
Secure Two-party Computation and Communication

by

Vladimir Kolesnikov

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

Copyright c© 2006 by Vladimir Kolesnikov

Abstract

Secure Two-party Computation and Communication

Vladimir Kolesnikov

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

2006

In this dissertation, we address several issues that arise in protecting communication

between parties, as well as in the area of secure function evaluation. Intuitively, the

notion of secure function evaluation is clear and natural: several parties wish to compute

some function of their inputs without revealing any information about the inputs, other

than what is implied by the value of the function. Research included in this dissertation

follows three main directions, briefly described below.

The first direction (Chapters 3 and 4) is the design of efficient protocols for concrete

functions of interest. Specifically, we present new, more efficient protocols for securely

computing the Greater Than (GT) function on the inputs of two parties. Secure evalua-

tion of GT is frequently needed in financial transactions. We introduce new primitives,

which are convenient building blocks for more complex tasks, and generalize our GT

solutions to satisfy them. Based on this, we construct secure auction protocols, protocols

for determining whether an integer lies on an interval, and others.

The second direction (Chapter 5) is a fundamental approach to secure evaluation

of any function, given as a boolean circuit. We present a very efficient information-

theoretic (IT) reduction from the problem of secure evaluation of a polysize formula

(or, equivalently, a log-depth boolean circuit) to Oblivious Transfer (a fundamental well-

researched cryptographic primitive). Our cost of evaluating each gate of the formula is

quadratic in its depth, while in previous reductions it was exponential. Our constructions

ii

imply efficient one-round protocols for evaluation of polysize formulas on the players’

inputs. We extend our solutions to evaluation of polysize circuits, at the cost of having

only computational security.

The third direction (Chapter 6) is research on key exchange (KE). In contrast with

the previous two directions, here the goal is for two parties to protect their communi-

cation against eavesdropping and active interference of an external attacker. KE is a

basic procedure, frequently used to establish secure channels between parties. It is a

prerequisite to a large number of protocols, including those of the above two directions.

We demonstrate a subtle flaw in a previous family of KE protocols and give new KE

definitions for the following practical “bank” setting. Here, a server wishes to exchange

a key with a client. They have a shared password, and the client carries a “bank card”,

capable of storing several cryptographic keys. Finally, we present new, more efficient KE

protocols for this setting, and prove their security.

iii

Acknowledgements

I would like to start with thanking my family. It was in kindergarten that they saw the

future Doctor of Philosophy in me and sent me to primary school. They also took good

care of me.

I consider myself very, very fortunate to have studied under the supervision of Ian F.

Blake and Charles Rackoff. It has always been a pleasure to talk to them about work,

life, or anything else. I am grateful for and impressed by their generosity, brilliance,

patience, sense of humor, support, and great advice for all occasions. I want to be like

Ian and Charlie when I grow up.

I would like to thank other committee members: Allan Borodin, Stephen Cook, Ku-

mar Murty, Stefan Saroiu, and my external reader, Shai Halevi, for many discussions

and to-the-point comments on the writeup of the thesis and one of the papers. I am

grateful to other researchers for advice and enlightening conversations that encouraged

and influenced my work and career; among them, Bill Aiello, John Byers, Giovanni Di

Crescenzo, Marc Fischlin, Péter Gács, Juan Garay, Oded Goldreich, Viktor Nikolaevich

Gorbuzov, Stuart Haber, Yuval Ishai, Hugo Krawczyk, Helger Lipmaa, Ivan Platonovich

Martynov, Steve Myers, Staszek Radziszowski, Berry Schoenmakers, Vitaly Shmatikov,

and many others.

My graduate school was fun, especially during the first two years, when the dead-

lines were far. I enjoyed life with co-students Alan, Alex, Antonina, Attila, Charlotte,

Chris, Cristiana, Dana, Diego, Javid, Josh, Kleoni, Mark, Marlena, Matei, Mike, Natasa,

Philipp, Phuong, Roman, Travis, Tristan, Tsuyoshi, Valentine, Wayne, many co-judokas,

co-soccer-players, friends, and, of course, people noted in previous paragraphs. In the

past year and a half most of enjoyment of life came from Iuliana.

Finally, I am grateful to USIA, Soros, RIT, BU, UofT, OGS, NSERC, and others for

fully paying for my education.

