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7.1 Derandomization of an Algorithm

Idea: Present a randomized algorithm that works with constant probability and only uses pairwise inde-
pendent random variables. Then we can iterate through all possible choices of those pairwise independent
random variables to find a deterministic choice that is guaranteed to succeed.

7.2 Maximal Independent Set Algorithm

7.2.1 Sequential Algorithm

Definition 7.1 For graph G = (V, E), the independent set (IS) is some set of vertices S C V such that
Yv,w)e E, V&S orwé¢b.

Definition 7.2 The mazimal independent set (MIS) S of graph G = (V, E) is the one that it is not a subset
of any other independent sets. In other words, it satisfies: Yv € V, v € S or N(v) NS # 0 (N(v) is the
neighborhood of v in G).

Consider the following sequential algorithm, which may take O(n) rounds:

Algorithm 1: Sequential Algorithm for Maximal Independent Set
input : A graph G = (V, E)
output: A maximal independent set I

1 Initialization: I =0, V' =V;

2 while V' # ) do

3 Choose any v € V';

4 Set I+ I'U{v};
5 Set V' + V/\ ({v} UN(v))
6 Output I;

7.2.2 Parallel Algorithm

[Luby ’85] Parallel algorithm for MIS with O(logn) rounds and poly(n) processes under CREW PRAM
model (concurrent read & exclusive write).

Goal: Instead of adding single vertex to I in each round, we add an independent set S of G’ to I. If
S UN(S) is a constant fraction of G’, then we only need O(logn) rounds.
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How to find S? Every vertex v € G’ adds itself to S with probability p(v) independently (or pairwise
independently). To make sure that S is an independent set: For all edges (v,w) € E, if v and w are in S,
then remove the lower degree vertex from S.

This idea yields the following algorithm:

Algorithm 2: Parallel Algorithm for Maximal Independent Set
input : A graph G = (V, E)
output: A maximal independent set I

1 Initialization: I =0, G' =G, V' =V,

2 while V' # () do

3 Set S = 0;

4 for each v € V' do

1
5 L Add v to S with probability W, where dg (v) is the degree of v in G';
ar(v

6 for each edge (v,w) € G’ do
7 if ve S,we S then
L Drop the lower degree vertex in {v,w} (If tie, pick a random one);

9 Let S’ be the remaining vertices;
10 | I+ TUS, V' «V\({s}UN(5)), G' = induced subgraph on V';
11 Output [;

1
Lemma 7.3 Let G; = (V;, E;) be the graph after round j and Go = G. Then E[|E; 1| |E;] < |E;|(1— ﬂ)
Corollary 7.4 With | = O(logn),G;, = 0.

Proof: [Proof of corollary 7.4]

1

E[IE;]) < [Eol(1 — 35V
J
< _4
< mesp(~2)
<1 for j > 12logm (7.1)

Moreover,

for j > 48logm (7.2)
Thus, with probability at least 3/4, we have O(logn) rounds. (This is an RNC algorithm for MIS.) =
Proof: [Proof of Lemma 7.3]

For v € Vj, define H(v) = {w € Ng,(v) : dg,(w) > dg,(v) and L(v) = {w € Ng,(v) : dg,(w) < dg,(v),
where Ng, (v) denotes the neighborhood of v in the induced subgraph G’.
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2 1
We say that for any v € V(G’), v in BAD if |H(v)| > gdgl (v) and GOOD if |L(v)| > gdG’ (v).
Further, we say edge (v, w) € E; is BAD if v and w are BAD and GOOD otherwise.

1
To prove that Pr(w is deleted | w is GOOD) > oL it is sufficient to show the following two claims (Note
that w is deleted iff w € SUN(S)):
Claim 1 Let Eg be the GOOD edges. Then |Eg| > £L.
Claim 2 Pr(edge € is deleted | e is GOOD) > 5.

With these two claims,

E|Ej+1] |Ej] = Z (1 — Pr(e gets deleted))
e€E;
< 15 - 351Fdl
> J 12 G
1
< |E;|(1—-— .
< B~ =) (7.3

Proof: [Proof of Claim 1]

Let Ep be BAD edges of G;. We will define a mapping f : Ep — (I”;J) so that for all e; # ey €
Ep, f(e1) N f(ez) = 0. Thus, each e € Ep has a distinct pair of edges in E; and hence |Ep| < lgj‘7 which
proves the claim.

