Scribe: Daniel Štefankovič

A hypergraph $H=(V, E)$ is said to have property B if there exists a 2-coloring of the vertices V such that no edge in E is monochromatic. The phrase property B was coined for Bernstein who originated the study of these combinatorial structures in 1908. In the following let $H=(V, E)$ be a d-uniform hypergraph and let $n=|V|$ and $m=|E|$. It is easy to see that if $m<2^{d-1}$ then H has property B . Indeed, the expected number of monochromatic edges in a uniformly random 2 -coloring is $m 2^{-d+1}<1$ and hence there is a coloring without a monochromatic edge. Erdös [2] constructed a d-uniform hypergraph with $O\left(2^{d} d^{2}\right)$ edges which does not have property B. Assume that n is even. Let $\chi: V \rightarrow\{$ red, blue\} be any coloring and e a random subset of V of size d. The probability that e is monochromatic in χ is at least

$$
\frac{\binom{n / 2}{d}}{\binom{n}{d}} \geq \frac{1}{2^{d}}\left(\frac{n-2 d}{n-d}\right)^{d} \geq \frac{1}{2^{d}} \exp \left(-d^{2} /(n-2 d)\right)
$$

For m independent random subsets of V of size d the probability that none of them is monochromatic in χ is at most

$$
\left(1-\frac{1}{2^{d}} \exp \left(-d^{2} /(n-2 d)\right)\right)^{m} \leq \exp \left(-\frac{m}{2^{d}} \exp \left(-d^{2} /(n-2 d)\right)\right)
$$

By the union bound the probability that there exists a coloring χ such that none of the random subsets is monochromatic in χ is at most

$$
\begin{equation*}
2^{n} \exp \left(-\frac{m}{2^{d}} \exp \left(-d^{2} /(n-2 d)\right)\right) \tag{5.1}
\end{equation*}
$$

For $n=d^{2}+d$ and $m>2^{d}\left(d^{2}+2 d\right) e \ln 2$ the value of (5.1) is smaller than 1 and hence there is a choice of m edges of size d such that the resulting hypergraph does not have property B.

Let $r(d)$ be the maximal m such that any d-uniform hypergraph with at most m edges has property B. From what we saw we know $2^{d-1} \leq r(d) \leq O\left(2^{d} \cdot d^{2}\right)$. Erdös and Lovász [3] conjectured that $r(d)=\Theta\left(2^{d} \cdot d\right)$. A lower bound of $r(d)=\Omega\left(d^{1 / 3} 2^{d}\right)$ was shown by Beck in 1978 [1] (see also Alon and Spencer for a cleaner presentation of his proof). This was only recently improved by Radhakrishnan and Srinivasan [4]. We will show their improved lower bound $r(d)=\Omega\left(2^{d} \cdot \sqrt{d / \log d}\right)$. They consider the following algorithm for finding a valid 2-coloring of a hypergraph $H=(V, E)$.

1. Let χ_{0} be a random 2-coloring and let v_{1}, \ldots, v_{n} be a random permutation of the vertices in V. Let Y_{1}, \ldots, Y_{n} be i.i.d. 0, 1-random variables with $P\left(Y_{i}=1\right)=p$ where p will be determined later.
2. For i from 1 to n do the following. If there is an edge $e \in E$ such that $v_{i} \in e$ and e is monochromatic in both χ_{0} and χ_{i-1} and $Y_{i}=1$ then let χ_{i} be the coloring which differs from χ_{i-1} in the color of v_{i}. Otherwise let $\chi_{i}=\chi_{i-1}$.

We will show that for a good choice of p the coloring χ_{n} produced by the algorithm is valid with non-zero probability for hypergraphs with not too many edges. To make the analysis simpler we will use the following process to generate a random permutation of V. To each $v \in V$ we assign an independent random variable X_{v} which is uniform in the interval $[0,1]$ and then sort the elements in V in the increasing order of X_{v}.