iv

Contents

1 Introduction 1

1.1 Securing Communication . 2

1.1.1 Overview of Our Contributions 4

1.2 Securing Computation . 5

1.2.1 Overview of Our Contributions 6

1.3 Organization of this Dissertation . 7

2 Preliminary Discussion, Definitions and Notation 9

2.1 Historical notes on Secure Function Evaluation 9

2.2 On the models for Secure Function Evaluation 10

2.2.1 The Semi-honest Model: Intuition and Justification 10

2.2.2 On the Malicious Model . 12

2.3 One Round SFE . 13

2.4 On Computational Abilities of Parties 15

2.5 Notation and Abbreviations . 16

2.6 Formal Background: Definitions . 18

2.6.1 General Secure Two-Party Computation 19

2.6.2 Definition of Security of SFE in the Semi-honest Model 19

2.7 Employed Cryptographic Primitives . 21

2.7.1 Public-Key Encryption . 21

v

2.7.2 Homomorphic Encryption . 25

2.7.3 Oblivious Transfer (OT) . 26

2.7.4 Pseudo-random Function Generator (PRFG) 27

2.7.5 Message Authentication Code (MAC) 28

3 Secure Evaluation of the Greater Than Predicate 30

3.1 Introduction . 30

3.1.1 Motivation of the Problem and the Setting 31

3.1.2 Contributions and Outline this Chapter 32

3.1.3 Our Setting . 33

3.2 Strong Conditional Oblivious Transfer 34

3.2.1 Our Definitions . 34

3.3 The GT-SCOT Protocol . 37

3.3.1 Our Construction . 38

3.3.2 Resource Analysis . 42

3.4 SCOT for Unions of Intervals . 44

3.4.1 The UI-SCOT protocol . 44

3.4.2 Resource Analysis . 48

4 Comparing Encrypted Numbers 50

4.1 Introduction . 50

4.1.1 Motivation of the Problem and the Setting 50

4.1.2 Our Contributions, Setting and Outline of the Work 52

4.2 Related Work . 53

4.3 Conditional Encrypted Mapping . 55

4.4 The GT-CEM Construction and Protocols 59

4.4.1 The GT Protocol of Chapter 3 . 59

vi

4.4.2 The Intuition of GT-CEM and the Formalization of the Random-

ization Requirements . 60

4.4.3 A space-efficient (−1, 1)-RM . 62

4.4.4 GT-CEM Based on Bitwise Paillier Encryption of Inputs 64

4.4.5 A General (v0, v1)-RM Construction 65

4.4.6 Resource Analysis . 66

4.4.7 CEM for any NC1 Predicate From Homomorphic Encryption . . . 68

4.5 Protocol Constructions from GT-CEM 68

4.5.1 Handling Malicious Behaviours 69

4.5.2 Proxy Selling with a Secret Reserve Price 70

4.6 Comparison with Previous Work . 70

5 Information Theoretically Secure Formula Evaluation 73

5.1 Introduction . 73

5.1.1 Motivation of the Problem and the Setting 73

5.1.2 Our Contributions and Outline of the Work 74

5.1.3 Comparisons with Related Previous Work 76

5.1.4 Our Setting . 78

5.2 The GESS Approach . 78

5.2.1 The Definition of Gate Evaluation Secret Sharing 79

5.2.2 Reduction of SFE to OT using GESS 82

5.2.3 GESS for gates with two binary inputs 84

5.2.4 The Main Construction – GESS for AND/OR/NOT Circuits . . . 87

5.2.5 Lower Bounds for GESS – The Optimality of Our Constructions . 90

5.2.6 Application of GESS: Efficient Practical Two Millionaires 93

5.3 Extension to Evaluating Polysize Circuits 94

5.4 Formal Definitions and Proofs . 96

5.4.1 The General Definition of GESS 97

vii

5.4.2 Proof of Theorem 7 . 98

5.4.3 The General Construction of GESS for AND/OR Gates 99

5.4.4 Proof Sketch of Theorem 13 . 100

5.5 Conclusions . 101

6 Key Exchange with Passwords and Long Keys 102

6.1 Introduction . 102

6.1.1 Motivation of the Problem and the Setting 103

6.1.2 Our Setting . 103

6.1.3 Our Contributions . 104

6.1.4 Related Work . 106

6.2 Attacking the Protocols of Halevi and Krawczyk [58] 107

6.3 Key Exchange in the Combined Keys Model 110

6.3.1 Pre-definition Discussion . 111

6.3.2 Formal Definition of Security of Key Exchange in the Combined

Keys Model . 116

6.3.3 Post-definition Discussion . 121

6.4 Our Protocol . 126

6.5 Proof of security of the protocol of Constr. 14 (Theorem 15) 132

6.5.1 Proof for the case when the adversary is given the long key and

challenges the server . 132

6.5.2 Other cases . 139

7 Summary and Future Work 143

Bibliography 146

viii

Chapter 1

Introduction

Cryptography (from Greek “secret writing”) has emerged as a tool satisfying the need for

secret communication. Primitive approaches to this problem (for example, the Caesar’s

code) have existed for thousands of years. However, only recently, with the development

of fast computing devices, has cryptography grown into a structured and mathemati-

cal science. The science of secret communications became more formal and rigorous,

and, simultaneously, new directions of cryptography appeared and developed. Modern

cryptography encompasses much more than the original intent. Examples of new direc-

tions include ability to prove possession of certain secret information without revealing

it, means of electronic identification and signing, and much more.

The state of modern communications allows easy access to almost any imaginable

resource or person. At the same time, the underlying technology often provides no or

very weak guarantees. That is, when Alice asks for something (e.g. to have a message

m delivered to Bob), it will probably be done. However, this message not only may be

lost, it may also be read and, more importantly, modified by an adversary, while it is

in transit. While most Internet traffic is of little or no interest to anyone other than

its intended recipient, a portion of it serves transactions of value, and requires serious

attention to its security. This is why protection against eavesdropping on and interference

1

Chapter 1. Introduction 2

with the legitimate communication remains perhaps the most commonly used fruit of

cryptography. Later in this section, we give a brief high level overview of the goals and

methods of securing communication. Chapter 6 contains our contributions to this area

of cryptography.

Suppose for now that we’ve solved the above problem and Alice is fully satisfied that

her communication with Bob, Charlie, and others is private and authentic. Is that all

she would need? Imagine a situation where Alice participates in a transaction with Bob,

but she does not completely trust him. This may happen in many settings where the

participants may have conflicting interests, including contract signing, buy/sell transac-

tions, etc. Securing the communication channel can not provide any assurance that Bob

does not cheat. Can we protect Alice’s (and everyone else’s) interests in this setting? A

study of Secure Function Evaluation (SFE), which began in the 1980’s, emerged from the

need to not only communicate, but also to compute securely. It addresses the problem

of providing security against cheating participants of the computation. We give more

examples and clarify the goals of secure computing later in this chapter. A substantial

part of this thesis (Chapters 3–5) discusses in detail our contribution to this area of

cryptography. We remark that the term secure Multi-Party Computation (MPC) is often

used synonymously with SFE in the literature. Sometimes the term MPC is used to

emphasize that there are more than two participants in the computation.

1.1 Securing Communication

Consider the following setting. Two honest parties Alice and Bob trust each other, and

wish to talk over a public channel. There is an intruder Eve, who has full control of that

channel, and who is not an authorised participant of the conversation. Alice and Bob

want to ensure security of their conversation. Informally, this means that the following

two conditions are satisfied:

Chapter 1. Introduction 3

• Privacy. Eve does not learn anything from observing the communication (except

its length).

• Integrity. If Alice (resp. Bob) receives a message, then this message was sent by

Bob (resp. Alice).

We first note that both Alice and Bob must possess some identity-proving credentials

to achieve this level of security. Indeed, if at least one of them does not, then nothing

prevents Eve from impersonating that person1. In general, either what one knows (some

secret), what one is (a fingerprint, retina image, etc.), or what one has (a photo ID)

identifies this person. In this thesis, we are interested in communication over a network,

and only the first type of credential is useful in our setting2. Such credential may be a

secret shared password, a binary string, established and trusted public/private key pairs,

or some combination of them.

It turns out that it is possible to establish a secure conversation between Alice and

Bob if they both possess only a relatively short (100–200-bit) random secret string, which

is called a key. This secure channel can be obtained by using symmetric encryption and

message authentication codes (MAC), many constructions of which are believed to be

secure. These techniques are well researched and understood, and we do not discuss

their use in establishing secure channels in this thesis. However, we stress that a fresh

randomly chosen key is necessary for each conversation between Alice and Bob. This is

the reason why the following trivial solution is unacceptable: Alice and Bob simply use

their credential strings as the keys for securing the channel. We discuss the need for a

better solution in more detail in the introduction of Chapter 6.

1We note that there are settings where it is necessary to ensure authenticity of only one of the parties.
Moreover, anonymity of the other party may be essential. In this case, that party need not have/provide
credentials.

2A change in assumption may allow use of credentials of other types. For example, if we assume that
Alice’s fingerprint image is secret, it can be used remotely to certify her identity. This is, however, a
non-standard and relatively easily violated assumption.

Chapter 1. Introduction 4

A natural and satisfactory approach is to have Alice and Bob use their credentials

to generate a common fresh key each time they want to communicate. This problem,

called Key Exchange (KE), turns out to be a far from trivial task, due to the potentially

exceptionally strong abilities of the intruder Eve. We note that, despite an immense

research effort, even definitions of security of KE even in simple settings, have not been

agreed upon.

1.1.1 Overview of Our Contributions

In Chapter 6, we discuss in detail our contributions to defining security of and imple-

menting efficient KE protocols in following practical “combined keys” setting. Here, a

server (e.g., a bank) wishes to exchange a key with a client. They have a shared password

– a relatively short, 3-10 alphanumeric characters, human-memorable string. In addition,

the server has large storage and the client carries a “bank card”, which stores several

long (100-2000-bit) strings. The latter will be keys that are suitable for use in strong

cryptography. We assume that the server’s keys are securely stored and cannot be stolen.

