For an undirected graph \(G = (V,E) \) where \(n = |V| \) is even, let \(\mathcal{P} \) = set of perfect matchings of \(G \).

Can we compute \(|\mathcal{P}| \) in \(\text{poly}(n) \) time?

No in general. Next class: \(\#P \)-complete for bipartite \(G \).

[Kasteleyn '67]: Poly-time algorithm for planar graphs using the determinant so \(O(n^3) \) time.

[Temperley-Fisher '61]:

Recall, for an \(n \times n \) matrix \(A \) its determinant is defined as:

\[
\det(A) = \sum_{\sigma \in S_n} \text{sgn}(\sigma) \prod_{i \in [n]} A(i, \sigma(i))
\]

where \(S_n \) is the set of permutations of \([n] = \{0, 1, \ldots, n-1\} \) and \(\text{sgn}(\sigma) = (-1)^{N(\sigma)} \) for \(N(\sigma) = \# \) of inversions in \(\sigma \).

It will be useful to consider some equivalent forms of \(\text{sgn}(\sigma) \):

Let \(\sigma = \gamma_1 \cdots \gamma_k \) be its cycle decomposition.

Then, \(\text{sgn}(\sigma) = \prod_{i=1}^{k} \text{sgn}(\gamma_i) \) and \(\text{sgn}(\gamma_i) = (-1)^{1 \mid \gamma_i \mid - 1} \) if \(1 \mid \gamma_i \mid \) is even

Thus, \(\text{sgn}(\sigma) = (-1)^{\# \text{even cycles in } \sigma} \)

Also, since \(\text{sgn}(\sigma_i) = (-1)^{1 \mid \sigma_i \mid - 1} \) we have:

\[
\text{sgn}(\sigma) = \prod_{i=1}^{n-k} (-1)^{1 \mid \sigma_i \mid - 1} = (-1)^{n-k} \]

\# of cycles in \(\sigma \).
We will orient the edges of undirected G to make a directed graph \tilde{G}. We'll do this in such a way that the determinant of the adjacency matrix equals the square of the # of perfect matchings in G.

What's an orientation?

For each edge $(i,j) \in E$ we replace it by ij or ji.

The original undirected graph is $G=(V,E)$ and the new directed graph is $\tilde{G}=(V,E)$.

Let A be the adjacency matrix of G & we'll use \tilde{A} for the skew-symmetric adjacency matrix of \tilde{G}:

$$\tilde{A}(i,j) = \begin{cases} 1 & \text{if } \overrightarrow{ij} \in E \\ -1 & \text{if } \overrightarrow{ji} \in E \\ 0 & \text{if } (i,j) \in E \end{cases}$$

We need an orientation satisfying the following property:

Definition 1: For an orientation \tilde{G} of an undirected graph G, an even length cycle C in G is oddly oriented if when we traverse C we have an odd # of edges in the opposite direction.

(since C is even it doesn't matter which direction we traverse)
Observation: For a pair of perfect matchings $P, P' \in \mathcal{P}$, PUP' consists of vertex disjoint even length cycles and single edges ($= PNP'$).

Therefore the following definition is well-defined.

Defn. 2: For undirected G, orientation \overrightarrow{G} is Pfaffian if $\forall P, P' \in \mathcal{P}$ all cycles of PUP' are oddly oriented.

If we can find a Pfaffian orientation \overrightarrow{G} of G, then we can compute $|P|$.

Theorem: For any Pfaffian orientation \overrightarrow{G} of G,

$$|P|^2 = \det(\overrightarrow{A}).$$

Proof: First off we can reduce $\#\text{Perfect-Match} \Rightarrow \#\text{Even-cycle-covers}$.

For a directed graph an even cycle cover is a set of vertex disjoint directed cycles, all of even length which cover all of the vertices.
For undirected $G = (V,E)$ let $\overrightarrow{G} = (V,\overrightarrow{E})$ be defined by
for each $(i,j) \in E$, add \overrightarrow{ij} and \overrightarrow{ji} to \overrightarrow{E}. Thus
we replace each undirected edge by a pair of antiparallel edges. Let E denote the set of even cycle covers
of \overrightarrow{G}.

Lemma: $|P|^2 = |E|$. \\

Proof:

(\Rightarrow): Consider $P, P' \in E$. $P \cup P'$ is a set of disjoint even
length cycles, where $e \in P \cup P'$ will be a cycle of length 2.
For each cycle $C \in P \cup P'$, we can make it a
directed cycle in \overrightarrow{G} in 2 ways. Let's fix
the following way: Assume an arbitrary ordering on
the vertices V. Let v be the min $vtx.$ in C.
Orient the edge incident to v in P away from v
and then follow in that direction around C.
This mapping is invertible, so $|P|^2 \leq |E|$. \\

(\Leftarrow): Given $e \in E$, for each $\overrightarrow{C} \in \overrightarrow{E}$, there are 2 ways
to assign the edges to a pair of perfect matchings
$\overrightarrow{P}, \overrightarrow{P'}$. Assign the edge out of v (the min $vtx.$) to \overrightarrow{P}
& then alternate $\overrightarrow{P}, \overrightarrow{P'}$ around \overrightarrow{C}.
Hence, $|E| \leq |P|^2$.
Now let's show that: \(\det(G) = |E| \) when \(G \) is Pfaffian.

Consider a permutation \(\sigma = \sigma_1 \cdots \sigma_k \).

Suppose \(\sigma \) contains \(\geq 1 \) cycle of odd-length & let \(\sigma_j \) be the first such one. Let \(V_j \) be the vertices on cycle \(\sigma_j \).

Let \(\sigma' = \sigma_{j-1} \sigma_j^{-1} \sigma_j \cdots \sigma_k \) be the permutation obtained by reversing \(\sigma_j \) & keeping the others as is.

