Random variables X_1, \ldots, X_n over \mathcal{Z}.

Mutually independent if:

$$\forall i_1, \ldots, i_n \in \mathcal{Z}, \quad \Pr\left(\bigcap_{j=1}^{n} X_j = i_j \right) = \prod_{j=1}^{n} \Pr(X_j = i_j)$$

\(k\)-wise independent if:

$$\forall S \subseteq \{1, \ldots, n\} \text{ where } |S| \leq k, \quad \forall i_1, \ldots, i_k \in \mathcal{Z},
\Pr\left(\bigcap_{j \in S} X_j = i_j \right) = \prod_{j=1}^{k} \Pr(X_j = i_j)$$

Pairwise independent is \(k=2\), i.e.,

$$\forall j, k \in \{1, \ldots, n\}, a, b \in \mathcal{Z},
\Pr(X_j = a, X_k = b) = \Pr(X_j = a) \times \Pr(X_k = b).$$
Lemma: Let \(X_1, \ldots, X_n \) be pairwise independent, and let \(X = \sum_{i=1}^{A} X_i \).

Then, \(\text{Var}(X) = \sum_{i=1}^{A} \text{Var}(X_i) \)

and if \(X_i's \) are binary/indicator random variables \(0-1 \)

then \(\text{Var}(X) \leq \sum_{i=1}^{A} \mathbb{E}[X_i^2] = \sum_{i=1}^{A} \mathbb{E}[X_i] = \mathbb{E}[X] \).
Simple construction of pairwise independent random variables:

from a,b mutually indpt. random bits, generate \(m = 2^{b^2 - 1} \) pairwise indpt. random bits.

Let \(X_1, \ldots, X_b \in \{0,1\} \) be uniform, mutually indpt. random bits.

Let \(S_1, \ldots, S_{2^b - 1} \) be the nonempty subsets of \(\{1, \ldots, b\} \).

Set \(Y_j = \bigoplus_{i \in S_j} X_i \mod 2 \)

Note, \(Y_j \in \{0,1\} \)

Lemma: The \(Y_j \)'s are pairwise indpt.

Proof:

Claim 1: \(\Pr(Y_j = 1) = \Pr(Y_j = 0) = \frac{1}{2} \)

Why? Let \(S_j = \{ z_1, \ldots, z_{\ell} \} \subseteq \{1, \ldots, b\} \)

So, \(Y_j = (\sum_{i=1}^{\ell-1} X_{z_i} \mod 2) + X_{z_{\ell}} \mod 2 \)

Reveal \(X_{z_1}, \ldots, X_{z_{\ell-1}} \). Whatever this is, with prob. \(\frac{1}{2} \) \(X_{z_{\ell}} = 1 \) & \(Y_j \) is opposite & w.p. \(\frac{1}{2} \) \(X_{z_{\ell}} = 0 \) & \(Y_j \) is the same.

This is the principle of deferred decisions.
Now to see pairwise independence:

Fix S_j & S_k and consider some $z \in S_j \setminus S_k$.

$$\Pr(y_j = a, y_k = b) = \Pr(y_j = a | y_k = b) \Pr(y_k = b)$$

$$= \Pr(y_j = a | y_k = b) \frac{1}{2} \times \frac{1}{2}$$

we just showed this.

Reveal all X_i's but X_z

Then with prob. $\frac{1}{2}$ $X_z = 1$ & y_j flips

& w.p. $\frac{1}{2}$ $\exists X_z = 0$ & y_j is the same

Therefore, $\Pr(y_j = a | y_k = b)$

$= \Pr(y_j = a | X_1, \ldots, X_{b \setminus X_z})$

$= \frac{1}{2}$

& thus $\Pr(y_j = a, y_k = b) = \frac{1}{4}$.
More sophisticated construction:

For prime p, given a, b which are independent and uniform over $\{0, 1, \ldots, p-1\}$, then we construct Y_1, \ldots, Y_{p-1}, which are pairwise independent and uniform over $\{0, 1, \ldots, p-1\}$.

Namely, let $Y_i = a + ib \mod p$ for $i = 0, \ldots, p-1$.

Lemma: The Y_i's are pairwise independent.

Proof: First, Y_i is uniform over $\{0, 1, \ldots, p-1\}$. Why? By principle of deferred decisions again.