Unfortunately, a similar level of storage security is unreasonable to expect from clients,

who are “regular people”. We take advantage of the inherent logistical differences in how

keys are stored by our clients (password in human memory, long key on the card), to

achieve more robust security than what is possible by using either type of key alone. In-

deed, possession of long keys allows strong security guarantees against an online attacker.

However, the card that stores these keys may be (relatively) easily stolen by a physical

attacker. On the other hand, passwords may be memorized, need not be stored, and thus

can not be stolen. However, the protection against an online attacker one can hope to

achieve with passwords is rather weak – passwords can always be guessed with relatively

high probability. The only (somewhat satisfactory) protection against guessing attacks

is recognizing them and refusing connection after a predetermined number of password

failures.

Chapter 1. Introduction 5

Combining the benefits of both settings allows us to obtain a system, secure against

both types of attack, and thus suitable for protection of sensitive information. This model

is even more appealing due to its wide acceptance – it is natural for us to think of a card

and a password, when we do, say, personal banking.

In addition to the introduction and formalization of this setting, we point out a subtle

flaw in some instances of the influential KE protocol of Halevi and Krawczyk [58] in a

similar setting, and give a new, more efficient protocol. Chapter 6 discusses in detail the

setting and our contributions.

1.2 Securing Computation

Intuitively, the notion of secure function evaluation is quite clear and natural. The

setting is as follows: there are several parties (sometimes also called players) P1, ..., Pn,

perhaps separated by distance, but connected by private communication channels. Each

Pi has a private input xi, which he wants to contribute to help evaluate some function

f(x1, ..., xn), defined on the players’ inputs. At the same time, each player wishes to

maintain the privacy of his input to the maximum level possible. Of course, the value of

f might reveal some information about some of the inputs. In fact, this is true for most

functions of interest. We wish to ensure that no other information is disclosed during the

function evaluation procedure.

A moment’s thought would reveal the generality and usefulness of this concept and the

practical need for its implementation. Even our everyday life and actions could benefit

from these techniques, and much more so military, financial and political applications.

For example, the voting process can be roughly represented as evaluation of a “voting

function” on the inputs held by each individual voter. A secure evaluation of this function

would guarantee both correctness of the tally and voter privacy. An online auction is

another such application. Here, the bidders and the auctioneer are players who wish to

Chapter 1. Introduction 6

evaluate the “auction function”, whose value is equal to the ID of the highest bidder. At

the same time, the privacy of bids is desired, and is in fact a requirement in high-stake

auctions. Any imaginable interaction between parties that requires (but lacks) a degree

of mutual trust or a trusted intermediary would benefit from such cryptographic tools.

Jumping ahead, we note that the general problem of SFE has been solved in many

settings. That is, there exist well-defined protocols that allow secure computation of

any function, based on certain believed complexity assumptions. However, the general

solution is most often too inefficient to be applied in practice. Therefore, a lot of modern

research concentrates on specific problems, for which practical protocols are constructed

and proven to be secure. One such simple problem of high practical importance is that

of evaluating the Greater Than (GT) predicate on the inputs of two parties. Securely

determining the greater of two numbers has applications in building secure auctions, data

mining systems, and more.

1.2.1 Overview of Our Contributions

In this section, we overview our contributions to both specialized and general SFE.

We consider in detail the problem of SFE of the GT predicate and related function-

alities. In addition to the natural need of SFE of GT in auctions, trading, and a variety

of other financial transactions, it is also needed in areas such as distributed database

mining. (See introductions to Chapters 3 and 4 for more justification.)

As part of our SFE work, we strengthen a popular notion of Oblivious Transfer

(OT), and introduce Strong Conditional Oblivious Transfer (SCOT). SCOT is a more

convenient (than OT) building block for more complex protocols. We give a new more

efficient one-round algorithm for secure evaluation of the GT predicate and cast it as a

SCOT. We discuss its applications and extensions.

Our GT protocol requires both parties to “know” their respective input integers, and

not just their encryptions. While this requirement is often natural, it becomes a problem

Chapter 1. Introduction 7

in many situations, such as when we want to outsource the computation to a third party.

We then give another GT protocol, which does not have this restriction. We give a

formalization for the setting with the helping server, which our protocol satisfies. We

show how to easily construct auction and sales protocols from our constructions.

We also describe a generic approach to secure function evaluation (SFE). We present

a more efficient than previously known ([29, 30, 60, 61, 63]) information-theoretic (IT)

reduction from the problem of evaluation of a polysize formula on the players’ inputs

to OT. Our constructions imply more efficient one-round protocols for evaluation of

polysize formulas on the players’ inputs. We also introduce Gate Evaluation Secret

Sharing (GESS) – a new type of secret sharing, designed for use in SFE with minimal

interaction.

1.3 Organization of this Dissertation

We start (Chapter 2) with presenting basic definitions, notation and facts from the lit-

erature, as well as accompanying discussions. We present the necessary background

information, clarifying various settings in which we design our protocols. In particular,

we discuss the semi-honest model and its significance and use. We then discuss the need

for a stronger setting – one with malicious adversaries. We briefly outline the capabilities

of parties in the two models and mention the automated compilation procedure for ob-

taining protocols secure in the malicious model from protocols secure in the semi-honest

model. This further justifies the interest in solutions in the semi-honest model and clari-

fies the relationship between the two models. We discuss the need for one-round SFE and

for modelling various computational abilities of parties. We give brief historic overviews

of the development of the most important notions and primitives we use.

The rest of the dissertation comprises author’s published research results [14, 15,

64, 65]. We start with our research contributions to SFE, and then present our KE

Chapter 1. Introduction 8

results. Each of the chapters contains additional relevant background, summary of the

contribution, comparison with prior work, and the detailed writeup of the results.

Our first result [14] is presented in Chapter 3. Here we introduce the notion of SCOT,

and present a new more efficient one-round SFE of the GT predicate and cast it as a

SCOT. We discuss its applications and extensions.

In Chapter 4, we give another GT protocol, suitable for the setting with the helping

server. We discuss natural constructions of secure auctions based on our protocol. This

chapter contains the results that appeared in [15].

While Chapters 3 and 4 solve specific problems (GT, auctions), Chapter 5 describes

a generic approach to secure function evaluation (SFE). The results of this chapter were

reported in [64].

In Chapter 6 we switch from discussing SFE to our results in the area of KE, reported

in [65]. In this chapter, we introduce and formalize the “combined keys” setting, point

out a flaw in some instances of the protocol of Halevi and Krawczyk [58], and give a new,

more efficient KE protocol.

We conclude in Chapter 7 with a brief overview and directions for future work.

Chapter 2

Preliminary Discussion, Definitions

and Notation

A lot of our work concerns secure two-party computation. Recall, the goal of secure

computation is the design of protocols, execution of which leaks no (or negligible) amount

of information about the participants’ inputs (other than what is implied by the output

of the computation). In this chapter, we provide some background information, intuition,

justification, and formal definitions necessary for our discussion in Chapters 3 – 5. Our

work on KE requires substantially different background, and we delay its discussion until

the appropriate section of Chapter 6. We also introduce relevant primitives and notation,

and summarize the abbreviations used throughout this dissertation.

