Today: Use pairwise independent random variables to \underline{derandomize} an algorithm.

Idea: Present a randomized algorithm that works with constant probability and only uses pairwise independent random variables. Then, can iterate through all possible choices of \underline{to find a deterministic choice that is guaranteed to succeed}.

Maximal independent set:

An IS of a graph \(G = (V, E) \) is a subset \(S \subseteq V \) where for all \(v \in S \), \((v, w) \notin E \) (so no edge is contained in \(S \)).

IS \(S \) is \underline{maximal} if for all \(v \in V \), either \(v \in S \) or \(N(v) \cap S \neq \emptyset \) (so can't add \(v \) to \(S \)).

Call it \(\text{MIS} = \text{Maximal independent set} \).
Now: Parallel algorithm for MIS due to [Luby 85].

$O(\log m)$ rounds & Poly(n) processors

(CREW PRAM model
 = concurrent read, exclusive write)

Idea:

Have a current IS I.

Let $G' = G \setminus (I \cup \{I(V|I)\})$ be the remaining graph.

Any $v \in G'$ can be added to I.

Here's a simple MIS alg. (sequential alg.):

1. $I = \emptyset, V' = V$.
2. While $(V' \neq \emptyset)$ Do:
 a) Choose any $v \in V'$.
 b) Set $I = I \cup \{v\}$.
 c) Set $V' = V' \setminus (\{v\} \cup \{I(V|\{v\})\})$
3. Output I.
This may take $O(n)$ time/rounds.

Goal: find IS S of G' & add S to I.

If $\text{SUN}(S)$ is constant fraction of G' then $O(\log n)$ rounds needed.

How to find S?

Every vertex $v \in G'$ adds themselves to S with prob. $p(v)$, independently (or pairwise indp't.)

To make sure that S is an IS:
For all edges $(v, w) \in E$,
if v & w are in S then remove lower deg. vertex $d(v) \leq d(w)$.
Luby's MIS alg.: Given input \(G = (V, E) \)

1. Set \(I = \emptyset \), \(V = V \), \(G = G \).

2. While \((V' \neq \emptyset) \) Do:
 a) Set \(S = \emptyset \)
 b) For each \(v \in V' \)
 add \(v \) to \(S \) with prob. \(\frac{1}{2d_6(v)} \)
 where \(d_6(v) = \) degree of \(v \) in \(G \).
 c) For every edge \((y,z) \in E(G) \)
 if yes & yes,
 then remove lower degree in \(G \),
 i.e., remove \(y \) where \(d_6(y) \leq d_6(z) \)
 if \(d_6(y) = d_6(z) \) choose
 Call this new set \(S' \).
 \(G' = G - (S \cup S') \)

3. Output \(I \).
Analysis: Let $G_j = (V_j, E_j)$ be the graph G after stage j.

Thus, $G_0 = G$.

Lemma: For some $c < 1$,

$$E[|E_j| \mid E_{j-1}] < c|E_{j-1}|$$

Therefore, $O(\log m)$ rounds will be needed in expectation where $m = |E|$.

Proof of lemma:

For graph $G_j = (V_j, E_j)$ partition edges into Good & BAD.

First, vertex $v \in V_j$ is BAD if

$$|\{w \in N_{G_j}(v) : d_{G_j}(w) > d_{G_j}(v)\}| > \frac{2}{3} d_{G_j}(v)$$

More than $\frac{2}{3}$ of v's neighbors have higher degree.

$\& v$ is GOOD if not BAD.
Then edge \(e = (v, w) \in E_j \) is **BAD**

if \(v \) & \(w \) are both **BAD**

& otherwise \(e \) is **GOOD**.

Claim 1: \(\frac{1}{2} \) the edges in \(E_j \) are **GOOD**.

And good edges have a good chance to get added to \(S' \) since few neighbors are higher degree.

Claim 2: If \(e \) is **GOOD**, then \(e \) is removed from \(G' \) with prob. \(\geq \alpha := \frac{1}{2} \left(1 - e^{-\frac{1}{c}} \right) \approx 0.07679 \).

