'Primal-'Dual algorithm Stepo: Formulate the problem as an integer program. Relax it to get linear program LP and its dual DLP. Step! - Start with an infeasible solution to to LP and a feasible solution to DLP. Step2- while (Ri is not feasible) y. E-update y; s.t. atlast one more dual constraint U. t. update y; s.t. atlast one more dual constraint Uite set corresponding primel withhe to be Step 3 !- Prove bound on cost of Kend. <u>Remark:</u> Primal-dual algorithm does not involve solving primal or the dual linear programs. Example: 2 (1- 1) approvimation for steiner tree problem. Problem: - briven an undirected graph Gr= (V,E), a cast function won the edges w: E > Q, and a set of terminals $T \subseteq V$, goal is to find a subgraph $H = (V_H, \bar{E}_H)$ connecting the terminals of minimum lost (Zwe) Theorem :- There exists a primel-dual algorithm for Steiner tree problem with approximation ratio 2(1-1)

Remark :- There exist an algorithm with improved approximation of the steiner tree. However it is not discussed here.

Primal
min Ewere
s.t.

$$Z \times e > 1$$
 + S separate T
 $Z \in S(S)$
 $X \in 7.0$
 $Z \in T$
 $Z \in S(S)$
 $Z \in 7.0$
 $Z \in T$
 $Z \in S(S)$
 $Z \in S(S)$

Algorithm :-

$$Y = \{ \{x\} : x \in T \}$$
 (set of components)
 $Y = \{ \{x\} : x \in T \}$ (set of component $C \in Y$.)
 $X_{\{x\}} = \{ (\{x\}, \phi) : x \in T \}$ (For each component $C \in Y$.)
 $X_{\{x\}} = \{ (\{x\}, \phi) : x \in T \}$ (For each component $C \notin Y$.)
 $X_{\{x\}} = \{ (\{x\}, \phi) : x \in T \}$ (For each component $C \notin Y$.)
 $X_{\{x\}} = \{ (\{x\}, \phi) : x \in T \}$ (For each component $C \notin Y$.)
 $X_{\{x\}} = \{ (\{x\}, \phi) : x \in T \}$ (Steiner forest initialized to
a forest on vertex set T and
 $A = dges$. At the end F will be
 a steiner tree
 X_{C} , $C \in Y$) vs F . During the algorithm, we would
grow components by adding edges and
vertices. However, not all the edges

-.

added to these components are part of
the striner tree F we return at thread.
We only add edges to F, when two components
merge.

$$Y_{S} = 0$$
 $\forall S \in V : S$ separates T
 $(Initial dual freasible sd)$
Time t = 0
 $M_{123} = [123]$ $(At any time t and C \in Y at time t,
 $M_{123} = [123]$ $(At any time t and C \in Y at time t,
 $M_{123} = [123]$ $(At any time t and C \in Y at time t,
 $M_{123} = [123]$ $(At any time t and C \in Y at time t,
 $M_{123} = [123]$ $(At any time t and C \in Y at time t,
 $M_{123} = [123]$ $(At any time t and C \in Y at time t,
 $M_{123} = [123]$ $(At any time t and C \in Y at time t,
 $M_{123} = [123]$ $(At any time t and C \in Y at time t,
 $M_{123} = [123]$ $(At any time t and C \in Y at time t,
 $M_{123} = [123]$ $(At any time t and C \in Y at time t,
 $S = S(S)$
 If $U \in C_i$, $V \in C_j$ for some C_i , $C_j \in Y$
 $Add C_i \cup C_j$ to Y and delete $(C_i, C_j from Y)$.
 $Add C_i \cup C_j$ to Y and delete $(C_i, C_j from Y)$.
 $Add C_i \cup C_j$ to Y and delete $(C_i, C_j from Y)$.
 $Add C_i \cup C_j$ $(D \times C_j + e)$
 $Add edges and vertices of p to f .
 $E = F \cup p$ [add edges and vertices of p to f .
 $F = F \cup p$ [add edges and vertices of p to f .
 $M_{ci} \cup C_j$ $(M_{c_i} \cup M_{c_j})$$$$$$$$$$$$

If
$$u \in C_i$$
 for some $C_i \in Y$, $V \notin C_j$ for any $C_j \notin Y$
add $C_i + v \neq 0$, delete C_i from Y .
 $X_{C_i + v} = X_{C_i} + e$ (add vertex v and edge $e \neq c_i$)
 $M_{C_i + v} = M_{C_i} \cup \{C_i + v\}$

Return F

Analysis
Lemma 1:- At any time t, for any
$$C \in Y$$
, X_c is a tree.
Lemma 2:- At the end of algorithm, F is a steiner tree.
Lemma 3:- At any time t, $\{Y_s, S$ separates T_s^2 is a feasible
dual solution.
All these lemmas can be easily proved by induction
All these lemmas can be easily proved by induction
Lemma 4:- At time $t > 0$, for $C \in Y$ at time t
Lemma 4:- At time $t > 0$, for $C \in Y$ at time t
Lemma 4:- At time $t > 0$, for $C \in Y$ at time t
Lemma 4:- At time $t > 0$, for $C \in Y$ at time t
Lemma 4:- At time $t > 0$, for $C \in Y$ at time t
Lemma 4:- At time $t > 0$, for $C \in Y$ at time t
Lemma 4:- At time $t > 0$, for $C \in Y$ at time t
Lemma 4:- At time $t > 0$, for $C \in Y$ at time t
Lemma 4:- At time $t > 0$, for $C \in Y$ at time t
Lemma 4:- At time $t > 0$, for $C \in Y$ at time t
Lemma 4:- At time $t > 0$, for $C \in Y$ at time t
Lemma 4:- At time $t > 0$, for $C \in Y$ at time t
Lemma 4:- At time $t > 0$, for $C \in Y$ at time t
Lemma 4:- At time $t > 0$, for $C \in Y$ at time t
Lemma 4:- At time $t > 0$, for $C \in Y$ at time t
Lemma 4:- At time $t > 0$, for $C \in Y$ at time t
Lemma 4:- At time $t > 0$, for $C \in Y$ at time t
Lemma 4:- At time $t > 0$, for $C \in Y$ at time t
Lemma 4:- At time $t > 0$, for $C \in Y$ at time t
Lemma 4:- At time $t > 0$, for $C \in Y$ at time t
Lemma 4:- At time $t > 0$, for $C \in Y$ at time t
Lemma 4:- At time $t > 0$, for $C \in Y$ at time t
Lemma 4:- At time $t > 0$, for $C \in Y$ at time t
Lemma 4:- At time $t > 0$, for $C \in Y$ at time t
Lemma 4:- At time $t > 0$, for $C \in Y$ at time t
Lemma 4:- At time $t > 0$, for $C \in Y$ at time t
Lemma 4:- At time $t > 0$, for $C \in Y$ at time $t > 0$.
Lemma 4:- At time $t > 0$, for $C \in Y$ at time $t > 0$.
Lemma 4:- At time $t > 0$, for $C \in Y$ at time $t > 0$.

Proof: At time t=0,
$$F = (T, \phi), \psi = [\{x\}: xer]$$

 $y_S = 0, \forall S: S separates T$
Hence, (alt(C)=0, $Z(C)=0 \quad \forall C \in \Psi$.
 $=$) (alt(C) $\leq 2(Z(C) - t)$ at $t = 0$.
*For ease of exposition, we divide the events into
thore calls:
 $0 \quad t$ increases by Δt and no change in the set of information
 $Two is odded to some import Ci at time t$.
 Δ writer v is odded to some import Ci at time t.
 Δ writer v is odded to some import $Ci at time t$.
 Δ writer v is odded to some $Component Ci at time t$.
 Δ writer v is odded to some $Component Ci at time t$.
 Δ induction, $(ast(C) \leq 2(Z(C)-t))$ at time t .
 $By inductions by Δt for each $C \in \Psi$
 J_C increases by Δt for each $C \in M_C$.
 $Z(C) = \sum_{S \in M_C} J_S$ increases by Δt since $C \in M_C$.
 $E doels not change. Hence, $(ast(C)) does not change)$
 $F doels not change. Hence, $(ast(C)) does not change)$
 $(ast(C) \leq 2(Z(C)-t))$ at time $t+\Delta t$.
Hence, $(ast(C) \leq 2(Z(C)-t))$ at time $t+\Delta t$.
 $Mence, (ast(C) \leq 2(Z(C)-t))$ at time $t+\Delta t$.
 $Mence, (ast(C) \leq 2(Z(C)-t))$ at time $t+\Delta t$.
 $Mence, (ast(C) \leq 2(Z(C)-t))$ at time $t+\Delta t$.
 $Mence, (ast(C) \leq 2(Z(C)-t))$ at time $t+\Delta t$.
 $Mence, (ast(C) \leq 2(Z(C)-t))$ at time $t+\Delta t$.
 $Mence, (ast(C) \leq 2(Z(C)-t))$ at time $t+\Delta t$.
 $Mence, (ast(C) \leq 2(Z(C)-t))$ at time $t+\Delta t$.
 $Mence, (ast(C) \leq 2(Z(C)-t))$ at time $t+\Delta t$.
 $Mence, (ast(C) \leq 2(Z(C)-t))$ at time $t+\Delta t$.
 $Mence, (ast(C) \leq 2(Z(C)-t))$ at time $t+\Delta t$.
 $Mence, (ast(C) \leq 2(Z(C)-t))$ at time $t+\Delta t$.
 $Mence, (ast(C) \leq 2(Z(C)-t))$ at time $t+\Delta t$.
 $Mence, (ast(C) \leq 2(Z(C)-t))$ at time $t+\Delta t$.
 $Mence, (ast(C) \leq 2(Z(C)-t))$ at time $t+\Delta t$.
 $Mence, (ast(C) \leq 2(Z(C)-t))$.
 $Mence, (ast(C) \leq 2(Z(C)-t))$.$$$