2.1 Historical notes on Secure Function Evaluation

We give a very brief historic overview of the development of the field of SFE.

The problem of secure evaluation of a function was first suggested in 1982 by Yao [89].

He discussed the problem (and the solution) of SFE of a small instance of the GT pred-

9

Chapter 2. Preliminary Discussion, Definitions and Notation 10

icate1. At that time, the problem of SFE of general functions seemed hard to approach.

In 1986, Yao [90] proposed a protocol for general SFE in the setting with two parties.

He relied on a specific assumption (that factoring is hard), and made essential use of the

oblivious transfer primitive (see Sect. 2.7.3). The development of the “garbled circuit”

approach starts with this work. In 1987, Goldreich, Micali and Wigderson [52, 48] con-

sidered a more general setting of SFE with an arbitrary number of parties. Additionally,

they used zero-knowledge proofs of Goldwasser, Micali and Rackoff [54], and introduced

the compilation of the protocols of the semi-honest model into ones secure in the mali-

cious model (see Sect. 2.2.1 and 2.2.2). The above groundbreaking results [89, 90, 52, 48]

were presented quite informally, and the corresponding rigorously presented definitions

and constructions appeared later. For example, the subsequent works of Beaver, Micali

and Rogaway [5], and Rogaway [85] contains formal definitions of SFE and an implicit

description of the garbled circuit construction. The first explicit garbled circuit construc-

tion with a full proof appeared in 2004 [70]. In 1988, Kilian [63] showed how to perform

general SFE based only on oblivious transfer (see Sect. 2.7.3). Other models, e.g., with

computationally unbounded players and private channels were considered [13, 27].

2.2 On the models for Secure Function Evaluation

We present a high level discussion of the relevant models in which we consider the prob-

lems we solve. We give the necessary formal definitions in Sect. 2.6.

2.2.1 The Semi-honest Model: Intuition and Justification

For much of our work we assume that the adversary is semi-honest (sometimes also

called passive). Intuitively, this means that he exactly follows the protocol specification,

1The problem of secure comparison of two integers is now widely known as Yao’s two millionaires
problem.

Chapter 2. Preliminary Discussion, Definitions and Notation 11

yet attempts to learn additional information by analyzing “everything he sees”, i.e. his

input, randomness, and the transcript of messages received during the execution. (See

Sect. 2.6.2 for more formal exposition.) Although the semi-honest adversary is far weaker

than the malicious (or active) one (one who may arbitrarily deviate from the protocol

specification), the use and research of the semi-honest model2 is well justified.

Firstly, protection against only semi-honest adversaries is often sufficient for real-

world applications. Indeed, it is often the case that there is a certain mutual trust

among the players executing a protocol. At the same time, it is hard to ensure that the

view of computation is destroyed after completion of the protocol, even if both parties

wish to do this. This is because of the complex structure of the networks, virtual memory

and caching mechanisms; almost always information is stored in several places. A trace

of an execution secure in the semi-honest model will be of limited help to an adversary

who might later hack into a player’s computer and obtain this information. Of course,

the input of the hacked player will be compromised, but the private information of other

players will remain hidden due to the security properties of the (completed) protocols.

Further, it is often the case that reputation is of high importance to businesses and

even to private parties. In many scenarios, the payoff of actively cheating is not too

high, while the cost of being caught is significantly higher (e.g. destroyed reputation or a

chance of legal action). Even though the probability of being caught (e.g., by a random

inspection of software or other methods) may be small, this alone may be a sufficient

deterrent from active cheating. Semi-honest cheating, however, is often impossible to

detect; therefore, protection is needed against semi-honest players.

Finally, the protocol behaviour may be hidden in a large software or hardware system

(there exist heuristic methods for obfuscating an execution process), and the cost of

amending the behaviour of such systems may be higher than the potential benefit.

While the above discussion justifies certain direct uses of protocols secure in the semi-

2The semi-honest model assumes all players are semi-honest.

Chapter 2. Preliminary Discussion, Definitions and Notation 12

honest model, research of this model is also important as a stepping stone to achieving

fully secure protocols in the malicious model. There are tools (bit commitments, zero-

knowledge proofs, and basic protocols allowing players to securely choose random bits)

which allow automatic compilation of a protocol secure in the semi-honest model into a

protocol computing the same functionality securely in the malicious model. Intuitively,

players first commit to their input and securely choose their random tapes. Then, for

every message sent by the semi-honest protocol, a zero-knowledge proof is added, con-

vincing other player(s) that the message is formed properly (i.e. consistently with the

protocol, player’s randomness and previous messages). With a negligible probability of

proving a false statement, parties are forced to follow the protocol, and thus their cheating

capabilities lie in the semi-honest model.

Further, different players may have different levels of trust. For example, in an auction

system, a bidder may trust an established auction house to act semi-honestly. At the

same time, neither he, nor the auction house might have such trust in other bidders, thus

requiring protection against malicious bidders. In such cases, it is often most efficient to

design semi-honest protocols, and then selectively add efficient protection against certain

malicious behaviours of certain players. This is the approach we take in our protocols in

Chapter 4.

2.2.2 On the Malicious Model

In our work, we don’t consider the malicious model in its full generality. We note,

however, that we consider some malicious behaviours of SFE participants in Chapter

4. Further, in our discussion of KE, we protect against certain adversarial behaviours,

relevant to our specific problem. In particular, our adversary not only controls some

of the players of the protocol, but also is a powerful external entity, able to arbitrarily

schedule and execute multiple instances of the KE protocol between honest and malicious

players. On the other hand, we make certain assumptions on the inputs of honest parties

Chapter 2. Preliminary Discussion, Definitions and Notation 13

(e.g. that they are randomly chosen equal strings that are not even partially known to

the adversary). Defining security in this (class of) settings is a challenging task of modern

cryptographic research. Indeed, the main contribution of Chapter 6 is a key exchange

definition.

We stress that security definitions of KE are significantly different from those of SFE

in the malicious model. Therefore, we do not include the latter in the discussion of this

chapter, other than briefly mentioning them where appropriate.

2.3 One Round SFE

SFE constructions presented in this dissertation are one round. That is, the initiator

Alice sends the first message to the other party Bob; Bob replies (he is the responder),

and Alice computes f(x, y) (thus Alice is also the receiver). We now briefly justify the

research effort in seeking one round solutions.

One round SFE is particularly interesting for several reasons.

Firstly, from a practical point of view, interaction necessarily involves latencies in

message deliveries, and in many practical situations waiting for messages dominates the

entire computation time.

Secondly, a large volume of research, e.g. [22, 40, 60, 61], aims specifically at reducing

round complexity of multi-party protocols. (We note that polynomial time one-round

SFE protocols are known in many, but not all, settings.) Further investigation of the two-

party one-round model may help increase our understanding of general secure multi-party

computation.

Thirdly, non-interactivity is desired or even necessary in many real-life settings. For

example, the recently popular area of secure autonomous agent computing (see, e.g.

