## CS 6550: Randomized Algorithms

Lecture 7: Derandomization via Pairwise Independence
January 31, 2019
Lecturer: Eric Vigoda
Scribes: Zhen Liu
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

### 7.1 Derandomization of an Algorithm

Idea: Present a randomized algorithm that works with constant probability and only uses pairwise independent random variables. Then we can iterate through all possible choices of those pairwise independent random variables to find a deterministic choice that is guaranteed to succeed.

### 7.2 Maximal Independent Set Algorithm

### 7.2.1 Sequential Algorithm

Definition 7.1 For graph $G=(V, E)$, the independent set (IS) is some set of vertices $S \subset V$ such that $\forall(v, w) \in E, V \notin S$ or $w \notin S$.

Definition 7.2 The maximal independent set (MIS) S of graph $G=(V, E)$ is the one that it is not a subset of any other independent sets. In other words, it satisfies: $\forall v \in V, v \in S$ or $N(v) \cap S \neq \emptyset(N(v)$ is the neighborhood of $v$ in $G$ ).

Consider the following sequential algorithm, which may take $O(n)$ rounds:

```
Algorithm 1: Sequential Algorithm for Maximal Independent Set
    input : A graph \(G=(V, E)\)
    output: A maximal independent set \(I\)
    Initialization: \(I=\emptyset, V^{\prime}=V\);
    while \(V^{\prime} \neq \emptyset\) do
        Choose any \(v \in V^{\prime}\);
        Set \(I \leftarrow I \cup\{v\}\);
        Set \(V^{\prime} \leftarrow V^{\prime} \backslash(\{v\} \cup N(v))\)
    Output \(I\);
```


### 7.2.2 Parallel Algorithm

[Luby '85] Parallel algorithm for MIS with $O(\log n)$ rounds and poly $(n)$ processes under CREW PRAM model (concurrent read \& exclusive write).

Goal: Instead of adding single vertex to $I$ in each round, we add an independent set $S$ of $G^{\prime}$ to $I$. If $S \cup N(S)$ is a constant fraction of $G^{\prime}$, then we only need $O(\log n)$ rounds.

How to find $S$ ? Every vertex $v \in G^{\prime}$ adds itself to $S$ with probability $p(v)$ independently (or pairwise independently). To make sure that $S$ is an independent set: For all edges $(v, w) \in E$, if $v$ and $w$ are in $S$, then remove the lower degree vertex from $S$.

This idea yields the following algorithm:

```
Algorithm 2: Parallel Algorithm for Maximal Independent Set
    input : A graph \(G=(V, E)\)
    output: A maximal independent set \(I\)
    Initialization: \(I=\emptyset, G^{\prime}=G, V^{\prime}=V\);
    while \(V^{\prime} \neq \emptyset\) do
        Set \(S=\emptyset\);
        for each \(v \in V^{\prime}\) do
            Add \(v\) to \(S\) with probability \(\frac{1}{2 d_{G^{\prime}}(v)}\), where \(d_{G^{\prime}}(v)\) is the degree of \(v\) in \(G^{\prime}\);
        for each edge \((v, w) \in G^{\prime}\) do
            if \(v \in S, w \in S\) then
                Drop the lower degree vertex in \(\{v, w\}\) (If tie, pick a random one);
        Let \(S^{\prime}\) be the remaining vertices;
        \(I \leftarrow I \cup S^{\prime}, V^{\prime} \leftarrow V^{\prime} \backslash\left(\{s\} \cup N\left(S^{\prime}\right)\right), G^{\prime}=\) induced subgraph on \(V^{\prime} ;\)
    Output \(I\);
```