From these 2 claims we get the main lemma:

\[
E[|E_j| | E_{j+1}] = \sum_{e \in E_{j+1}} E[1 - \text{Pr}(e \text{ gets deleted})]
\]

\[
\leq |E_{j+1}| - \alpha | \text{GOOD edges} |
\]

\[
\leq |E_{j+1}| \left(1 - \alpha/2 \right)
\]

which proves the lemma with \(c = 1 - \frac{\alpha}{2} \).
From the lemma we have:

\[E[1_{E_j}] \leq |E_0|(1 - \frac{x}{2}) \]

\[\leq m e^{-jx/2} \]

\[< 1 \quad \text{for} \quad j > \frac{2}{x} \log m \]

Moreover,

\[\Pr(E_j \neq \emptyset) \leq \Pr(E_j \geq 1) \]

\[\leq E[1_{E_j}] \]

\[\leq \frac{1}{4} \quad \text{for} \quad j > \frac{4}{x} \log m. \]

Thus with prob. \(\geq \frac{3}{4} \), we have \(\leq 60 \log m \) rounds.

(This is an RNC algorithm for MIS.)

So that will complete the analysis of the randomized algorithm once we prove the 2 claims.
Now let's prove the 2 claims.

Proof of claim 1:

Let $E_B = \text{BAD edges of } G_j$.

We'll define $f: E_B \to (\mathbb{E})$ so that:

for all $e_1 \neq e_2 \in E_B$, $f(e_1) \cap f(e_2) = \emptyset$

Thus, each $e \in E_B$ has a distinct pair of edges in E_j & hence: $|E_B| \leq |E_j|/2$,

which proves the claim.

Here's the function f:

for each $(v, w) \in E_j$, direct it from the lower degree endpoint to the higher degree one (choose arbitrarily if same degrees).

Suppose for $(v, w) \in E_B$ &
its directed $v \to w$ so $\delta_G^-(v) \leq \delta_G^+(w)$.

Since $(v, w) \in E_B$ so it's BAD
then v & w are BAD, by def'n.
Since v is BAD,

$\geq \frac{2}{3}$ of v's neighbors have \geq degree.

So these edges point away from v.

$\& \leq \frac{1}{3}$ of the edges incident v

Point to v.

So ≥ 2 times as many out-edges from v

as in-edges to v.

Hence, for each BAD edge directed into v,

there are a pair of out edges out of v

that we can uniquely assign to each BAD edge

Thats the mapping: for each BAD edge,

look at its orientation, take the incoming endpoint

$\&$ there are a unique pair of out edges (those out edges are incoming to the other endpoint so are not assigned elsewhere).
Now for claim 2:

We'll prove 2 things:

a) if \(v \) is good then it's likely to have a neighbor in \(S \).

b) if \(w \in S \) then with prob. \(\geq \frac{1}{3} \) \(w \in S \).

Then the claim follows.

Claim a: If \(v \) is good, then \(\Pr(N_6(v) \cap S \neq \emptyset) \geq 2\alpha \)
where \(\alpha := \frac{1}{2} (1 - e^{-\frac{1}{6}}) \)

Proof: Let \(L(v) := \{ w \in N_6(v) : \sigma_6(w) \leq \sigma_6(v) \} \)
= neighbors of \(v \) with lower degree.

Note, for \(v \) good, then \(|L(v)| \geq \sigma_6(v) / 3 \).

\[
\Pr(N_6(v) \cap S \neq \emptyset) = 1 - \Pr(N_6(v) \cap S = \emptyset)
\]
\[
= 1 - \prod_{w \in N_6(v)} \Pr(w \in S) \quad \text{**uses full independence**}
\]
\[
\geq 1 - \prod_{w \in L(v)} \Pr(w \in S)
\]
\[= 1 - \prod_{\text{wel}(v)} \left(1 - \frac{1}{2d_0(w)}\right) \quad (\text{by defn. of } \Pr(w)) \]
\[\geq 1 - \prod_{\text{wel}(v)} \left(1 - \frac{1}{2d_0(v)}\right) \quad \text{since } d_0(w) \leq d_0(v) \]
\[\geq 1 - e^{-\frac{1}{2}} \quad \text{since } 1 \leq v \leq \frac{d_0(v)}{3} \]

Now let's prove:

Claim b: \(\Pr(w \notin S \mid \text{wel}) \leq \frac{1}{2} \)