[2, 22]) relies on one round protocols, commonly implemented via encrypted circuit con-

structions. One example, discussed in [2], is that of a shopping agent that would accept

Chapter 2. Preliminary Discussion, Definitions and Notation 14

a sales offer if it is below a certain threshold. Auctions and other financial applications

also benefit from one round solutions, eliminating or reducing the need for online waiting

and synchronization between parties.

Finally, and, perhaps, most importantly, one round solutions have the following

unique opportunity for performance improvement. Consider the practical setting, where

the players have unequal levels of trust. For example, Bob might be a bank, and Alice

might be his customer. As discussed in Sect. 2.2.1, Bob might value his reputation

highly, and will not risk active cheating. Alice, on the other hand, may have less to lose,

and might be tempted to deviate from prescribed protocols to gain potential benefit.

In such situations, where Alice is assumed to be malicious, and Bob is assumed to be

semi-honest, one round protocols limit Alice’s abilities to cheat. Indeed, all that Alice

does is encode her input and decode the output. We note that in many situations it is

relatively easy to ensure that Alice either cannot cheat while performing these actions,

or that she cannot benefit from cheating. While, in general, complex and expensive

zero-knowledge proof techniques can be used, light-weight solutions are applicable in

this setting. While Alice cannot be prevented from substituting her input with another

allowed value, it can often be ensured that she does not learn anything from protocol

executions where she sends Bob an invalid input or its improper encoding. Conditional

Disclosure of Secrets (CDS) techniques of Aiello, Ishai and Reingold [1] and Laur and

Lipmaa [68] serve this purpose efficiently. Further, Bob can send Alice a random and

secret encoding of the output, instead of the plaintext output. In this case, Alice would

not be able to lie about the value she received. Effectively, one-round protocols allow us

to shift computation to Bob, where it is cheaper, due to our semi-honest level of trust in

him. See Sect. 4.5.1 for more discussion.

Chapter 2. Preliminary Discussion, Definitions and Notation 15

2.4 On Computational Abilities of Parties

It is standard in cryptography to model adversaries as Probabilistic Polynomial Time

(PPT) Turing machines. This is a reasonable assumption, and the achieved security

satisfies the needs of most of today’s applications. However, for the sake of theoret-

ical interest and several practical reasons, it is often beneficial to consider a stronger

computationally unbounded adversary. Below we briefly outline these reasons.

Computational security relies on the assumption of hardness of solving certain prob-

lems. Once a protocol is executed, the corresponding concrete instances of hard problems

are fixed. A solution of any of these problems at any time in the future may reveal entire

private inputs of the parties. Thus, a participant of the protocol or even a communica-

tion channel observer may record the transcript of the protocol execution and attempt

to recover information years later. We stress that the success of this attack may be quite

likely due to the exponentially decreasing costs of processing power and due to possible

algorithmic breakthroughs in solving underlying hard problems. While in some settings,

it is sufficient to keep the privacy of the input only for a few years, many applications (e.g.

political, military, even financial) may require protection for indefinite periods of time.

For those applications, it often helps to consider computationally unbounded adversaries.

Further, in many settings, the execution of protocols is not performed in isolation.

That is, a particular protocol may be executed sequentially, in parallel, or concurrently

with another instance of itself or other protocols. Computational security ensures that

the information leaked during the execution of a single instance of a protocol does not

help the adversary. However, no security guarantees can be inferred from this for the

setting when protocols are executed concurrently, and a complicated special consideration

is necessary for a particular protocol. At the same time, in most cases a composition of

protocols secure against a computationally unbounded adversary is secure. See [67] for

more discussion and counterexamples.

It is not hard to see that in the two-party computation over standard communication

Chapter 2. Preliminary Discussion, Definitions and Notation 16

channels, it is not possible to achieve security if both parties are computationally un-

bounded. Therefore, it is interesting to consider settings, where one of the parties (either

Alice or Bob) is polytime, while the other is not. We still get the benefits described

above, with respect to the corresponding party. Note that in practice, the input of only

one of the parties (say, Bob) may need to be protected indefinitely. Then we would

benefit from a protocol which is secure against computationally unbounded Alice. We

further mention, but do not address in this dissertation, that the assumptions on parties’

abilities may be fine-tuned. For example, it is reasonable to assume that Alice is a PPT

Turing machine during the execution of the protocol, but has unlimited time to analyze

the transcript, once the protocol has completed.

Jumping ahead, we note that in this dissertation (Chapters 3 and 4), we approach

one-round SFE of concrete problems in the setting with computationally unbounded

receiver Alice. We note that many of the current one round SFE protocols in the setting

with unbounded Alice are not very efficient. The best currently known general approach

[30, 63, 86] is quite inefficient and only works for NC1 circuits. At the same time, if

Alice is assumed to be polytime bounded, we could use the very efficient Yao’s garbled

circuit approach [70, 76, 85, 89] at a cost linear with the size of the circuit. We remark

that our solutions are in the more difficult setting (unbounded Alice), while achieving

performance only slightly worse than the best known approach in the easier (polytime

bounded Alice) setting.

2.5 Notation and Abbreviations

Notation 1. For strings of the same length s, t ∈ {0, 1}∗, let s⊕ t denote their bitwise

exclusive-or.

Notation 2. We denote uniformly random sampling by the ∈R operator. For example,

r ∈R D means “choose r uniformly at random from D”.

Chapter 2. Preliminary Discussion, Definitions and Notation 17

Throughout this dissertation, we will often refer to (concrete or abstract) adversaries

as Adv.

For reference, we present the list of most common abbreviations used in this thesis.

The reader might skip it at the first reading, and refer to it if necessary.

BP – Branching Program

CEM – Conditional Encrypted Mapping

COT – Conditional Oblivious Transfer

GESS – Gate Evaluation Secret Sharing

GT – Greater Than

IT – Information Theoretic

KE – Key Exchange

MAC – Message Authentication Code

OT – Oblivious Transfer

PPT – Probabilistic Polynomial Time

PSPP – Private Selective Payments Protocol

PRFG – Pseudorandom Function Generator

SCOT – Strong Conditional Oblivious Transfer

SFE – Secure Function Evaluation

Throughout this dissertation we refer to parties by names (Alice, Bob), their function

(Sender, Receiver, Server, Client), index (Pi), or the initial of the name or function (A,

B, S, R). In our notation, Alice is the party who sends the first message of the protocol to

Bob. The reason for using these naming conventions is that it appears to be clearer and

more convenient to refer to players differently in the contexts of each particular problem

we are considering.

Chapter 2. Preliminary Discussion, Definitions and Notation 18

2.6 Formal Background: Definitions

We present standard definitions from the literature which are necessary to introduce the

subject of the dissertation.

Definition 1. A function f : N 7→ [0, 1] is called negligible if for every positive polynomial

p and all sufficiently large k, f(k) < 1/p(k).

A function f : N 7→ [0, 1] is called overwhelming, if the function 1− f is negligible.

Most of the modern theoretical cryptography is built around probabilities, random

distributions and their relations. The following definition formalizes the basic notions

relating to probability ensembles.

Definition 2. A probability ensemble indexed by S ⊆ {0, 1}∗ is a family {Xw}w∈S,

so that each Xw is a random variable (or distribution) which ranges over (a subset of)

{0, 1}poly(|w|).