For any b & i, & α in $\{0, \ldots, p-1\}$,

$$\Pr(Y_i = \alpha) = \Pr(a + bi = \alpha \mod p)$$

$$= \Pr(a = \alpha - bi \mod p)$$

$$= \frac{1}{p} \quad \text{Since there is a unique such } a \text{ in } \{0, 1, \ldots, p-1\}.$$
Now consider \(i \neq j \rightarrow p \neq \| \text{ and } x, \beta \in \mathbb{Z}, \ldots, p-1 \).

We'll show: \(\Pr(Y_i = x, Y_j = \beta) = \frac{1}{p^2} \) & we're done.

\[
Y_i = x \iff a + ib = \alpha \mod p
\]
\[
Y_j = \beta \iff a + jb = \beta \mod p.
\]

Thus, \(x - \beta = b(i-j) \mod p \)

\[
b = \frac{x - \beta}{i-j} \mod p
\]

which is valid since \(i-j \neq 0 \)

& \(p \) is prime.

\& \(a = \alpha - bi \mod p \)

So there is a unique \((a, b)\) pair.

So that \(Y_i = \alpha, Y_j = \beta \)

Therefore, \(\Pr(Y_i = x, Y_j = \beta) \)

\[
= \Pr(b = \frac{x - \beta}{i-j} \mod p, a = \alpha - \frac{1}{i-j}(x - \beta) \mod p)
\]

\[
= \frac{1}{p^2}
\]

\[\square \]

For \(n \) which is not prime, can choose \(p > n \)

where \(p \) is prime & \(p < 2n \).

Note, the random variables take \(O(\log n) \) bits to represent \(a, b \).
Streaming model:

Stream \(S = \{ s_1, ..., s_m \} \) for HUGE \(m \).

where each \(s_i \in \{0, 1, ..., n-1\} \)

Let \(f = (f_1, ..., f_n) \) where

\[
f_i = \left| \{ j : s_j = i \} \right| = \text{freq. of occurences of value } i \text{ in } S.
\]

Let \(Q = F_0 = \left| \{ i : f_i > Q \} \right| = \# \text{ of distinct values in } S \)

Goal: find \(Q \) with \(O(\log n) \) space.

aim for \((\varepsilon, \delta)\)-approx of \(Q \):

output \(\hat{Q} \) where \(\Pr[Q(1-\varepsilon) \leq \hat{Q} \leq (1+\varepsilon)Q] \geq 1-\delta \)

in space \(\text{poly}(\log n, \frac{1}{\varepsilon}, \log(1/\delta)) \)
For integer $k > 0$, let $\text{zeros}(k) = \#$ of 0's at end of binary representation of k.

$$= \max \{ l : 2^l \text{ divides } k \}$$

e.g., if k is odd then $\text{zeros}(k) = 0$
even then $\text{zeros}(k) = 1$ since it ends in 0.

AMS algorithm: (2nd last class, but same paper)

1. Choose a random hash function $h : [n] \rightarrow [n]$

 $$\{0, 1, \ldots, n-1\} \rightarrow \{0, 1, \ldots, n-1\}$$

 which is pairwise independent

 (if n is not prime, choose prime p such that $n \leq p \leq 2n$)

2. Set $z = 0$

3. Go through stream & at element k:

 if $\text{zeros}(h(k)) > z$

 then $z = \text{zeros}(h(k))$

4. output $\left(2^{z + \frac{1}{2}}\right)$
Intuition for alg.

$h(k)$ is uniformly random bit string so prob. it has $\text{zeros}(h(k)) = \log d$ is prob. of last $\log d$ bits all = 0, which is prob. $2^{-\log d}$.

Thus, prob. that $\text{zeros}(h(k)) = \log d$ is $2^{-\log d} = \frac{1}{d}$.

So, if d distinct items then expect 1 out of these to have $\text{zeros}(h(k)) = \log d$.

& for $l \gg \log d$, it's unlikely that $\text{zeros}(h(k)) \gg \log d$.

Thus, the max $\text{zeros}(h(k))$ is a good approx. for $\log d$.

Analysis:

For $k \in \{0, ..., n-1\}$, & integer $l \geq 0$,

let $X_{l,k} = \begin{cases} 1 & \text{if } \text{zeros}(h(k)) \geq l \\ 0 & \text{otherwise} \end{cases}$

& let $Y_l = \sum_{k: f_k \geq 0} X_{l,k}$
Let $+ l$ be the final value of z at end of algorithm.

$$
+ l \iff Y_l > 0
$$

$$
+ = \max \{ l : Y_l > 0 \}
$$

$$
\text{this is same as:}

+ < l \iff Y_l = 0.
$$

\[t \leq l - 1 \]

