
Lecture Notes on an FPRAS for #KNAPSACK.
Eric Vigoda

Georgia Institute of Technology
Last updated for 7530 - Randomized Algorithms, Spring 2010.1

Approximately Counting KNAPSACK Solutions

In this lecture, we study the counting and sampling versions of the knapsack problem. This
is a further example (as with Eucledian TSP in the last lecture) of the power of simple
dynamic programming based approaches. It also highlights the intimate connection between
approximate counting and random sampling.

Here is the problem statement.

#KNAPSACK: We are given n objects, together with each object i ∈ [n] (recall [n] =
{1, 2, . . . , n}) we have its integer weight wi, and the total weight W our knapsack can hold.
Our objective is to find the number of subsets T ⊆ [n] such that

∑
i∈T wi ≤ W . We call the

sets satisfying this weight constraint feasible, and denote them as S. Thus, we are computing
|S|. A geometric interpretation of the problem is the following. Recall, the n-dimensional
hypercube has vertex set {0, 1}n and edges connecting vertices which differ in exactly one
coordinate. The constraint

∑
i wi ≤ W defines a hyperplane. Thus, we are counting the

number of points of the hypercube that intersect the hyperplane.

This problem is sometimes referred to as the zero-one #KNAPSACK. #KNAPSACK is
known to be #P -complete, therefore we focus on approximation schemes.

We present an FPRAS for #KNAPSACK due to Dyer [1]. An FPRAS (fully polynomial
randomized approximation scheme), is a randomized algorithm, which for all 0 < ε, δ < 1,
computes OUT satisfying:

OUT (1− ε) ≤ |S| ≤ OUT (1 + ε)

with probability ≥ 1− δ, and running in time polynomial in n, 1/ε, and log(1/δ).

The first FPRAS was due to Morris and Sinclair [2]. They used a more standard Markov
chain Monte Carlo approach, but the analysis of their algorithm was considerably more
complicated than Dyer’s approach.

Dyer first presents an easy algorithm to approximate |S| within a polynomial in n factor.
Using this sampler, it is then straightforward to estimate |S| arbitrarily close.

First we present a pseudo-polynomial solution for #KNAPSACK, i.e., the running time
depends on W . Let F (j, k) be the number of sets T ⊆ [j] such that

∑
i∈T wi ≤ k. Thus,

|S| = F (n, W).

1Based on scribe notes first prepared by Ivona Bezáková at the University of Chicago in the winter
quarter, 2003.

1

Now we have an easy recurrence for F (j, k). Either: we include the j-th item in the knapsack
and our available weight goes from k to k − wj; or we don’t include the j-th item and the
available weight stays the same. Hence, we have:

F (j, k) = F (j − 1, k) + F (j − 1, k − wj) if j ≥ 1

F (0, k) =

{
1 if k ≥ 0
0 if k < 0

Using dynamic programming we find F (n,W) in time O(nW).

We don’t want the running time to depend on W . Hence, we’ll rescale the weights so that
W scales down to something which is polynomial in n. The scaling will round the weights
wi down to integers, thereby altering the set of feasible solutions. In fact, the rounding will
increase the number of solutions, but by at most a factor of (n + 1).

Scaling. Without loss of generality, assume the weights are sorted: 0 ≤ w1 ≤ w2 ≤ · · · ≤
wn ≤ W . Let the scaled-down weights be w′

i := bn2

W
wic, and the new total weight W ′ := n2.

Let S be the solution set of this new instance of #KNAPSACK. Using the above dynamic
programming we can compute |S ′| in time O(n3).

Note, if T ∈ S, i.e., T is a feasible set of the original problem, then∑
i∈T

w′
i ≤

n2

W

∑
i∈T

wi ≤
n2

W
W ≤ n2,

and thus T is also solution to the new instance. Therefore, S ⊆ S ′.

Comparing |S ′ with |S|. We have just shown |S| ≤ |S ′|. We will now define a map
f : S ′ → S such that for every T ∈ S there will be at most (n + 1) sets in S ′ mapping to it.
This implies |S ′| ≤ (n + 1)|S|. Therefore in O(n3) time we can compute |S ′| which satisfies:

|S ′|
n + 1

≤ |S| ≤ |S ′| (1)

It remains to define f . For T ∈ S, let f(T) := T .

Consider T ∈ S ′ \ S. Let K be the largest integer k such that wk ≤ W/n. Note, any
T ′ ⊆ [K] is a solution to the original problem (i.e. T ′ ∈ S). To see why, observe that for
such a T ′ ⊆ [K] we have ∑

i∈T ′

wi ≤
∑

i

W

n
≤ W.