Statistical distance between distributions Xw and Yw is defined as Dist(Xw, Yw) =

1/2
∑

α | Pr[Xw = α]− Pr[Yw = α]|.

We say that two such ensembles, X = {Xw}w∈S and Y = {Yw}w∈S are identically

distributed (and write X ≡ Y), if ∀w ∈ S, Dist(Xw, Yw) = 0

Ensembles X and Y are said to be statistically indistinguishable, if for some negligible

function µ : N 7→ [0, 1] and all w ∈ S, Dist(Xw, Yw) < µ(|w|). In such case we write

X
s
≡ Y .

We say that ensembles X and Y are computationally indistinguishable, if for every

family of (possibly non-uniform) polynomial-size circuits, {Dn}n∈N (distinguishers), there

Chapter 2. Preliminary Discussion, Definitions and Notation 19

exists a negligible function µ : N 7→ [0, 1], such that ∀w ∈ S, | Pr[D|w|(w, Xw) = 1] −

Pr[D|w|(w, Yw) = 1]| < µ(|w|). In such case we write X
c
≡ Y .

2.6.1 General Secure Two-Party Computation

A two-party functionality is a possibly random process that maps two inputs (one input

per party) to two outputs (one per each party). We wish to evaluate functionalities

(rather than functions), since the participants of a protocol have separate inputs, and, in

general, wish to compute different functions of the common input and randomness. In

this dissertation, we will use both terms (function and functionality) interchangeably, to

mean the more general notion.

Intuitively, a protocol is a formal prescription, or a program, of actions of parties who

interact with each other by sending messages. The output of the protocol is the output

of all its participants.

The problem of secure two-party computation is to devise a protocol that securely

computes a given functionality f : {0, 1}∗ × {0, 1}∗ 7→ {0, 1}∗ × {0, 1}∗. We will be

interested in both deterministic and general (randomized) functionalities.

Definition 3. We say that a protocol Π computes a general functionality f if the output

distribution of the protocol on input ~x is distributed statistically close to f(~x).

The definition of security of computation in the semi-honest model is discussed below.

2.6.2 Definition of Security of SFE in the Semi-honest Model

Recall, a semi-honest party is a party who follows the protocol, but keeps a record of

everything he sees. In particular, he tosses fair coins and sends messages to the other

party according to the protocol. In the end he tries to compute a function of the other

party’s input. Notice that it is sufficient for the semi-honest party to keep a record only

Chapter 2. Preliminary Discussion, Definitions and Notation 20

of internal coin tosses and the received messages. Definitions presented in this section

are standard in the literature, and appear, for example, in Goldreich [49].

First, to formalize the notion of keeping a record, define the “view” of the computa-

tion.

Definition 4. (view of the two-party computation)

Let f : {0, 1}∗ × {0, 1}∗ 7→ {0, 1}∗ × {0, 1}∗ be a functionality where f1(x, y) denotes

the first element of f(x, y), and Π be a two-party protocol for computing f .

The view of the first party during the execution of Π on (x, y), denoted V IEW Π
1 (x, y),

is (x, r, m1, ..., mt), where r represents the output of the first party’s internal coin tosses,

and mi represents the ith message it has received.

The output of the first party during an execution of Π on (x, y), denoted

OUTPUT Π
1 (x, y), is determined by the party’s view of the execution.

The view and output of the second party is defined analogously.

We note that VIEWΠ
P (x, y) is a random variable over the random coins of the parties.

We now proceed and define privacy for the semi-honest model. A common approach

to this is to use the simulation paradigm. We say that a protocol securely computes

functionality f , if whatever can be computed (by either party) from the execution of

the protocol, can be essentially obtained from that party’s input and the output of the

computation. Notice that it is sufficient to (efficiently) “simulate the view” of each (semi-

honest) party, since anything that can be obtained from participation in the protocol,

can be obtained from the view of the party.

Definition 5. (privacy w.r.t. semi-honest behavior) For a deterministic functionality

f , we say that a protocol Π securely computes f if there exist probabilistic polytime

algorithms S1 and S2 (simulators), such that

{S1(x, f1(x, y))}x,y∈{0,1}∗
c
≡ {V IEW Π

1 (x, y)}x,y∈{0,1}∗

Chapter 2. Preliminary Discussion, Definitions and Notation 21

{S2(y, f2(x, y))}x,y∈{0,1}∗
c
≡ {V IEW Π

2 (x, y)}x,y∈{0,1}∗

where |x| = |y|.

We say that Π privately computes a general functionality f , if there exist probabilistic

polytime algorithms S1 and S2 (simulators), such that

{S1(x, f1(x, y)), f2(x, y)}x,y∈{0,1}∗
c
≡ {V IEW Π

1 (x, y), OUTPUT Π
2 (x, y)}x,y∈{0,1}∗

{f1(x, y), S2(y, f2(x, y))}x,y∈{0,1}∗
c
≡ {OUTPUT Π

1 (x, y), V IEW Π
2 (x, y)}x,y∈{0,1}∗

Note that the above V IEW Π
1 (x, y), V IEW Π

2 (x, y), OUTPUT Π
1 (x, y) and

OUTPUT Π
2 (x, y) are related random variables, defined as a function of the same random

execution.

We note that for the ease of understanding, some of the constructions and analysis in

this dissertation are presented with respect to fixed parameters. We stress that we have

in mind their asymptotic notions. Therefore, for example, when talking about a view

of a party VIEWΠ
P (x, y), we mean an appropriately indexed ensemble {VIEWΠ

P (x, y)} of

views.

2.7 Employed Cryptographic Primitives

2.7.1 Public-Key Encryption

Public-key encryption is one of the most important discoveries in the area of cryptog-

raphy. Its main idea is to separate the keys needed for encryption and decryption of

messages. The key for encryption could be public, e.g., for the purpose of allowing any-

one to securely send a message to the recipient. The decryption key cannot be efficiently

obtained from the public key, and is kept secret.

Chapter 2. Preliminary Discussion, Definitions and Notation 22

Diffie and Hellman are widely credited as the inventors of public key cryptography

for their seminal contribution [34]. Soon after the appearance of [34], Rivest, Shamir and

Adelman [83, 84] introduced the well-known RSA encryption scheme. The first invention

of public key encryption is sometimes credited to J. H. Ellis and Clifford Cocks, who

showed the feasibility of the concept and proposed an RSA-like scheme, respectively.

This work was done in in the early 1970s. See [36] for a historical overview. Ellis and

Cocks were staff members at GCHQ (a British intelligence agency), and the fact of their

inventions was kept secret until 1997.

Definition 6. (Public Key Encryption Scheme) Let E = (Gen, Enc, Dec) be a triple of

PPT algorithms, where:

• Gen : 1k 7→ PK × SK is the key generation algorithm. On input 1k, Gen outputs

public and private (secret) keys pk ∈ PK, sk ∈ SK.

• Enc : PK×M 7→ C is the encryption algorithm, where M and C are the plaintext

and ciphertext domains.

• Dec : SK × C 7→ M ∪ ⊥ is the decryption algorithm. We intend that Dec may

output ⊥ if the ciphertext is invalid.

We say that E is a public key encryption scheme, if it satisfies the correctness prop-

erty: ∀m ∈M, ∀(pk, sk) generated by Gen, Decsk(Encpk(m)) = m.

We write Encpk and Decsk to emphasize the use of the corresponding key. We may

sometimes abuse the notation and omit the subscript where the meaning is clear from

the context. We also note that domains M and C are dependent on the public key pk.

Note that Def. 6 refers to the functionality of encryption but not to its security.

In particular, identity transformations Enc, Dec satisfy our requirements. In practice,

of course, we wish to have some guarantee of privacy of the encrypted data. In this

dissertation, we make use of two different notions of security of encryption – semantic

Chapter 2. Preliminary Discussion, Definitions and Notation 23

(or, equivalently, chosen plaintext attack (CPA)) security and chosen ciphertext attack

(CCA)) security. We note that the latter is often referred in the literature as chosen

ciphertext attack - 2, or CCA2. We define these notions below.

Semantic Security

A semantically secure cryptosystem satisfies our intuitive notion that no new knowl-

edge about the message is gained by a polytime observer from seeing an encryption.

The formalization of this notion and a construction based on the quadratic residuocity

assumption is due to Goldwasser and Micali [53].

Consider the following game GCPA an adversary Adv plays. Gen(1k) is run, and Adv

is given the generated pk. Adversary then chooses two messages m1, m2 ∈ M . A bit b is

randomly chosen and Adv is given the challenge c = Encpk(mb). Adv then outputs a bit

b′. Adv wins if b = b′.

Definition 7. We say that an encryption scheme E is semantically secure, if for every

polytime (in k) Adv, his success in winning in GCPA is negligibly different from 1/2.

We will use probabilistic encryption schemes. Informally, a scheme is probabilistic (or

randomized), if its encryption function uses randomness to encrypt a plaintext as one of

many possible ciphertexts. We note that a semantically secure scheme must be proba-

bilistic. Indeed, in particular, a polytime Adv must not be able to relate two encryptions

of the same message, which is easily done for non-probabilistic schemes (otherwise it is

easy to construct an Adv who wins GCPA). We will use the property of unlinkability of

encryptions.

We say that an encryption scheme allows re-randomization if a random encryption of

a plaintext can be (efficiently) computed from a corresponding ciphertext and the public

key.

Chapter 2. Preliminary Discussion, Definitions and Notation 24

Chosen Ciphertext Security

We note that in many applications semantic security is insufficient. In particular, if an

adversary is given an encryption of a message m, he may be able to construct encryptions

of messages related to m. (Encryption schemes that allow that are called malleable.) The

following notion of security denies Adv this power (actually, it provides a slightly stronger

guarantee than non-malleability).

Consider the following game GCCA. It proceeds exactly as GCPA, with the exception

that Adv is given the following additional power. Adv is allowed to obtain decryptions

of ciphertexts c′ 6= c of his choice (by querying the decryption oracle O(c′) = Decsk(c
′))

whenever he wishes. We note that, in particular, Adv is allowed to query O(c′) before he

chooses the messages m1, m2.

Definition 8. We say that an encryption scheme E is chosen ciphertext (CCA) secure,

if for every polytime (in k) Adv, his success in winning in GCCA is negligibly different

from 1/2.

Intuitively, it is clear that Adv should not be able to “malleate” encryptions; if he

could, then he could query Decsk on encryptions related to mb, and thus gain advantage

in GCCA. We use CCA-secure encryption schemes in construction of KE protocols.

This important notion was introduced by Rackoff and Simon [82]. A weaker and less

natural notion of CCA1 security was earlier proposed by Naor and Yung [72]. The CCA1

adversary has the power similar to the CCA one, except that he is not allowed to access

the decryption oracle after he is presented with the challenge. Dolev, Dwork and Naor [35]

later introduced the notion of non-malleability and gave proof-of-concept constructions of

non-malleable encryption, string commitment and zero-knowledge proof schemes. These

constructions rely on non-interactive zero-knowledge proofs, and require a large common

random string. Today, CCA-secure schemes are practical. The most popular and efficient

Cramer-Shoup scheme [31] relies on Decisional Diffie-Hellman assumption and requires

Chapter 2. Preliminary Discussion, Definitions and Notation 25

only a few exponentiations in a group.

2.7.2 Homomorphic Encryption

We say that a public-key encryption scheme E is homomorphic, if for some operations

⊕ and ⊗ (defined on possibly different domains), it holds that for all key pairs (pk, sk),

x ⊕ y = Decsk(Encpk(x) ⊗ Encpk(y)). A scheme is called additively (multiplicatively)

homomorphic if it is homomorphic with respect to the corresponding operation (e.g. ad-

ditive scheme allows to compute Encpk(x + y) from Encpk(x) and Encpk(y)). Many of

the commonly used schemes are homomorphic. For example, the ElGamal scheme [45] is

multiplicatively homomorphic, and Goldwasser-Micali [53] and Paillier [78] schemes are

additively homomorphic. Unfortunately, it is not known whether there exists a scheme

that is algebraically (i.e. both additively and multiplicatively) homomorphic. Moreover,

the existence of such schemes seems unlikely. We note that an additively homomor-

phic scheme allows multiplication by a known constant, i.e. computing Encpk(cx) from

Encpk(x) and c, via repeated addition.

The Paillier Encryption Scheme

Our protocols (in Chapters 3 and 4) require an additional property of the encryption

scheme – large plaintext size, or bandwidth. The Paillier scheme [78] satisfies all our

requirements, and we will instantiate our GT protocols with it. We present the scheme,

but omit the number-theoretic justification.

Key generation: Let N be an RSA modulus N = pq, where p, q are large primes. Let

g be an integer of order Nα in Z
∗
N2 , for some integer α. The public key pk = (N, g) and

the secret key sk = λ(N) = lcm((p − 1), (q − 1)), where λ(N) is Carmichael’s lambda

function.

Encryption: to encrypt m ∈ ZN , compute Enc(m) = gmrN mod N2, where r ∈R Z
∗
N .

Decryption: to decrypt a ciphertext c, compute m = L(cλ(N) mod N2)

L(gλ(N) mod N2)
mod N , where

Chapter 2. Preliminary Discussion, Definitions and Notation 26

L(u) = u−1
N

takes as input an element from the set SN = {u < N2|u = 1 mod N}.

Re-randomization: to re-randomize a ciphertext c, multiply it by a random encryption

of 0, i.e. compute crN mod N2, for r ∈R Z
∗
N .

The underlying security assumption is that the so-called composite residuocity class

problem is intractable. This assumption is referred to as the Computational Composite

Residuocity Assumption (CCRA). It is potentially stronger than the RSA assumption,

as well as the quadratic residuocity assumption. We refer the interested reader to [78]

for further details.

2.7.3 Oblivious Transfer (OT)

Oblivious Transfer is a basic and very powerful two-party functionality. A secure evalu-

ation of OT (often simply called OT) is an execution of a protocol between two parties,

Sender S and Receiver R. R has an single bit b as input; S has two input strings s0, s1.