The mapping f is defined with the following procedure:

For each (v,w) € Ej, direct it from the lower degree endpoint to the higher degree one (choose arbitrary
if tie).

Suppose (v,w) € Ep is directed as v — w. So dg/(v) < dg/(w). Since (v,w) € Ep, both v and w are
bad.

Since v is BAD, at least % of its neighbors are of degree > dg(v) and at most % of the edges incident to
v. Therefore, > 2 times as many out-edges from v as in-edges into v.

Hence, for each BAD edge e directed into v, there are a pair of out edges out of v that we can uniquely
assign to e.

Proof: [Proof of Claim 2]
We will show:
(1): Pr(w e S'\w e S) > 1.

(2): Pr(N(v) NS # Plv is GOOD) >

1
6
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Proof of (1):
Pr(w e S'|lw e 8) = Pr(H(w)NS # Plw € S)

< Z Pr(z € Sjw € S) (Union Bound)
z€H (w)

B Pr(z € S,w € 5)
N Z Pr(w € S)

z€H (w)

= Z Pr(z € S) (Pairwise Independence)
z€H (w)

1
= 2 2dc(2)

z€H (w)

1
Z 2dg(w)

z€H (w)

1

- 7.4
: (7.4

IN

IN

Proof of (2):
Pr(N(v) NS # Plv is GOOD) = 1 — Pr(N(v) NS = @lv is GOOD)
=1- H Pr(z ¢ Sjv is GOOD) (Mutual Independence)

zEN(v)

1
- H - QdG/(Z))

z€EN (v)

1
b H - QdG'(Z))

z€L(v)

1
P | S =1t

z€L(v)

Y

Y

|L(v)]|
1= exp (  2de (v))
>1- eXp(—%)
1

: (7.5)

Y

Y

With both (1) and (2), we have:

Pr(v € Ng/(S')|v is GOOD)
Pr(Ng:/(v) NS #OIN(v) NS # 0,v is GOOD)Pr(N(v) NS # B|v is GOOD)
= Pr(Ng/(v) NS #O|N(v) NS # 0,vis GOOD) Pr(N(v) NS # Plv is GOOD)

>

N
|~

L

5 (7.6)

—_

Since e = (v, w) is GOOD if there is at least one endpoint being GOOD, we have proved Claim 2.
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7.2.3 Proof with Pairwise Independence

Instead of using mutual independence in (7.5) to obtain the lower bound on Pr(N(v) NS # Blv is GOOD),
we can relax the condition with pairwise independence via the following lemma:

Lemma 7.5 For pairwise independent random variables X1, ..., X; € {0,1} with Pr(X; = 1) = p;, we have
1 1 L
Pr(i:Z1 X;>0)> 3 mm{?;pi}

Corollary 7.6 (Lower bound on Pr(N(v) NS # Qv is GOOD) with pairwise independence)

Let X; = Lo EIS . We have
0 , otherwise

dgr (v)
1 1
: ; D)> -min{, >
Pr(Ng (v) NS # Blv is GOOD) > 5 mln{2, 2 2dG’(wi)}

|L(v)]
1 .1 1
211’1111{57 Zz:; QdG/(’U)}

v
I

v
|
.
\]
=)

12

Proof: [Proof of lemma 7.5]
Case 1: ) . p; <1

l l
Pr(d " X;>0) > Pr(d_X; > 1)
i=1 i=1

l
1
> ) Pr(X;>1) - 5 > Pr(X;=X;=1)
=1

,3,17#]
!
2 Zpi - %Zpipj
i=1 i£j
I
=) pi(l- %ij)
i—1 i
I 1
> Zpi(l 3 ij)
i=1 j=1
1
> 5 Zpi (7'8)
i=1

Case 2: Y . p; > 1
We find always find some S C {1,2,...,1} such that 1 <3, <p; < 1, because either 1) p; < 3 or 2) 3j
such that p; > £ (then pick S = {j}).
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Similar to Case 1,

Hence, Plr(X:li:1 X;>0)> %min{%, 22:1 pi}-

(7.9)
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