Kruskal's MST algorithm:

Greedy approach:

For input $G = (V, E)$
Sort the edges by weight
Let $X = \emptyset$
Go thru the edges in order of weight
For edge $e = (y, z)$
If $X \cup e$ is acyclic then add e into X

How do we test if adding edge $e = (y, z)$ to X will create a cycle?

Check if in the graph (V, X), are y & z in the same component?
if in the same component, then adding e creates a cycle
if in diff. components then adding it is OK.
To check if \(y \) & \(z \) are in the same component, we'll use a new data structure called Union-Find.

First, why is Kruskal's algorithm correct?

Suppose by induction that a set \(X \) is part of some MST \(T \).

Consider the next edge \(e = (y, z) \) that we add to \(X \).

We want to show that \(X \cup e \) is part of some MST.

Let \(G' \) be the graph on edges \(X \), so \(G' = (V, X) \).

In \(G' \), let \(c(y) \) be the component containing vertex \(y \), and \(c(z) \) be the component for \(z \).
We're adding \(e \) to \(X \) so it must be the case that \(c(y) = c(z) \).

Claim: \(e \) is the min weight edge from \(c(y) \) to the rest of the graph.

Why? Suppose there's an edge \(e' = (a,b) \) where \(a \in c(y) \), \(b \notin c(y) \)

& \(w(e') < w(e) \).

Then Kruskal's alg considers \(e' \) before \(e \), and it would have \(c(a) = c(b) \) so it would add \(e' \).

Then \(z \) would be in \(c(y) \).

Let \(S = c(y) \).

Since \(e \) is the min weight edge of \(E \) crossing \(S \leftrightarrow \overline{S} \)

& since no edge of \(X \) crosses \(S \leftrightarrow \overline{S} \),

Then by the cut property,

\[X \cup e \subset T \text{ for a MST } T. \]
Union-find data structure:

- collection of sets - each set corresponds to a component in the graph \((V, E)\)
- each set has a unique name - there is a specific "root" vertex in each component, and the set's name is the root vertex.

Operations:
- MakeSet \((x)\): create a new set just containing \(x\)
- Find \((x)\): What is the name of the set containing \(x\)?
- Union \((x, y)\): Merge the sets containing \(x\) & \(y\).

\(O(1)\) time per MakeSet
\(O(\log n)\) per Find, and per Union
To check if \(y \) & \(z \) are in the same or different components, just check if \(\text{find}(y) = \text{find}(z) \)?

When adding edge \(e=(y,z) \) to \(X \),

Then to merge components \(c(y) \) & \(c(z) \),

\(\text{do Union}(y,z) \).

\[
\text{Kruskal}(G,w):
\]

input: connected, undirected \(G=(V,E) \) with edge weights \(w(e) > 0 \) for \(e \in E \)

output: MST defined by \(X \in E \) for all \(z \in V \), \(\text{Makeset}(z) \)

\(X = \emptyset \)

Sort \(E \) by \(\uparrow \) weight

For edge \(e=(y,z) \): (go thru edges by \(\uparrow \) weight)

if \(\text{Find}(y) \neq \text{Find}(z) \)

then \(\text{add } e \text{ to } X \)

\(\text{Union}(y,z) \)

\(\text{Return}(X) \)
Running time: \(n = |V|, m = |E| \).

Sorting \(E \Rightarrow O(m \log n) \) time.

\(n \) makesets \(\Rightarrow O(n) \) time.

\(O(m) \) Finds & \(\cup \) Unions \(\Rightarrow O(m \log n) \) time.

Total time: \(O(m \log n) \) time.

Union-find data structure:

Each set is a directed tree:
- edges point up to the root.
- name of the set is the root.

Example: \(\{B, E\}, \{A, C, D, F, G, H\}, \{I, J\} \)
Each node x has 2 values:

1) $\pi(x) =$ Parent of x

 if x is the root, then $\pi(x) = x$

2) $\text{rank}(x) =$ height of subtree below x.

$\text{Makeset}(x)$:

$\pi(x) = x$

$\text{rank}(x) = 0$

$\text{Find}(x)$:

While $x \neq \pi(x)$ do:

$x = \pi(x)$

Return(x).
To merge sets containing \(x \) and \(y \),
Point root of one to root of other
key: to minimize depth,
Point root with smaller depth to larger.
So root with smaller rank points to larger rank.

Union\((x, y)\):

\[\text{If } \text{rank}(r_x) > \text{rank}(r_y) \]
\[\text{then } \pi(y) = r_x \]

\[\text{If } \text{rank}(r_y) > \text{rank}(r_x) \]
\[\text{then } \pi(x) = r_y \]

\[\text{If } \text{rank}(r_x) = \text{rank}(r_y) \]
\[\text{then } \left\{ \begin{array}{l} \pi(r_x) = r_y \\ \text{rank}(r_x)++ \end{array} \right. \]
Key claim: max depth is $\leq \log n$

Hence, find & union take $O(\log n)$ time.

Claim 2: Root of rank k has $\geq 2^k$ nodes in its subtree (including itself).

From claim 2: Let l be # of nodes of rank k.
Then $l \times 2^k \leq n$

So $l \leq \frac{n}{2^k}$

Let $k = \log_2 n + 1$
Then $\frac{l}{2} < 1 \implies$ there are 0 nodes of rank $\geq \log_2 n$.

Proof of claim 2: by induction on k.

Base case: $k = 0$: it includes itself, so $2^0 = 1$.

Assume true for rank $< k$.

Consider node of rank k.
It was formed by union of 2 nodes of rank $k-1$.
By induction, each had $\geq 2^{k-1}$ in their subtree.
So now there are $\geq 2 \times 2^{k-1} = 2^k$ in the subtree.