CS 6550: Randomized Algorithms

Spring 2019
Lecture 11: Max-Cut Approximation Algorithm via Semidefinite Programming
February 7, 2019
Lecturer: Eric Vigoda
Scribes: Kenny Scharm and Ben Polk

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

11.1 Max-Cut Problem

Given weighted graph $G=(V, E)$ with weights $w(e)>0$ for $e \in E$, find a cut (S, \bar{S}) which maximizes $\sum_{(v, y) \in E, v \in S, y \in \bar{S}}$

11.1.1 Simple $\frac{1}{2}$-approximation Algorithm

For $v \in V$, assign $v=S$ with probability $\frac{1}{2}$ and $y=\bar{S}$ w.p $\frac{1}{2}$
Denote this cut by $Y: V \rightarrow\{0,1\}$ Thus,

$$
Y(v)=\left\{\begin{array}{lll}
+1 & \text { with prob. } & \frac{1}{2} \\
0 & \text { with prob. } & \frac{1}{2}
\end{array}\right.
$$

$$
\begin{aligned}
\mathbb{E}[\text { cut weight }] & =\mathbb{E}\left[\sum_{(v, z) \in E} w(v, z) \operatorname{Pr}(Y(v) \neq Y(z))\right] \\
& =\sum_{(v, z) \in E} w(v, z) * \frac{1}{2} \\
& =\frac{W}{2} \text { where } W=\sum_{(v, z) \in E} w(v, z)=\text { total weight of all edges }
\end{aligned}
$$

Hence, the expected weight of the cut is $\geq \frac{1}{2}$ of the optimal. As we saw in the last lecture, we can derandomize by the method of conditional expectations $[\mathrm{MR}]$. We will show that we can do better than this in the next section.

11.1.2 Max-Cut as an Integer Linear Programming (ILP) Problem

For each vertex v, create variable $y_{v} \in\{0,1\}$.
For each edge (u, v), create variable $z_{u v} \in\{0,1\}\left(z_{u v}=1\right.$ iff $\left.y_{u} \neq y_{v}\right)$
Constraints:

$$
\begin{align*}
& y_{u}+y_{V} \geq z_{u v} \tag{11.1}\\
& 2-\left(y_{u}+y_{v}\right) \geq z_{u v} \tag{11.2}\\
& \text { if } y_{u}=y_{v}=0, \text { then }(11.1) \Longrightarrow z_{u v}=0 \tag{11.3}\\
& \text { if } y_{u}=y_{v}=1, \text { then }(11.2) \Longrightarrow z_{u v}=0 \tag{11.4}\\
& \text { if } y_{u} \neq y_{v}, \text { then } z_{u v} \in\{0,1\}, \text { but we will maximize it } \tag{11.5}
\end{align*}
$$

Objective function: $\max \sum_{(u, v) \in E} w(u, v) z_{u v}$ s.t. $\forall(u, v) \in E$

$$
\begin{aligned}
& y_{u}+y_{v} \geq z_{u v} \\
& 2-\left(y_{u}+y_{v}\right) \geq z_{u v} \\
& z_{u v} \in\{0,1\}
\end{aligned}
$$

Consider the LP relaxation by replacing $y \in\{0,1\}$ by $0 \leq y_{v} \leq 1 \& z_{u v} \in\{0,1\}$ by $0 \leq z_{u v} \leq 1$. However, this LP is a poor estimate of the ILP.

Set $y_{v}=\frac{1}{2}, \forall v \in V$. Let us define a new objective function W. This is equivalent to doing randomized rounding in the simple random algorithm. Since this does not work, let us try a different method. Instead of $Y: V \rightarrow\{0,1\}$, do $Y: V \rightarrow\{-1,1\}$. Then,

$$
\begin{gathered}
Y(u) \neq Y(v) \\
\frac{1-Y(u) Y(v)}{2}= \begin{cases}1 & \text { if } Y(u) \neq Y(v)=-1 \\
0 & \text { if } Y(u)=Y(v)\end{cases}
\end{gathered}
$$

Now we can write the Max-Cut Problem as an Integer Quadratic Program (IQP) with the following objective function:

$$
\max \sum_{(i, j) \in E} w(i, j)\left(\frac{1-v_{i} v_{j}}{2}\right) \text { s.t. } \forall i \in V, v_{i}^{2}=1 \& v_{i} \in \mathbb{R}
$$

Even though IQP is NP-hard, we can relax it s.t. each v_{i} is a unit-vector in \mathbb{R}^{n} instead of dimension. Thus, $v_{i} v_{j}$ becomes the dot-product $v_{i} \cdot v_{j}$.