Lemma 7.3 Let $G_{j}=\left(V_{j}, E_{j}\right)$ be the graph after round $j$ and $G_{0}=G$. Then $\mathbb{E}\left[\left|E_{j+1}\right| \mid E_{j}\right]<\left|E_{j}\right|\left(1-\frac{1}{24}\right)$.
Corollary 7.4 With $l=O(\log n), G_{l}=\emptyset$.
Proof: [Proof of corollary 7.4]

$$
\begin{align*}
\mathbb{E}\left[\left|E_{j}\right|\right] & \leq\left|E_{0}\right|\left(1-\frac{1}{12}\right)^{j} \\
& \leq m \exp \left(-\frac{j}{12}\right) \\
& \leq 1 \quad \text { for } j>12 \log m \tag{7.1}
\end{align*}
$$

Moreover,

$$
\begin{align*}
\operatorname{Pr}\left(E_{j} \neq \emptyset\right) & =\operatorname{Pr}\left(E_{j} \geq 1\right) \\
& \leq \mathbb{E}\left[\left|E_{j}\right|\right] \\
& \leq \frac{1}{4} \quad \text { for } j>48 \log m \tag{7.2}
\end{align*}
$$

Thus, with probability at least $3 / 4$, we have $O(\log n)$ rounds. (This is an RNC algorithm for MIS.)
Proof: [Proof of Lemma 7.3]
For $v \in V_{j}$, define $H(v)=\left\{w \in N_{G_{j}}(v): d_{G_{j}}(w)>d_{G_{j}}(v)\right.$ and $L(v)=\left\{w \in N_{G_{j}}(v): d_{G_{j}}(w) \leq d_{G_{j}}(v)\right.$, where $N_{G_{j}}(v)$ denotes the neighborhood of $v$ in the induced subgraph $G^{\prime}$.

We say that for any $v \in V\left(G^{\prime}\right), v$ in BAD if $|H(v)| \geq \frac{2}{3} d_{G^{\prime}}(v)$ and GOOD if $|L(v)|>\frac{1}{3} d_{G^{\prime}}(v)$.
Further, we say edge $(v, w) \in E_{j}$ is BAD if $v$ and $w$ are BAD and GOOD otherwise.
To prove that $\operatorname{Pr}(w$ is deleted $\mid w$ is GOOD $) \geq \frac{1}{12}$, it is sufficient to show the following two claims (Note that $w$ is deleted iff $w \in S \cup N(S))$ :
$\underline{\text { Claim } 1}$ Let $E_{G}$ be the GOOD edges. Then $\left|E_{G}\right| \geq \frac{|E|}{2}$.
$\underline{\text { Claim } 2} \operatorname{Pr}($ edge $e$ is deleted $\mid e$ is GOOD $) \geq \frac{1}{12}$.
With these two claims,

$$
\begin{align*}
\mathbb{E}\left[\left|E_{j+1}\right| \mid E_{j}\right] & =\sum_{e \in E_{j}}(1-\operatorname{Pr}(\mathrm{e} \text { gets deleted })) \\
& \leq\left|E_{j}\right|-\frac{1}{12}\left|E_{G}\right| \\
& \leq\left|E_{j}\right|\left(1-\frac{1}{12}\right) \tag{7.3}
\end{align*}
$$

Proof: [Proof of Claim 1]
Let $E_{B}$ be BAD edges of $G_{j}$. We will define a mapping $f: E_{B} \rightarrow\binom{E_{j}}{2}$ so that for all $e_{1} \neq e_{2} \in$ $E_{B}, f\left(e_{1}\right) \cap f\left(e_{2}\right)=\emptyset$. Thus, each $e \in E_{B}$ has a distinct pair of edges in $E_{j}$ and hence $\left|E_{B}\right| \leq \frac{\left|E_{j}\right|}{2}$, which proves the claim.

The mapping $f$ is defined with the following procedure:
For each $(v, w) \in E_{j}$, direct it from the lower degree endpoint to the higher degree one (choose arbitrary if tie).

Suppose $(v, w) \in E_{B}$ is directed as $v \rightarrow w$. So $d_{G^{\prime}}(v) \leq d_{G^{\prime}}(w)$. Since $(v, w) \in E_{B}$, both $v$ and $w$ are bad.