In the end of this execution, R learns the secret of his choice, sb, and nothing else. S

learns nothing. More formally, OT is a secure evaluation of the following functionality

Functionality 1.

fOT(b, (s0, s1)) = (sb, empty string)

Ever since its introduction by Rabin [81], OT has been a subject of a large amount of

research. A number of variants and reformulations of OT, as well as reductions among

those variants have been proposed over the years. See Sect. 4.2 for more discussion of

some OT variants. Efficient OT constructions exist based on specific assumptions, such

as hardness of factoring or the Diffie-Hellman assumption [81, 9, 75, 1]. OT can be built

from generic assumptions, such as enhanced trapdoor permutations [37, 49, 56], and from

physical assumptions, such as channel noise.

We note that OT is an especially important primitive, since the problem of secure

computation of any function can be reduced to OT. That is, there exist unconditional (as

Chapter 2. Preliminary Discussion, Definitions and Notation 27

well as more efficient, but conditional on other hardness assumptions) SFE constructions

which use OT as a building block. The first unconditional reduction is due to Kilian [63];

our work (Chapter 5) is an efficiency improvement of known reductions.

We note that a natural extension of OT, where one of n (as opposed to one of 2)

secrets is transferred to the receiver, is also considered in the literature. These variants

are often called 1-out of-n OT.

2.7.4 Pseudo-random Function Generator (PRFG)

Intuitively, a function generator is a procedure that takes a k-bit seed s, and produces

a function Fs : {0, 1}k 7→ {0, 1}k. Of course, Fs is an exponentially large object; rather

than actually outputting it, we merely require that the generator can efficiently evalu-

ate Fs on any input. Informally, a function generator is pseudorandom if no efficient

algorithm can tell the difference between being given a blackbox for a random function,

and being given a black box for Fs for a randomly chosen seed s. The notion of PRFG

and the construction of PRFG from a pseudorandom number generator were proposed

by Goldreich, Goldwasser and Micali [50].

Definition 9. A Function Generator F associates with each k and each s ∈ {0, 1}k a

function Fs : {0, 1}k 7→ {0, 1}k , such that there is a polynomial time algorithm that given

s ∈ {0, 1}k and x ∈ {0, 1}k, computes Fs(x).

Such F is a pseudorandom function generator (PRFG), if for every polynomial time

distinguisher with oracle access Df the following holds.

Let seed s ∈R {0, 1}
k and function R ∈R {0, 1}

k 7→ {0, 1}k are chosen randomly.

Then |Prob(DFs(1k) = 1)− Prob(DR(1k) = 1)| < 1/kc for every c and sufficiently large

k.

We remark that in practice, PRFGs are not defined for all k, but rather, for some

fixed sufficiently large k, thus (technically, but not in intent or spirit) violating the

Chapter 2. Preliminary Discussion, Definitions and Notation 28

requirements of Def. 9. DES and AES are such examples. It is widely believed that

it is infeasible to distinguish the output of a random element of the AES family from a

randomly chosen function on the same domain.

2.7.5 Message Authentication Code (MAC)

MAC is a tool for ensuring authenticity of messages. It is most commonly used in

authenticating communication. (We note that in this work we use MAC for this purpose

as well.) In this setting, two parties have shared a random private key ` of length k;

later, one of them wants to use ` to authenticate messages by generating corresponding

tags. The tag generation function is stateless and deterministic, and verification is done

by applying the tagging function to compute the correct tag of the given message, and

comparing it with the candidate tag. More formally:

Definition 10. A Message Authentication Code (MAC) is a stateless deterministic al-

gorithm MAC : {0, 1}k × {0, 1}∗ 7→ TAG. On input key ` ∈ {0, 1}k and a message

m ∈ {0, 1}∗, MAC outputs a tag τ ∈ TAG. (Here TAG is the domain of tags, which

depends on k, and is independent of the signed message length.) We will sometimes write

MAC`(m) to mean MAC(`, m).

Let ` ∈R {0, 1}
k. Let Adv be a polytime adversary with an access to the MAC or-

acle O(m) = MAC`(m). Adv outputs a message m′ and its alleged signature τ ′, and

must never call O(m′). We say that MAC is secure, if for every such Adv, Prob(τ ′ =

MAC`(m
′)) < 1/kc for every c and sufficiently large k.

We remark that in practice, MAC schemes are built directly from PRFGs. Like

PRFGs, practical MAC schemes are not defined for all k, but rather, for some fixed

sufficiently large k.

We note that MAC is a special case of the more general notion of message authen-

tication schemes. MAC satisfies the strongest requirements of message authentication

Chapter 2. Preliminary Discussion, Definitions and Notation 29

schemes [8], and is sufficient for our purposes.

Chapter 3

Secure Evaluation of the Greater

Than Predicate

3.1 Introduction

Summary of the contributions of the chapter. We consider the problem of securely

computing the Greater Than (GT) predicate and its generalization – securely determin-

ing membership in a union of intervals. We approach these problems from the point of

view of Q-Conditional Oblivious Transfer (Q-COT), introduced by Di Crescenzo, Ostro-

vsky and Rajagopalan [32]. Q-COT is an oblivious transfer that occurs iff predicate Q

evaluates to true on the parties’ inputs. We are working in the semi-honest model with

computationally unbounded receiver.

We propose: (i) a stronger, simple and intuitive definition of COT, which we call

strong COT, or Q-SCOT. (ii) A simpler and more efficient one-round protocol for securely

computing GT and GT-SCOT. (iii) A simple and efficient modular construction reducing

SCOT based on membership in a union of intervals (which we call UI-SCOT) to GT-

SCOT, producing an efficient one-round UI-SCOT.

30

Chapter 3. Secure Evaluation of the Greater Than Predicate 31

3.1.1 Motivation of the Problem and the Setting

The work presented in this chapter falls into the area of constructing efficient secure

multi-party protocols for interesting functionalities. The more basic the functionality,

the more common is its use, and the more significant is the value of any performance

improvement of the corresponding protocol. We start with presenting the problems we

investigate and their motivation.

The base functionality we consider – Greater Than (GT) – is one of the most basic

and commonly used. Secure evaluation of GT is also one of the most famous and well-

researched problems in cryptography. There exist a vast number of applications relying

on it, such as auction systems or price negotiations.

Another typical example would be secure distributed database mining. The setting

is as follows: several parties, each having a private database, wish to determine some

properties of, or perform computations on, their joint database. The need for such com-

putations commonly arises in the modern business world. A typical example would be

two credit card companies wishing to analyze their joint client databases for fraud fight-

ing purposes, but unwilling to disclose to the competitor anything that is not absolutely

necessary. Many interesting properties and computations, such as transaction classifica-

tion or rule mining, heavily involve evaluating a large number of instances of GT [62, 69].

Because of the large size of the databases, even a minor efficiency gain in computing GT

results in significant performance improvements and cost savings.

Consider the problem of determining whether a point belongs to the union of a set of

intervals. (Sometimes we will refer to it as the membership in a set of intervals.) We note

that functionalities such as this are less studied, but nevertheless are very useful. Their

immediate uses lie in appointment scheduling, flexible timestamp verification, expression

evaluation, in the areas of computational geometry, biometrics, and many others. Certain

kinds of set membership problems, as studied by Freedman, Nissim and Pinkas [43], can

be represented succinctly as instances of problems we consider. For example, the problem

Chapter 3. