G′ = induced subgraph on V ′;

11 Output I;

Lemma 7.3 Let Gj = (Vj , Ej) be the graph after round j and G0 = G. Then E[|Ej+1|
∣∣Ej ] < |Ej |(1−

1

24
).

Corollary 7.4 With l = O(log n), Gl = ∅.

Proof: [Proof of corollary 7.4]

E[|Ej |] ≤ |E0|(1−
1

12
)j

≤ m exp(− j

12
)

≤ 1 for j > 12 logm (7.1)

Moreover,

Pr(Ej 6= ∅) = Pr(Ej ≥ 1)

≤ E[|Ej |]

≤ 1

4
for j > 48 logm (7.2)

Thus, with probability at least 3/4, we have O(log n) rounds. (This is an RNC algorithm for MIS.)

Proof: [Proof of Lemma 7.3]
For v ∈ Vj , define H(v) = {w ∈ NGj (v) : dGj (w) > dGj (v) and L(v) = {w ∈ NGj (v) : dGj (w) ≤ dGj (v),

where NGj
(v) denotes the neighborhood of v in the induced subgraph G′.
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We say that for any v ∈ V (G′), v in BAD if |H(v)| ≥ 2

3
dG′(v) and GOOD if |L(v)| > 1

3
dG′(v).

Further, we say edge (v, w) ∈ Ej is BAD if v and w are BAD and GOOD otherwise.

To prove that Pr(w is deleted | w is GOOD) ≥ 1

12
, it is sufficient to show the following two claims (Note

that w is deleted iff w ∈ S ∪N(S)):

Claim 1 Let EG be the GOOD edges. Then |EG| ≥ |E|
2 .

Claim 2 Pr(edge e is deleted | e is GOOD) ≥ 1
12 .

With these two claims,

E[|Ej+1|
∣∣Ej ] =

∑
e∈Ej

(1− Pr(e gets deleted))

≤ |Ej | −
1

12
|EG|

≤ |Ej |(1−
1

12
) (7.3)

Proof: [Proof of Claim 1]
Let EB be BAD edges of Gj . We will define a mapping f : EB →

(
Ej

2

)
so that for all e1 6= e2 ∈

EB , f(e1) ∩ f(e2) = ∅. Thus, each e ∈ EB has a distinct pair of edges in Ej and hence |EB | ≤ |Ej |
2 , which

proves the claim.
The mapping f is defined with the following procedure:
For each (v, w) ∈ Ej , direct it from the lower degree endpoint to the higher degree one (choose arbitrary

if tie).
Suppose (v, w) ∈ EB is directed as v → w. So dG′(v) ≤ dG′(w). Since (v, w) ∈ EB , both v and w are

bad.
Since v is BAD, at least 2

3 of its neighbors are of degree ≥ dG′(v) and at most 1
3 of the edges incident to

v. Therefore, ≥ 2 times as many out-edges from v as in-edges into v.
Hence, for each BAD edge e directed into v, there are a pair of out edges out of v that we can uniquely

assign to e.

Proof: [Proof of Claim 2]
We will show:

(1): Pr(w ∈ S′|w ∈ S) ≥ 1
2 .

(2): Pr(N(v) ∩ S 6= ∅|v is GOOD) ≥ 1
6
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Proof of (1):

Pr(w ∈ S′|w ∈ S) = Pr(H(w) ∩ S 6= ∅|w ∈ S)

≤
∑

z∈H(w)

Pr(z ∈ S|w ∈ S) (Union Bound)

=
∑

z∈H(w)

Pr(z ∈ S,w ∈ S)

Pr(w ∈ S)

=
∑

z∈H(w)

Pr(z ∈ S) (Pairwise Independence)

=
∑

z∈H(w)

1

2dG(z)

≤
∑

z∈H(w)

1

2dG(w)

≤ 1

2
(7.4)

Proof of (2):

Pr(N(v) ∩ S 6= ∅|v is GOOD) = 1− Pr(N(v) ∩ S = ∅|v is GOOD)

= 1−
∏

z∈N(v)

Pr(z /∈ S|v is GOOD) (Mutual Independence)

= 1−
∏

z∈N(v)

(1− 1

2dG′(z)
)

≥ 1−
∏

z∈L(v)

(1− 1

2dG′(z)
)

≥ 1−
∏

z∈L(v)

(1− 1

2dG′(v)
)

≥ 1− exp
(
− |L(v)|

2dG′(v)

)
≥ 1− exp(−1

6
)

≥ 1

6
(7.5)

With both (1) and (2), we have:

Pr(v ∈ NG′(S′)|v is GOOD)

= Pr(NG′(v) ∩ S′ 6= ∅|N(v) ∩ S 6= ∅, v is GOOD) Pr(N(v) ∩ S 6= ∅|v is GOOD)

= Pr(NG′(v) ∩ S′ 6= ∅|N(v) ∩ S 6= ∅, v is GOOD) Pr(N(v) ∩ S 6= ∅|v is GOOD)

≥ 1

2
· 1

6

=
1

12
(7.6)

Since e = (v, w) is GOOD if there is at least one endpoint being GOOD, we have proved Claim 2.
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7.2.3 Proof with Pairwise Independence

Instead of using mutual independence in (7.5) to obtain the lower bound on Pr(N(v) ∩ S 6= ∅|v is GOOD),
we can relax the condition with pairwise independence via the following lemma:

Lemma 7.5 For pairwise independent random variables X1, ..., Xl ∈ {0, 1} with Pr(Xi = 1) = pi, we have

Pr(

l∑
i=1

Xi > 0) ≥ 1

2
min{1

2
,

l∑
i=1

pi}

Corollary 7.6 (Lower bound on Pr(N(v) ∩ S 6= ∅|v is GOOD) with pairwise independence)

Let Xi =

{
1 , if wi ∈ S

0 , otherwise
. We have

Pr(NG′(v) ∩ S 6= ∅|v is GOOD) ≥ 1

2
min{1

2
,

dG′ (v)∑
i=1

1

2dG′(wi)
}

≥ 1

2
min{1

2
,

|L(v)|∑
i=1

1

2dG′(v)
}

≥ 1

12
(7.7)

Proof: [Proof of lemma 7.5]
Case 1:

∑
i pi ≤ 1

Pr(

l∑
i=1

Xi > 0) ≥ Pr(

l∑
i=1

Xi > 1)

≥
l∑

i=1

Pr(Xi > 1)− 1

2

∑
i,j,i 6=j

Pr(Xi = Xj = 1)

≥
l∑

i=1

pi −
1

2

∑
i6=j

pipj

=

l∑
i=1

pi(1−
1

2

∑
j 6=i

pj)

≥
l∑

i=1

pi(1−
1

2

l∑
j=1

pj)

≥ 1

2

l∑
i=1

pi (7.8)

Case 2:
∑

i pi > 1
We find always find some S ⊂ {1, 2, ..., l} such that 1

2 ≤
∑

i∈S pi ≤ 1, because either 1) pi <
1
2 or 2) ∃j

such that pj ≥ 1
2 (then pick S = {j}).
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Similar to Case 1,

Pr(

l∑
i=1

Xi > 0) ≥ Pr(
∑
i∈S

Xi > 1)

≥ 1

2

∑
i∈S

pi

≥ 1

4
(7.9)

Hence, Pr(
∑l

i=1 Xi > 0) ≥ 1
2 min{ 12 ,

∑l
i=1 pi}.
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