Note, $h(k)$ is uniform, i.e., $Pr(h(k) = j) = \frac{1}{n}$ for all $j \in \{0, \ldots, n-1\}$

Thus, $E[X_{l,k}] = Pr(\# \text{zeros}(h(k)) \geq l)$

$$
= Pr(\text{last } l \text{ bits of } h(k) \text{ are all } 0)
$$

$$
= \frac{1}{2^l}
$$
\[\text{Var}(Y_e) = \sum_{k: f_k > 0} \text{Var}(X_{e,k}) \quad \text{since } X_{e,k} \text{ are pairwise indep.} \]

\[\leq \sum_{k: f_k > 0} \mathbb{E}[X_{e,k}^2] \]

\[= \sum_{k: f_k > 0} \mathbb{E}[X_{e,k}] \]

\[= \frac{d}{2^l} \]

By Markov's ineq.,

\[\mathbb{P}(Y_e > 0) = \mathbb{P}(Y_e \geq 1) \leq \frac{\mathbb{E}[Y_e]}{1} = \frac{d}{2^l} \]

By Chebyshev's (can apply since pairwise indep.),

\[\mathbb{P}(Y_e = 0) \leq \mathbb{P}\left(|Y_e - \mathbb{E}[Y_e]| \geq \frac{d}{2^l} \right) \]

\[\leq \frac{\text{Var}(Y_e)}{\left(\frac{d}{2^l}\right)^2} \leq \frac{2^l}{d} \]
Our goal is to output \hat{d}.
Let's aim for \hat{d} where $\frac{2}{3} \leq \hat{d} \leq 3\hat{d}$
so \hat{d} is a 3-approx. of d.

Let a be the smallest integer s.t. $2^{a + \frac{1}{2}} \geq 3d$.
We want to show that the prob. that $t = \text{final value of } z$ is unlikely to
be as large as a.

$$\Pr(\hat{d} \geq 3d) = \Pr(t \geq a) = \Pr(Y_a > 0) \leq \frac{d}{2^a} = \frac{\sqrt{2}}{3} \approx 0.41 $$

Note, $2^{a + \frac{1}{2}} \geq 3d$
$$\frac{3d}{2^a} \leq \frac{\sqrt{2}}{3}$$

Thus, $\Pr(\hat{d} < 3d) > .51$
On the other side, we want \(\hat{d} \geq \frac{d}{3} \)

let \(b \) be the largest integer s.t. \(2^{b+\frac{1}{2}} \leq \frac{d}{3} \)

\[
Pr(\hat{d} \leq \frac{d}{3}) = Pr(t \leq b)
\]

\[
= Pr(Y_{b+1} = 0)
\]

\[
\leq \frac{2^{b+1}}{d} = \left(\frac{2^{b+\frac{1}{2}}}{d}\right)\sqrt{2} \leq \frac{\sqrt{2}}{3} < .48
\]

Therefore, \(Pr(\frac{d}{3} < d < 3\hat{d}) \geq .04 \)

Since \(Pr(\hat{d} \leq \frac{d}{3} \text{ or } \hat{d} \geq 3d) \leq 2 \times .48 = .96 \)

How to boost this prob. to \(\geq 1-\delta \)?
D. \(k = O(\log(1/\delta)) \) trials,
get outputs \(D_1, \ldots, D_k \)
Output \(D = \text{Median}(D_1, \ldots, D_k) \)

\[Z_i = \begin{cases} 1 & \text{if } D_i < 3\delta \\ 0 & \text{otherwise} \end{cases} \]

If \(D \geq 3\delta \), then \(\geq \frac{k}{2} \) of the trials exceed \(\geq 3\delta \).

Let \(Z = \sum_{i=1}^{k} Z_i \)
\(\mathbb{E}[Z] \geq 0.52k \)

\(\Pr(D \geq 3\delta) \leq \Pr(Z < \frac{k}{2}) \)
\[= \Pr(Z \leq \frac{k}{2} \cdot 0.52k - 0.02k) \]
\[\leq \Pr(Z \leq (1-0.02)\mathbb{E}[Z]) \]
\[\leq e^{-\frac{0.02 \cdot 0.52k^2}{3}} \leq \delta/2 \]
for \(k = c \log(1/\delta) \) with \(c \) big enough constant.
This gives a \((3, \delta)\)-approx.

Using \(O(\log n)\) bits per hash function

and \(O(\log \log n)\) bits for \(z\)

\[\Rightarrow O(\log(\frac{1}{\delta}) \log n)\] total bits.

Next class: \((\epsilon, \delta)\)-approx. for all \(\epsilon > 0\).