Primal-Dual algorithm
Step 0: Formulate the problem as an integer program. Relax it to get linear program $\angle P$ and its dual DLP.
Step!:- Start with an infeasible solution $x_{0} t L P$ and a feasible solution y_{0} to $D L P$.
Step 2:- while (x_{i} is not feasible)
$y_{i+i} \leftarrow$ update y_{i} s t at least one more dual constraint set corresponding primal warble to bel

Step 3:- Prove bound on cost of x end.
Remark:- Primal-dual algorithm does not involve solving primal or the dual linear programs.
Example:- $2\left(1-\frac{1}{R}\right)$ approsi nation for steiner tree problem.
Problem:- Given an undirected graph $G=(V, E)$, a cost function w on the edges w: $E \rightarrow \theta_{+}$and a set of terminals $T \subseteq V$, goal is to find a sulgraph $H=\left(v_{H}, E_{H}\right)$ connecting the terminals of minimum $\operatorname{cost}\left(\sum_{e \in E_{r}} w_{e}\right)$
Theorem:- There exists a primal-dral algorithm for Steiner rel problem with approximation ratio $2\left(1-\frac{1}{|T|}\right)$

Remark:- There escist an algorithm with improved appronimatio ratio for steiner tree. However it is not dis cussed here.

- S separates T if $S \cap T \neq \phi$ and $s \cap T \neq T$.
$-\delta(S) \leq E$ is the set of edges with exactly one end point in S.

Primal

$$
\begin{aligned}
& \min \sum_{e \in E} w_{e} x_{e} \\
& \text { sit. } \\
& \sum_{e \in S(S)} x_{e} \geqslant 1 \forall S \text { separate } T \\
& \quad x_{e} \geqslant 0
\end{aligned}
$$

Dual

$$
\begin{aligned}
& \max \sum_{s: s \times p \text { pates } T} y_{s} \\
& \text { sit } \\
& \sum_{e \in \delta(s)} y_{s} \leq w_{e} \quad \forall e \in I \\
& y_{s} \geqslant 0
\end{aligned}
$$

IB $C_{e}=1 A C E E$:- largest connection of separating sets with disjoint edge boundaries

Algorithm :-

$$
\begin{aligned}
& \text { lgorithm:- } \\
& \psi=\{x\}: x \in T\} \text { (set of components) }
\end{aligned}
$$

$$
\begin{aligned}
& \Psi=\{\{x\}: x \in T\} \quad\binom{\text { For each component }(\in \Psi,}{X_{c} \text { is the tree on (foundinthe algoithin }} \\
& X_{\{x\}}=\{(\{x\}, \phi): x \in T\} \text { initialized to }
\end{aligned}
$$

$$
F=\left(\begin{array}{ll}
T, & \phi
\end{array}\right) \quad\left(\begin{array}{l}
\text { Steiner forest initialized to } \\
\text { aforast on vertex set } T \text { and } \\
\text { no edges. At the end } F \text { will be }
\end{array}\right)
$$ $\left(\begin{array}{l}\text { Steiner on vertex set } T \text { and } \\ \text { a forest on A the end F will be } \\ \text { no edges. At } \\ \text { a steiner tree }\end{array}\right.$

$\left(X_{C}, C \in \Psi\right)$ vs F : During the algorithm, we would grow components by adding edgesand vertices. However, not all the edges
added to these components are part of the stiver tree F we return at the end. We only ald edges to F, when two components merge.

$$
y_{s}=0
$$

$\forall S \subseteq V: S$ separates T (Initial dual feasible sol')

Time $t=0$
$M_{\{x\}}=\{\{x\}\}$

$$
=\{\{x\}\}
$$

(At any time and $C \in \Psi$ at time t, M_{c} contains all subsets S of C st. y_{S}^{\prime} may be nen-tero

While $(|\psi|>1)$
For all $c \in \psi$, increase y_{c} at the same rate as till $\sum_{S: S \text { separates } T} y_{S} \leq C_{e}$ is tight for some $(H v) \in E$.

$$
\begin{aligned}
& S: S \text { separates } T \\
& e \in \delta(S)
\end{aligned}
$$

If $u \in C_{i}, v \in C_{j}$ for some $C_{i}, C_{j} \in \psi$
Add $C_{i} \cup C_{j}$ to ψ and delete C_{i}, c_{j} from ψ.

$$
\begin{aligned}
& \text { Add } C_{i} \cup C_{j} \\
& X_{C_{i}} \cup C_{j}=X_{C_{i}} \cup X_{c_{j}}+e \\
& \text { bath Connecting } F \Omega
\end{aligned}
$$