Theorem 11.1 For $a, b \in \mathbb{R}^{n}, a \cdot b=\sum_{i=1}^{n} a_{i} b_{i}=\|a\|\|b\| \cos \theta$
In our definition, $\|a\|=\|b\|=1$, so $a \cdot b=\cos \theta$. This definition yields a Semi-definite Program (SDP) which can be solves in polynomial time.

11.2 Semi-definite Programming

Objective function: $\max \sum_{(u, v) \in E} w(u, v) \frac{1-y_{u} \cdot y_{v}}{2}$ s.t. $\forall v \in V, y_{v} \cdot y_{v}=1, y_{v} \in \mathbb{R}^{n}$
Because any solution in the IQP corresponds to a feasible point in the SDP, the solution to the SDP must be at least as good as the solution to the IQP. Algorithms exist to find a solution to an SDP in polynomial time, so we can take a solution to this program and "round" it to a feasible point in our IQP. We perform this rounding by selecting a random hyperplane H in \mathbb{R}^{n} that passes through the origin. We will assign variables in the IQP corresponding to vectors on one side of the hyperplane in the SDP to 1 , and variables in the IQP corresponding to vectors on the other side of the hyperplane in the SDP to -1 .

We know we want the hyperplane to pass through the origin, so we select a random hyperplane by simply selecting a random unit vector $r \in \mathbb{R}^{n}$ to be its normal vector. Now for each of our vectors y_{i} we can set the corresponding variable in the IQP to be $\operatorname{sgn}\left(r \cdot y_{i}\right)$. This is because if $\operatorname{sgn}\left(r \cdot y_{i}\right)>0$ then y_{i} and r fall on the same side of the hyperplane and if $\operatorname{sgn}\left(r \cdot y_{i}\right)<0$ they fall on opposite sides of the hyperplane. Now, imagine two of these vectors y_{u} and y_{v} projected into $2-\mathrm{D}$ space. This would look like two vectors coming out of the origin with angle θ between them. If we project H into $2-\mathrm{D}$, it will look like a line through the origin. This line splits y_{u} and y_{v} with probability $\frac{\theta}{\pi}$ which means that the edge (u, v) crosses the cut with
this probability. Note that because y_{u} and y_{v} are unit vectors $\theta=\cos ^{-1}\left(y_{u} \cdot y_{v}\right)$, so the expected value of the weight of the cut is given as:

$$
\mathbb{E}[\text { cutweight }]=\sum_{(u, v) \in E} \frac{\cos ^{-1}\left(y_{u} \cdot y_{v}\right) * 2}{\pi}
$$

We will now present a lemma that will help us show that this is a $0.87856 \ldots$...- approximation:
Theorem 11.2 For $\alpha \approx 0.87856$ and $\forall \sigma_{u v} \in[-1,1]$,

$$
\frac{\cos ^{-1}\left(\sigma_{u v}\right)}{\pi} \geq \alpha\left(\frac{1-\sigma_{u v}}{\pi}\right)
$$

The proof will not be included here, but further explanation can be found in this paper [GT]. Recall that the solution for the SDP which we know is at least as good as the true solution is given as:

$$
\sum_{(u, v) \in E} w(u, v) \frac{1-y_{u} \cdot y_{v}}{2}
$$

As such we can write the following inequality:

$$
\sum_{(u, v) \in E} w(u, v) \frac{1-y_{u} \cdot y_{v}}{2} \geq \sum_{(u, v) \in E} \frac{\cos ^{-1}\left(y_{u} \cdot y_{v}\right) 2}{\pi} \geq \alpha \sum_{(u, v) \in E} w(u, v) \frac{1-y_{u} \cdot y_{v}}{2}
$$

Thus proving that the solution we found is a $0.87856 \ldots$-.approximation of the true max cut.

11.3 Summary

We saw a $\frac{3}{4}$-approximation algorithm for the Max-SAT Problem. For the Max-3SAT Problem, we can use SDP to get a $\frac{7}{8}$-approximation algorithm [KZ]. This is the best possible approximation under the Unique Games Conjecture [GT]. In this lecture, we saw that we can use SDP to get a $0.87856 \ldots$..-approximation algorithm for the Max-Cut Problem.

References

[1] A. Gupta and K. Talwar. Approximating Unique Games. SODA '06 Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm, pages 99-106, 2006.
[2] H. Karloff and U. Zwick. A 7=8-Approximation Algorithm for MAX 3SAT?. Proc. of 38th FOCS, pages 406-415, 1997.
[3] S Mahajan and H. Ramesh. Derandomizing approximation algorithms based on semidefinite srogramming. SIAM Journal on Computing 28, pages 1641-1663, 1999.

