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11.1 Max-Cut Problem

Given weighted graph G = (V,E) with weights w(e) > 0 for e ∈ E, find a cut (S, S̄) which maximizes∑
(v,y)∈E,v∈S,y∈S̄

11.1.1 Simple 1
2
-approximation Algorithm

For v ∈ V , assign v = S with probability 1
2 and y = S̄ w.p 1

2
Denote this cut by Y : V → {0, 1} Thus,

Y (v) =

{
+1 with prob. 1

2

0 with prob. 1
2

E[cut weight] = E[
∑

(v,z)∈E

w(v, z)Pr(Y (v) 6= Y (z))]

=
∑

(v,z)∈E

w(v, z) ∗ 1

2

=
W

2
where W =

∑
(v,z)∈E

w(v, z) = total weight of all edges

Hence, the expected weight of the cut is ≥ 1
2 of the optimal. As we saw in the last lecture, we can derandomize

by the method of conditional expectations [MR]. We will show that we can do better than this in the next
section.

11.1.2 Max-Cut as an Integer Linear Programming (ILP) Problem

For each vertex v, create variable yv ∈ {0, 1}.
For each edge (u, v), create variable zuv ∈ {0, 1} (zuv = 1 iff yu 6= yv)
Constraints:

yu + yV ≥ zuv (11.1)

2− (yu + yv) ≥ zuv (11.2)

if yu = yv = 0, then (11.1) =⇒ zuv = 0 (11.3)

if yu = yv = 1, then (11.2) =⇒ zuv = 0 (11.4)

if yu 6= yv, then zuv ∈ {0, 1},but we will maximize it (11.5)
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Objective function: max
∑

(u,v)∈E w(u, v)zuv s.t. ∀(u, v) ∈ E

yu + yv ≥ zuv
2− (yu + yv) ≥ zuv

zuv ∈ {0, 1}

Consider the LP relaxation by replacing y ∈ {0, 1} by 0 ≤ yv ≤ 1 & zuv ∈ {0, 1} by 0 ≤ zuv ≤ 1. However,
this LP is a poor estimate of the ILP.

Set yv = 1
2 , ∀v ∈ V . Let us define a new objective function W . This is equivalent to doing random-

ized rounding in the simple random algorithm. Since this does not work, let us try a different method.
Instead of Y : V → {0, 1}, do Y : V → {−1, 1}. Then,

Y (u) 6= Y (v) ⇐⇒ Y (u)Y (v) = −1

1− Y (u)Y (v)

2
=

{
1 if Y (u) 6= Y (v)

0 if Y (u) = Y (v)

Now we can write the Max-Cut Problem as an Integer Quadratic Program (IQP) with the following objective
function:

max
∑

(i,j)∈E

w(i, j)(
1− vivj

2
) s.t. ∀i ∈ V, v2

i = 1 & vi ∈ R

Even though IQP is NP-hard, we can relax it s.t. each vi is a unit-vector in Rn instead of 1 dimension.
Thus, vivj becomes the dot-product vi · vj .

Theorem 11.1 For a, b ∈ Rn, a · b =
∑n
i=1 aibi = ||a||||b|| cos θ

In our definition, ||a|| = ||b|| = 1, so a · b = cos θ. This definition yields a Semi-definite Program (SDP)
which can be solves in polynomial time.

11.2 Semi-definite Programming

Objective function: max
∑

(u,v)∈E w(u, v) 1−yu·yv
2 s.t. ∀v ∈ V, yv · yv = 1, yv ∈ Rn

Because any solution in the IQP corresponds to a feasible point in the SDP, the solution to the SDP must
be at least as good as the solution to the IQP. Algorithms exist to find a solution to an SDP in polynomial
time, so we can take a solution to this program and ”round” it to a feasible point in our IQP. We perform
this rounding by selecting a random hyperplane H in Rn that passes through the origin. We will assign
variables in the IQP corresponding to vectors on one side of the hyperplane in the SDP to 1, and variables
in the IQP corresponding to vectors on the other side of the hyperplane in the SDP to −1.

We know we want the hyperplane to pass through the origin, so we select a random hyperplane by sim-
ply selecting a random unit vector r ∈ Rn to be its normal vector. Now for each of our vectors yi we can set
the corresponding variable in the IQP to be sgn(r · yi). This is because if sgn(r · yi) > 0 then yi and r fall
on the same side of the hyperplane and if sgn(r · yi) < 0 they fall on opposite sides of the hyperplane. Now,
imagine two of these vectors yu and yv projected into 2-D space. This would look like two vectors coming
out of the origin with angle θ between them. If we project H into 2-D, it will look like a line through the
origin. This line splits yu and yv with probability θ

π which means that the edge (u, v) crosses the cut with
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this probability. Note that because yu and yv are unit vectors θ = cos−1(yu · yv), so the expected value of
the weight of the cut is given as:

E[cutweight] =
∑

(u,v)∈E

cos−1(yu · yv) ∗ 2

π

We will now present a lemma that will help us show that this is a 0.87856...- approximation:

Theorem 11.2 For α ≈ 0.87856 and ∀σuv ∈ [−1, 1],

cos−1(σuv)

π
≥ α(

1− σuv
π

)

The proof will not be included here, but further explanation can be found in this paper [GT]. Recall that
the solution for the SDP which we know is at least as good as the true solution is given as:∑

(u,v)∈E

w(u, v)
1− yu · yv

2

As such we can write the following inequality:∑
(u,v)∈E

w(u, v)
1− yu · yv

2
≥

∑
(u,v)∈E

cos−1(yu · yv)2
π

≥ α
∑

(u,v)∈E

w(u, v)
1− yu · yv

2

Thus proving that the solution we found is a 0.87856...-approximation of the true max cut.

11.3 Summary

We saw a 3
4 -approximation algorithm for the Max-SAT Problem. For the Max-3SAT Problem, we can use

SDP to get a 7
8 -approximation algorithm [KZ]. This is the best possible approximation under the Unique

Games Conjecture [GT]. In this lecture, we saw that we can use SDP to get a 0.87856...-approximation
algorithm for the Max-Cut Problem.
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