Let p be a path connecting $F \cap C_{i}$ and er $F \cap C_{j}$ in $X_{\text {cu }}$

$$
\begin{aligned}
& \text { Let } p=F \cup \text { (add edge } \\
& F=\left\{c_{i} \cup c_{j}\right\} \\
& M_{c_{i} \cup c_{j}}=M_{c_{i}} \cup M_{c_{j}}
\end{aligned}
$$

If $u \in C_{i}$ for some $C_{i} \in \Psi, V \notin C_{j}$ for any $C_{j} \in \psi$ add $C_{i}+v$ to ψ, delete C_{i} from ψ. $X_{C_{i}+v}=X_{c_{i}}+e \quad$ (add vertex v and ledge $t c_{i}$)

$$
M_{c_{i}+v}=M_{c_{i}} \cup\left\{c_{i}+v\right\}
$$

Return F
Analysis
Lemma :- At any time t, for any $C \in \Psi, X_{C}$ is a tree.
Lemma 2:- At the end of algorithm, F is a steiner tree.
Lemma 3:- At any time $t,\left\{y_{S}, S\right.$ separates $\left.T\right\}$ is a feasible dual solution.
All these lemmas con be easily proved by induction
Lemma 4:- At time $t \geqslant 0$, for $C \in \psi$ at $+i m e t$ let F_{c} be the edges of F (at time t) with bothend

$$
\begin{aligned}
& \text { let } F_{c} \text { be } \\
& \text { point in } C \\
& Z(C)=\sum_{S \in M_{c}} y_{S}, \operatorname{Cost}(C)=\sum_{e \in F_{c}} w_{e} \\
&
\end{aligned}
$$

Then,

$$
\operatorname{cost}(c) \leqslant 2(Z(c)-t)
$$

Proof:- At time $t=0, F=(T, \phi), \psi=\{\{x\}: x \in T\}$
$y_{S}=0, \forall S: S$ separates T
Hence, $\operatorname{cost}(c)=0, Z(c)=0 \quad \forall c \in \Psi$.

$$
\Rightarrow \operatorname{cost}(c) \leq 2(\tau(c)-t) \text { at } t=0 \text {. }
$$

* For ease of exposition, we divide the events into three cases:
(1) t increases by Δt and no change in the set of components
(2) A vertex v is added to some component C_{i} at time.
(3) Two components C_{i}, C_{j} merge at time t.

Case l:- Set of components ψ does not change. By induction, $\operatorname{cost}(c) \leq 2(z(c)-t)$ attire t. y_{c} increases by Δt for each $c \in \Psi$
$Z(c)=\sum_{S \in M_{C}} y_{S}$ increases by Δt since $c \in M_{C}$.
F dols not change. Hence, $\operatorname{cost}(C)$ does not change Hence, $\operatorname{cost}(C) \leq 2(z(C)-t)$ at time $t+\Delta t$.
Case 2:- A vertex V is added to C_{i} (toes not change) $C_{i}+v$ is added to ψ and c_{i} is deleted. By induction, $\operatorname{cost}\left(c_{i}\right) \leq 2\left(z\left(c_{i}\right)-t\right)$.
$\operatorname{Cost}\left(C_{i}+v\right)=\operatorname{Cost}\left(C_{i}\right)$ since, no edges are added to F and $F_{c_{i}+v}=F_{C_{i}}$

$$
Z\left(c_{i}+v\right)=\sum_{S \in M_{c_{i}+v}} y_{S}=\sum_{S \in M_{C_{i}}} y_{S}+y_{c_{i}+v} .
$$

when v is added to $c_{i}, y_{c_{i}+v}=0$. Hence,

$$
\begin{aligned}
& Z_{c_{i}+v}=z_{c_{i}}, \operatorname{cost}\left(c_{i}+v\right)=\operatorname{cost}\left(c_{i}\right) \\
& \Rightarrow \operatorname{cost}\left(c_{i}+v\right) \leq 2\left(z\left(c_{i}+v\right)-t\right) .
\end{aligned}
$$