Proof: Let \(H(w) = N_6(w) \setminus L(w) = \{ z \in N_6(w) : d_6(z) > d_6(w) \} \)
\[\Pr(w \& S^* \mid \text{wes}) = \Pr(H(w) \& S^* = \emptyset \mid \text{wes}) \]

Since throw out lower degree endpoint

\[\leq \sum_{z \in H(w)} \Pr(z \in S \mid \text{wes}) \quad \text{by union bound} \]

\[= \sum_{z \in H(w)} \frac{\Pr(z \in S \& \text{wes})}{\Pr(\text{wes})} \]

\[= \sum_{z \in H(w)} \frac{\Pr(z \in S) \Pr(\text{wes})}{\Pr(\text{wes})} \]

\[= \sum_{z \in H(w)} \Pr(z \in S) \]

\[= \sum_{z \in H(w)} \frac{1}{2g_c(z)} \]

\[= \sum_{z \in H(w)} \frac{1}{2g_c'(w)} \]

\[\leq \frac{1}{2} \]
Now from these claims a & b:

\[
\Pr(\nu \in N(S') \mid \nu \text{ is Good})
\]

\[
= \Pr(N_G(\nu) \cap S' \neq \emptyset \mid \nu \text{ is Good})
\]

\[
= \Pr(N_G(\nu) \cap S' \neq \emptyset \mid N(\nu) \cap S' \neq \emptyset, \nu \text{ Good}) \cdot \Pr(N(\nu) \cap S' \neq \emptyset \mid \nu \text{ Good})
\]

\[
\geq \left(\frac{1}{2}\right)(2\alpha) \text{ by these 2 claims.}
\]

\[
= \alpha.
\]

Therefore, if \(\nu \) is Good then

\(\nu \) is deleted with prob. \(\geq \alpha \)

(Since if \(N(S') \) are deleted)

That proves Claim 2. Since \(\geq 1 \) endpoint is Good for a Good edge.

& That finishes the analysis of the randomized algorithm.
We used independence for the following:

\[\Pr(N_6(v) \neq \emptyset) = 1 - \prod_{w \in \mathbb{N}_6(v)} \Pr(w \neq \emptyset) \]

We need a lower bound on this.

We'll prove:

Lemma: For \(X_i \in \Xi, i = 1, \ldots, l \) where \(p_i = \Pr(X_i = 1) \) & \(X_i \)'s are pairwise independent,

\[\Pr(\sum_{i=1}^{l} X_i > 0) \geq \frac{1}{2} \min \left\{ \frac{1}{a}, \sum_{i=1}^{l} p_i \right\} \]

Letting: \(X_i = 1 \) if \(w_i \in S \)

\[\Pr(N_6(v) \neq \emptyset) \geq \frac{1}{2} \min \left\{ \frac{1}{a}, \sum \frac{h(v)}{26(v)} \right\} \]

\[\geq \frac{1}{2} \min \left\{ \frac{1}{a}, \sum \frac{h(v)}{26(v)} \right\} \geq \frac{1}{12} \]
Proof of Lemma:

Case 1: $\sum P_i \leq 1$.

$$Pr(\sum X_i > 0) \geq Pr(\sum X_i = 1)$$

$$\geq \# \sum Pr(X_i = 1) - \frac{1}{2} \sum Pr(X_i = 1 | X_j = 1)$$

$$= \sum P_i - \frac{1}{2} \sum P_i \sum P_j$$

$$\geq \sum P_i - \frac{1}{2} (\sum P_i)^2$$

$$= \sum P_i (1 - \frac{1}{2} \sum P_i)$$

$$\geq \frac{1}{2} \sum P_i \text{ when } \sum P_i \leq 1$$

Case 2: $\sum P_i > 1$:

Find $S \subseteq \{i_1, \ldots, i_j\}$ where $\sum P_{i \in S} \leq 1$.

Find such S so that $\sum P_{i \in S} \leq 1$.

Then do above proof for S:

$$Pr(\sum X_i > 0) \geq Pr(\sum X_i = 1) \geq \frac{1}{2} \sum P_i$$

Always exists such a S b/c:

either all $i, P_i < \frac{1}{2}$

or $\exists j \delta \leq P_j \leq 1$

So we can set S for $\frac{1}{2} \sum P_i \geq \frac{1}{2}$