Note, \(\text{sgn}(\sigma) = \text{sgn}(\sigma') = (-1)^{n-k} \).

Since \(|\sigma_j|\) is odd, consider traversing this cycle in direction \(\sigma_j \) vs. direction \(\sigma_j^{-1} \). How many edges of \(G \) are in opposite direction to the traversal?

It's different parity: \(\# \) in opposite direction for \(\sigma_j \) \(\neq \) \(\# \) in opposite direction for \(\sigma_j^{-1} \) mod 2.

Therefore, \(\sum_{i \in V_j} A(i, \sigma(i)) = -\sum_{i \in V_j} A(i, \sigma'(i)) \)

and we have: \(\sum_{i \in [n]} A(i, \sigma(i)) = -\sum_{i \in [n]} A(i, \sigma'(i)) \)

Since the signs are the same: \(\text{sgn}(\sigma) \sum_{i} A(i, \sigma(i)) + \text{sgn}(\sigma') \sum_{i} A(i, \sigma'(i)) = 0 \).

So these terms cancel.
Thus we're left with: \[\det(A^\rightarrow) = \sum_{s\in \mathfrak{S}_n} \prod_{i\in [n]} A(i, \sigma(i)) \]

where \(E_n \) is the set of permutations consisting of only even-length cycles.

Note: \[\prod_{i\in [n]} A(i, \sigma(i)) \neq 0 \text{ iff } \forall i \in [n], (i, \sigma(i)) \in E \]

Thus, the only non-zero terms are \(\sigma \) corresponding to an even-cycle cover in \(G \).

Therefore we now have:

\[\det(A^\rightarrow) = \sum_{\sigma \in E} \prod_{i\in [n]} A(i, \sigma(i)) \]

For \(\sigma \in E \), since \(G \) is Pfaffian for \(\chi \in \mathcal{O} \),

\[\prod_{i\in V_1} A(i, \sigma(i)) = -1 \text{ since } |V_1| \text{ is even.} \]

But also hence:

\[\prod_{i\in [n]} A(i, \sigma(i)) = (-1)^{|E_{\text{even}}(\sigma)} \]

But also:

\[\text{sgn}(\sigma) = (-1)^{|E_{\text{even}}(\sigma)|} = (-1)^{k(\sigma)} \]

Therefore, \(\det(A^\rightarrow) = \sum_{\sigma \in E} (-1)^{k(\sigma)} \).
When can we find a Pfaffian orientation?

Lemma: For a planar G, we can construct a Pfaffian orientation \vec{G} in poly-time.

Proof:
First we’ll make an orientation \vec{G} where every face, except possibly the outer face, has an odd # of clockwise edges.
Part of face is on right-side when traversing the edge in forward direction.

Then we’ll prove this orientation is Pfaffian.
We’ll proceed by induction on the # of edges.

Start with a spanning tree of G.
Any orientation is OK since the only face is the outer face.

For $|E| > 1|V| - 1$, take an edge e on the outer face. Look at $G\backslash e$ & inductively orient it. Adding in e creates ≤ 1 new face f. One of the 2 orientations gives an odd # of clockwise edges on f.
Why is this orientation Pfaffian?

Take a cycle C in G.

Look at the induced subgraph in G on C & the vertices inside C.

Let $E_{\text{clock}}(C) =$ # clockwise edges on C in G.

Let $F =$ # of non-outer faces in this subgraph.

Let f_1, \ldots, f_F be these non-outer faces.

Let $V_{\text{on}}, E_{\text{on}} =$ # of vertices, edges on C.

Let $V_{\text{in}}, E_{\text{in}} =$ rest of vertices, edges.

Let $E_{\text{clock}}(f_i) =$ # of clockwise edges on the boundary of f_i.

Euler's formula: $n - m + f = 2$

Thus, $(V_{\text{on}} + V_{\text{in}}) - (E_{\text{on}} + E_{\text{in}}) + (F + 1) = 2$

C is a cycle so $V_{\text{on}} = E_{\text{on}}$

and we're left with: $V_{\text{in}} - E_{\text{in}} + F = 1 \quad (*)$.
Our construction of \vec{G} says that for all i,

\[E_{\text{on}}(f_i) \equiv 1 \mod 2. \]

Thus,

\[\sum_{i=1}^{F} E_{\text{on}}(f_i) \equiv F \mod 2 \tag{***} \]

For each e inside C, e is clockwise on exactly 1 non-outer face & $E_{\text{on}}^\text{clock}(C)$ are clockwise on exactly 1 non-outer face.

Thus,

\[\sum_{i=1}^{F} E_{\text{on}}(f_i) = E_{\text{in}} + E_{\text{on}}^\text{clock}(C). \]

Plugging in (***), we have:

\[F = E_{\text{in}} + E_{\text{on}}^\text{clock}(C) \mod 2 \]

Plugging in (*), we then have:

\[F = V_{\text{in}} + F + E_{\text{on}}^\text{clock}(C) - 1 \mod 2 \]

Therefore: $V_{\text{in}} \neq E_{\text{on}}^\text{clock}(C) \mod 2$.
Finally, take a pair \(P_i P_j P_k \) and look at a cycle \(CEPUP' \). We know \(|C|\) is even.

Since \(G \) is planar the vertices inside \(C \) are matched with each other so \(|V_{in}|\) is even.

Hence, \(E_{\text{out}}(c) \) is odd.

Therefore, \(G \) is Pfaffian.

\[\text{Note, [Alon, Robertson, Seymour, Thomas, '97]} \]
give a poly-time alg. to decide for a bipartite \(G \), if there exists a Pfaffian orientation.