$$(alt (C_{i} + v) = (alt (C_{i}) \text{ since, no edges are added} to F and $F_{C_{i}+v} = F_{C_{i}}$
$$Z((i+v) = \sum_{S \in M_{C_{i}+v}} \forall S = \sum_{S \in M_{C_{i}}} \forall S + \forall_{C_{i}+v} \\when v is added to C_{i}, \forall_{C_{i}+v} = 0 \cdot Hence, \\When v is added to C_{i}, \forall_{C_{i}+v} = (alt (C_{i})) = (alt (C_{i})) \\= (alt (C_{i}+v) \leq 2(Z(C_{i}+v) - t)) \\= (alt (C_{i}+v) \leq 2(Z(C_{i}) - t)) \\(alt del to \psi, C_{i}, C_{j} are delated from \psi) \\(del to del to C_{i}) \leq 2(Z(C_{i}) - t) \\(by induction (alt odd (C_{i})) \leq 2(Z(C_{i}) - t)) \\(alt (C_{i} \cup C_{j}) = \sum_{e \in F_{e}} we = \sum_{e \in F_{e}} we + \sum_{e \in F_{e}} we \\(e \in F_{e}) \\(bl (C_{i} \cup C_{j}) \leq (alt (C_{i}) + C_{e}) \\(bl (C_{i} \cup C_{j}) \leq (alt (C_{i}) + C_{e}) \\(bl (C_{i} \cup C_{j}) \leq (alt (C_{i}) + C_{e}) \\(bl (C_{i} \cup C_{j}) \leq (alt (C_{i}) + C_{e}) \\(bl (C_{i} \cup C_{j}) \leq (alt (C_{i}) + C_{e}) \\(bl (C_{i} \cup C_{j}) \leq (alt (C_{i}) + C_{e}) \\(bl (C_{i} \cup C_{j}) \leq (alt (C_{i}) + C_{e}) \\(bl (C_{i} \cup C_{j}) \leq (alt (C_{i}) + C_{e}) \\(bl (C_{i} \cup C_{j}) \leq (alt (C_{i}) + C_{e}) \\(bl (C_{i} \cup C_{j}) \leq (alt (C_{i}) + C_{e}) \\(bl (C_{i} \cup C_{j}) = (alt (C_{i} \cup C_{j}) + 2t \\(bl (C_{i} \cup C_{j}) \leq (alt (C_{i}) + C_{e}) \\(bl (C_{i} \cup C_{j}) \leq (alt (C_{i}) + C_{e}) \\(bl (C_{i} \cup C_{j}) = (alt (C_{i} \cup C_{j}) + 2t \\(bl (C_{i} \cup C_{j}) = (alt (C_{i} \cup C_{j}) + 2t \\(bl (C_{i} \cup C_{j}) = (alt (C_{i} \cup C_{j}) + 2t \\(bl (C_{i} \cup C_{j}) = (alt (C_{i} \cup C_{j}) + 2t \\(bl (C_{i} \cup C_{j}) = (alt (C_{i} \cup C_{j}) + 2t \\(bl (C_{i} \cup C_{j}) = (alt (C_{i} \cup C_{j}) + 2t \\(bl (C_{i} \cup C_{j}) = (alt (C_{i} \cup C_{j}) + 2t \\(bl (C_{i} \cup$$$$

Hence,

$$Z_{C_i} \cup C_j = Z(C_i) + Z(C_j)$$

 $Z_{C_i} \cup C_j = Z(Z(C_i \cup C_j) - t)$.
 $Z_{C_i} \cup C_j = Z(Z(C_i \cup C_j) - t)$.
 $Z_{C_i} \cup C_j = Z(Z(C_i \cup C_j) - t)$.
 $Z_{C_i} \cup C_j = Z(Z(C_i \cup C_j) - t)$.
 $Z_{C_i} \cup C_j = Z(Z(C_i \cup C_j) - t)$.
 $Z_{C_i} \cup C_j = Z(Z(C_i \cup C_j) - t)$.
 $Z_{C_i} \cup C_j = Z(Z(C_i \cup C_j) - t)$.
 $Z_{C_i} \cup C_j = Z(Z(C_i \cup C_j) - t)$.
 $Z_{C_i} \cup Z(Z(C_i \cup C_j) = Z(Z(C_i \cup C_j) - t)$.
 $Z_{C_i} \cup Z(Z(C_i \cup C_j) = Z(Z(C_i \cup C_j) - t)$.
 $Z_{C_i} \cup Z(Z(C_i \cup C_j) = Z(Z(C_i \cup C_j) - t)$.
 $Z_{C_i} \cup Z(Z(C_i \cup C_j) = Z(Z(C_i \cup C_j) - t)$.
 $Z_{C_i} \cup Z(Z(C_i \cup C_j) = Z(Z(C_i \cup C_j) - t)$.
 $Z_{C_i} \cup Z(Z(C_i \cup C_j) = Z(Z(C_i \cup C_j) - t)$.
 $Z_{C_i} \cup Z(Z(C_i \cup C_j) = Z(Z(C_i \cup C_j) - t)$.
 $Z_{C_i} \cup Z(Z(C_i \cup C_j) = Z(Z(C_i \cup C_j) - t)$.
 $Z_{C_i} \cup Z(Z(C_i \cup C_j) = Z(Z(C_i \cup C_j) - t)$.
 $Z_{C_i} \cup Z(Z(C_i \cup C_j) = Z(Z(C_i \cup C_j) - t)$.
 $Z_{C_i} \cup Z(Z(C_i \cup C_j) = Z(Z(C_i \cup C_j) - t)$.
 $Z_{C_i} \cup Z(Z(C_i \cup C_j) = Z(Z(C_i \cup C_j) - t)$.
 $Z_{C_i} \cup Z(Z(C_i \cup C_j) = Z(Z(C_i \cup C_j) - t)$.
 $Z_{C_i} \cup Z(Z(C_i \cup C_j) = Z(Z(C_i \cup C_j) - t)$.
 $Z_{C_i} \cup Z(Z(C_i \cup C_j) = Z(Z(C_i \cup C_j) - t)$.
 $Z_{C_i} \cup Z(Z(C_i \cup C_j) = Z(Z(C_i \cup C_j) - t)$.
 $Z_{C_i} \cup Z(Z(C_i \cup C_j) = Z(Z(C_i \cup C_j) - t)$.
 $Z_{C_i} \cup Z(Z(C_j \cup C_j) - t)$.

Hence, by lemma 4,

$$E we \leq 2(E \vartheta_{S} - tend)$$
. - O
 $e \in E(F)$
At any time t , # of ontonents in y
is at most [T]. Hence, when t increases
by At, EYS increases by atmost [T] At.
 $S:SuperatesT$
 $E YS \leq [T] \cdot tend$.
 $S:SuperatesT$
 $T tend > \frac{E}{S:SuperatesT}$
 $Substituting in O
 $E we \leq 2(1 - \frac{1}{(TI)}) \frac{E}{S:SuperateT}$
Since [ids, S separatesT] is a feasible dual
 $S:SuperatesT$
 $Since [ids, S separatesT]$ is a feasible dual
 $S:SuperatesT$
By storing duality
 $Optimal-dual-value: Optimal- primal-value$$

Since, primal is a relaxation of the steiner
tree problem,
Optimal-primal-value
$$\leq$$
 Optimal-steiner-tree-cost
(ombining, all four inequalities, we get,
(ombining, all four inequalities, we get,
 $\sum_{e \in E(F)} w_e \leq 2(1-\frac{1}{T_1})$ Optimal-steiner-tree-cost
Hence, we get a $2(1-\frac{1}{T_1})$ approximation algorithm
Hence, we get a $2(1-\frac{1}{T_1})$ approximation algorithm