Case 3 :- Two components $c_{i}, c_{j} \in \psi$ merge (t del not change)
$C_{i} U C_{j}$ is added to ψ, c_{i}, c_{j} are deleted from ψ. $\left.\begin{array}{r}\text { By induction cost } \\ \operatorname{cost}^{\text {old }}\left(c_{i}\right) \leq 2\left(z\left(c_{i}\right)-t\right) \leq 2\left(2\left(c_{j}\right)-t\right)\end{array} \right\rvert\, \begin{gathered}\text { Folddendes } \\ \text { byforeneging }\end{gathered}$

$$
\begin{aligned}
& \operatorname{cost}_{\text {new }}^{\text {ned }}\left(C_{i} \cup C_{j}\right)=\sum_{e \in F_{c_{i+1}}^{\text {new }}} w_{e}=\sum_{e \in F_{c_{i}}} w e+\sum_{e \in p_{c_{j}} w_{d}}+\sum_{e \in p} w_{e} \\
& \sum w e \leq 2 t
\end{aligned}
$$

Claim:- $\sum_{e \in p} w_{e} \leq 2 t$
Hence, $\operatorname{cost}^{\text {per }}\left(c_{i} \cup c_{j}\right) \leq \operatorname{cost}^{\text {od }}\left(c_{i}\right)+\operatorname{cost}\left(c_{j}\right)+2 t$

$$
\leq 2\left(z\left(c_{i}\right)+z\left(c_{j}\right)-t\right) .
$$

$$
z\left(c_{i} \cup c_{j}\right)=\sum_{S \in M_{C_{i} \cup c_{j}}} y_{S}=\sum_{S \in M_{c_{i}}} y_{S}+\sum_{S \in M_{c_{j}}} y_{s}+y_{c_{i} \cup \cup c_{j}}
$$

Since, $c_{i} v c_{j}$ is justadded to $M_{c_{i}} v c_{j}, \quad y_{c_{i}} v c_{j}=0$

$$
\begin{aligned}
& \text { Heme, } \\
& Z_{c_{i}} \cup c_{j}=z\left(c_{i}\right)+z\left(c_{j}\right) \\
& \Rightarrow \operatorname{cost}^{\text {new }}\left(c_{i} \cup c_{j}\right) \leq 2\left(Z\left(c_{i} \cup c_{j}\right)-t\right)
\end{aligned}
$$

Heme,

Theorem:- $\sum_{e \in E(F)} w_{e} \leq 2\left(1-\frac{1}{(T)}\right)$ OPT-Steiner-thee.
Proof:- At the end of the algorithm $(t=$ tend $)$ let the component in ψ be C^{*}. Then, at $t=$ tend,

$$
\begin{aligned}
& \text { Then, at } t=\text { tend, } \\
& \operatorname{cost}\left(c^{*}\right)=\sum_{e \in F_{C^{*}}} w_{e}=\sum_{e \in E(F)} w_{e} . \\
& z\left(c^{t}\right)=\sum_{s \in M_{C^{+}}} y_{s}=\sum_{s: s \text { separate } T} y_{s}
\end{aligned}
$$

Hence, by lemma 4,

$$
\sum_{C \in E(F)} w_{e} \leq 2\left(\sum_{s: s \text { separates }} y_{s} \text { - tend }\right) \text {. }
$$

At any time t, \# of components in ψ is at most $|T|$. Hence, when t increases by $\Delta t, \sum_{s: S \text { separates } T} y_{S}$ increases by almost $|T| \Delta t$.

$$
\begin{aligned}
& \Rightarrow \sum_{s: \text { Seppertes }} y_{s} \leq|T| \cdot \text { tend. } \\
& \quad r \text { tend } \geqslant \frac{\sum_{s: S \text { sporades }} y_{s}}{|T|}
\end{aligned}
$$

Substituting in (1)

$$
\begin{aligned}
& \text { Substituting in (1) } \\
& \Rightarrow \sum_{e \in E(F)} w e \leq 2\left(1-\frac{1}{|T|}\right) \sum_{s=\text { separate } T} y \text {. }
\end{aligned}
$$

Since $\left\{y_{S}, S\right.$ separates $\left.T\right\}$ is a feasible dual solution, $\sum_{S: S \text { separates } T} y_{S} \leq$ optimal-dual-value $S:$ separates T
By strong duality,
Optimal-dual-velue $=$ Optimal - primal - value

Sine, primal is a relaxation of the steiner tree problem,
Optimal-primal-value \leq optimal-steiner-tree-cost combining, all four inequalities, we get,

$$
\begin{aligned}
& \text { Combining, all four } \\
& \sum_{l \in E(F)} w_{e} \leq 2\left(1-\frac{1}{|T|}\right) \text { optimal-steiver-trel-cost }
\end{aligned}
$$

Hence, we get a $2\left(1-\frac{1}{(T 1}\right)$ approscination algorithm for steiner trill problem.