Let $e \in E$. Consider the event that the edge e is all red in χ_{n}. There are two possibilities, either e is all red in χ_{0} or it is not. The event that e is all red in χ_{0} and in χ_{n} has probability at most

$$
\begin{equation*}
2^{-d}(1-p)^{d} \leq 2^{-d} \exp (-p d) \tag{5.2}
\end{equation*}
$$

Now assume that e is not all red in χ_{0} and it is all red in χ_{n}. Let $w \in e$ be the last vertex in e which was recolored and let f be the edge which was used by the algorithm to justify the recoloring of w. We will say that e blames f. Note that f was all blue in χ_{0} and hence all vertices in $e \cap f$ get recolored. If a vertex of f is recolored then f is no longer monochromatic and hence cannot be used to justify a recoloring of a vertex. Hence $e \cap f=\{w\}$. Let S be the set of vertices of e which are blue in χ_{0}. Let us estimate the probability of the conditional event α_{z} (conditioned on $X_{w}=z$) that e is all red in χ_{n}, the set of vertices of e which are blue in χ_{0} is S, and that e blames f. For α_{z} to happen the following independent events must occur:

- $f \cup S$ is all blue and $e \backslash S$ is all red in χ_{0}. Since $|e \cap f|=1$, this event happens with probability $2^{-2 d+1}$.
- All of $S \backslash\{w\}$ changed colors before w : This requires that $X_{v} \leq X_{w}$ and $Y_{v}=1$ for all $v \in S \backslash\{w\}$. This event happens with probability $(z p)^{|S|-1}$.
- None of $f \backslash\{w\}$ changed colors before w : This requires that $X_{v} \geq X_{w}$ or $Y_{v}=0$ for all $v \in f \backslash\{w\}$. This event happens with probability $(1-p z)^{d-1}$.
- Finally, for w to change colors, we need $Y_{w}=1$, which has probability p.

Hence the probability of the event that e is all red in χ_{n} and it blames f is upper bounded by

$$
\begin{aligned}
p 2^{-2 d+1} \int_{0}^{1}(1-p z)^{d-1} \sum_{\substack{S \in e \\
w \in S}}(p z)^{|S|-1} \mathrm{~d} z & =p 2^{-2 d+1} \int_{0}^{1}(1-p z)^{d-1}(1+p z)^{d-1} \mathrm{~d} z \\
& =p 2^{-2 d+1} \int_{0}^{1}\left(1-p^{2} z^{2}\right)^{d-1} \mathrm{~d} z \\
& \leq p 2^{-2 d+1} \int_{0}^{1} \mathrm{~d} z \\
& =p 2^{-2 d+1} .
\end{aligned}
$$

Finally, the probability that some e blames some f is at most

$$
\begin{equation*}
2 m^{2} p 2^{-2 d+1} \tag{5.3}
\end{equation*}
$$

Combining (5.2) and (5.3) we obtain that the probability that there exists an edge in E which is monochromatic in χ_{n} is at most

$$
2 m 2^{-d} \exp (-d p)+4 m^{2} p 2^{-2 d}
$$

Letting $m=k 2^{d}$ (recall we are trying to maximize k) this simplifies to:

$$
2 k \exp (-p d)+4 k^{2} p
$$

For $p=\frac{\ln d}{2 d}$ we have

$$
\begin{equation*}
\frac{2 k}{\sqrt{d}}+\frac{2 k^{2} \ln d}{d} \tag{5.4}
\end{equation*}
$$

When $k \leq \frac{\sqrt{d}}{2 \sqrt{\ln d}}$, the value of (5.4) is smaller than 1 (for sufficiently large d), and hence the probability that the algorithm succeeds is >0. Hence H has property B.

References

[1] J. Beck. On 3-chromatic hypergraphs. Discrete Math., 24(2):127-137, 1978.
[2] P. Erdős. On a combinatorial problem. II. Acta Math. Acad. Sci. Hungar, 15:445-447, 1964.
[3] P. Erdős and L. Lovász. Problems and results on 3-chromatic hypergraphs and some related questions. In Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. II, pages 609-627. Colloq. Math. Soc. János Bolyai, Vol. 10. North-Holland, Amsterdam, 1975.
[4] J. Radhakrishnan and A. Srinivasan. Improved bounds and algorithms for hypergraph 2-coloring. Random Structures Algorithms, 16(1):4-32, 2000.