Hence, T ′ ∈ S. Therefore, for T ∈ S ′ \ S, we know T 6⊆ [K]. Let ` be the index of the
heaviest element in T . Note, ` > K. Then we define f(T) := T \ {`}. We need to show that
f(T) ∈ S. To simplify notation, let

δi := wi
n2

W
− w′

i,

2

denote the rounding error. Thus,

wi =
W

n2
(w′

i + δi) ,

and 0 ≤ δi ≤ 1. Finally, we need to show that f(T) ∈ S. We have:∑
i∈f(T)

wi =
W

n2

∑
i∈f(T)

(w′
i + δi)

=
W

n2

((∑
i∈T

wi

)
− w′

` +

(∑
i∈T

δi

)
− δ`

)

≤ W

n2

((∑
i∈T

w′
i

)
+ n

)
− w`

≤ W

n2

∑
i∈T

w′
i since w` > W/n

≤ W

n2

(
n2
)

since T ∈ S ′

= W,

Therefore, f(T) ∈ S and f is properly defined from S ′ to S.

How many sets map to a given set T ∈ S? Let ` be the index of the heaviest element in
T . Then, by the definition of f , the set T maps to itself via the first rule defining f , and at
most n− ` sets map to T via the second rule. This sums to at most (n + 1) sets mapping to
any T ∈ S. This proves (1).

To improve the approximation factor, we will use the above approach to sample uniformly
from S ′, and then we will use these samples to closely estimate |S| by looking at the fraction
of the samples that lie in S.

Sampling. We now use the above dynamic programming approach to sample uniformly at
random from S ′. We will trace back a solution using the table F . We start with the empty
set and we will add elements according to the probability distribution defined by F .

1. Let T := ∅, j := n, and k := n2.

2. While j > 0 do:

(a) With probability F (j − 1, k − w′
j)/F (j, k):

Set T = T ∪ {j} and set k = k − w′
j.

(b) Decrease j by one.

3

It is easy to see that this algorithm samples sets uniformly from S ′. Given access to F , the
above algorithm takes O(n) time to generate a sample. Thus, for t samples it takes O(n3)
time to compute F and then O(tn) time to generate t random samples from S ′, therefore it
takes O(n3 + tn) time in total.

Counting. Let p := |S|/|S ′|. Note, we know 1 ≥ p ≥ 1/n. We will use sampling to estimate
p. Generate N = 4n

ε2
log(2/δ) random sets from S ′. For i = 1, . . . , N , let

Xi =

{
1 if the i-th sample is in S

0 otherwise

Let X =
∑N

i=1 Xi and let

Z = |S ′|X
N

.

Note,

µ = E[Z] =
|S ′|
N

∑
i

E[Xi] = |S ′|p = |S|.

By Chernoff bounds,

Pr[|X − µ| ≥ εµ] ≤ 2 exp(−µε2/4) ≤ exp(−pNε2/4) ≤ 1/δ.

If X ∈ [µ(1− ε), µ(1 + ε)] = pN [1− ε, 1 + ε], then Z ∈ |S|[1− ε, 1 + ε]. Hence, we have an
FPRAS for estimating |S|. Note, the total running time is O(n3 + ε−2n2 log(1/δ)).

Improvements and generalizations. Using randomized rounding, Dyer improved the

running time to O
((

n5/2
√

log(1/ε) + n2ε−2
)

log(1/δ)
)
. The m-constraint #KNAPSACK

has m weights for each object and m total weights. The objective is to find the number of
sets satisfying all m weight constraints. Geometrically, it corresponds to finding the number
of vertices in the hypercube contained in the intersection of m hyperplanes. Dyer’s approach
carries through, resulting in O(n2m+1 + ε−2nm+1) running time. In the general (non 0 − 1)
#KNAPSACK problem one wants to find the number of all feasible multisets. Again, Dyer’s
approach gives O(n2m+3 + ε−2nm+3) time bound.

Open Problems: Is there a deterministic algorithm to estimate |S| arbitrarily close? The
above approach computes |S ′| deterministically, and this yields a

√
n approximation to |S|.

We only use randomness to boost the approximation factor.

References

[1] M. Dyer. Approximate Counting by Dynamic Programming, Proceedings of the 35th
Annual ACM Symposium on Theory of Computing (STOC), 693-699, 2003.

[2] B. Morris and A.J. Sinclair. Random walks on truncated cubes and sampling 0-1 knap-
sack solutions. SIAM J. Comput., 34(1):195-226, 2004.

4