Since $v$ is BAD, at least $\frac{2}{3}$ of its neighbors are of degree $\geq d_{G^{\prime}}(v)$ and at most $\frac{1}{3}$ of the edges incident to $v$. Therefore, $\geq 2$ times as many out-edges from $v$ as in-edges into $v$.

Hence, for each BAD edge $e$ directed into $v$, there are a pair of out edges out of $v$ that we can uniquely assign to $e$.

Proof: [Proof of Claim 2]
We will show:
(1): $\operatorname{Pr}\left(w \in S^{\prime} \mid w \in S\right) \geq \frac{1}{2}$.
(2): $\operatorname{Pr}(N(v) \cap S \neq \emptyset \mid v$ is GOOD $) \geq \frac{1}{6}$

Proof of (1):

$$
\begin{align*}
\operatorname{Pr}\left(w \in S^{\prime} \mid w \in S\right) & =\operatorname{Pr}(H(w) \cap S \neq \emptyset \mid w \in S) \\
& \leq \sum_{z \in H(w)} \operatorname{Pr}(z \in S \mid w \in S) \quad \text { (Union Bound) } \\
& =\sum_{z \in H(w)} \frac{\operatorname{Pr}(z \in S, w \in S)}{\operatorname{Pr}(w \in S)} \\
& =\sum_{z \in H(w)} \operatorname{Pr}(z \in S) \quad \text { (Pairwise Independence) } \\
& =\sum_{z \in H(w)} \frac{1}{2 d_{G}(z)} \\
& \leq \sum_{z \in H(w)} \frac{1}{2 d_{G}(w)} \\
& \leq \frac{1}{2} \tag{7.4}
\end{align*}
$$

Proof of (2):

$$
\begin{align*}
\operatorname{Pr}(N(v) \cap S \neq \emptyset \mid v \text { is GOOD }) & =1-\operatorname{Pr}(N(v) \cap S=\emptyset \mid v \text { is GOOD) } \\
& =1-\prod_{z \in N(v)} \operatorname{Pr}(z \notin S \mid v \text { is GOOD) (Mutual Independence) } \\
& =1-\prod_{z \in N(v)}\left(1-\frac{1}{2 d_{G^{\prime}}(z)}\right) \\
& \geq 1-\prod_{z \in L(v)}\left(1-\frac{1}{2 d_{G^{\prime}}(z)}\right) \\
& \geq 1-\prod_{z \in L(v)}\left(1-\frac{1}{2 d_{G^{\prime}}(v)}\right) \\
& \geq 1-\exp \left(-\frac{|L(v)|}{2 d_{G^{\prime}}(v)}\right) \\
& \geq 1-\exp \left(-\frac{1}{6}\right) \\
& \geq \frac{1}{6} \tag{7.5}
\end{align*}
$$

With both (1) and (2), we have:

$$
\begin{align*}
& \operatorname{Pr}\left(v \in N_{G^{\prime}}\left(S^{\prime}\right) \mid v \text { is GOOD }\right) \\
= & \operatorname{Pr}\left(N_{G^{\prime}}(v) \cap S^{\prime} \neq \emptyset \mid N(v) \cap S \neq \emptyset, v \text { is GOOD }\right) \operatorname{Pr}(N(v) \cap S \neq \emptyset \mid v \text { is GOOD }) \\
= & \operatorname{Pr}\left(N_{G^{\prime}}(v) \cap S^{\prime} \neq \emptyset \mid N(v) \cap S \neq \emptyset, v \text { is GOOD }\right) \operatorname{Pr}(N(v) \cap S \neq \emptyset \mid v \text { is GOOD }) \\
\geq & \frac{1}{2} \cdot \frac{1}{6} \\
= & \frac{1}{12} \tag{7.6}
\end{align*}
$$

Since $e=(v, w)$ is GOOD if there is at least one endpoint being GOOD, we have proved Claim 2.

### 7.2.3 Proof with Pairwise Independence

Instead of using mutual independence in (7.5) to obtain the lower bound on $\operatorname{Pr}(N(v) \cap S \neq \emptyset \mid v$ is GOOD), we can relax the condition with pairwise independence via the following lemma:

Lemma 7.5 For pairwise independent random variables $X_{1}, \ldots, X_{l} \in\{0,1\}$ with $\operatorname{Pr}\left(X_{i}=1\right)=p_{i}$, we have

$$
\operatorname{Pr}\left(\sum_{i=1}^{l} X_{i}>0\right) \geq \frac{1}{2} \min \left\{\frac{1}{2}, \sum_{i=1}^{l} p_{i}\right\}
$$

Corollary 7.6 (Lower bound on $\operatorname{Pr}(N(v) \cap S \neq \emptyset \mid v$ is $G O O D$ ) with pairwise independence)

$$
\text { Let } X_{i}=\left\{\begin{array}{ll}
1 & , \text { if } w_{i} \in S \\
0 & , \text { otherwise }
\end{array} .\right. \text { We have }
$$

$$
\begin{align*}
\operatorname{Pr}\left(N_{G^{\prime}}(v) \cap S \neq \emptyset \mid v \text { is } G O O D\right) & \geq \frac{1}{2} \min \left\{\frac{1}{2}, \sum_{i=1}^{d_{G^{\prime}}(v)} \frac{1}{2 d_{G^{\prime}}\left(w_{i}\right)}\right\} \\
& \geq \frac{1}{2} \min \left\{\frac{1}{2}, \sum_{i=1}^{|L(v)|} \frac{1}{2 d_{G^{\prime}}(v)}\right\} \\
& \geq \frac{1}{12} \tag{7.7}
\end{align*}
$$

Proof: [Proof of lemma 7.5]
Case 1: $\sum_{i} p_{i} \leq 1$

$$
\begin{align*}
\operatorname{Pr}\left(\sum_{i=1}^{l} X_{i}>0\right) & \geq \operatorname{Pr}\left(\sum_{i=1}^{l} X_{i}>1\right) \\
& \geq \sum_{i=1}^{l} \operatorname{Pr}\left(X_{i}>1\right)-\frac{1}{2} \sum_{i, j, i \neq j} \operatorname{Pr}\left(X_{i}=X_{j}=1\right) \\
& \geq \sum_{i=1}^{l} p_{i}-\frac{1}{2} \sum_{i \neq j} p_{i} p_{j} \\
& =\sum_{i=1}^{l} p_{i}\left(1-\frac{1}{2} \sum_{j \neq i} p_{j}\right) \\
& \geq \sum_{i=1}^{l} p_{i}\left(1-\frac{1}{2} \sum_{j=1}^{l} p_{j}\right) \\
& \geq \frac{1}{2} \sum_{i=1}^{l} p_{i} \tag{7.8}
\end{align*}
$$

Case 2: $\sum_{i} p_{i}>1$
We find always find some $S \subset\{1,2, \ldots, l\}$ such that $\frac{1}{2} \leq \sum_{i \in S} p_{i} \leq 1$, because either 1) $p_{i}<\frac{1}{2}$ or 2 ) $\exists j$ such that $p_{j} \geq \frac{1}{2}($ then pick $S=\{j\})$.

Similar to Case 1,

$$
\begin{align*}
\operatorname{Pr}\left(\sum_{i=1}^{l} X_{i}>0\right) & \geq \operatorname{Pr}\left(\sum_{i \in S} X_{i}>1\right) \\
& \geq \frac{1}{2} \sum_{i \in S} p_{i} \\
& \geq \frac{1}{4} \tag{7.9}
\end{align*}
$$

Hence, $\operatorname{Pr}\left(\sum_{i=1}^{l} X_{i}>0\right) \geq \frac{1}{2} \min \left\{\frac{1}{2}, \sum_{i=1}^{l} p_{i}\right\}$.

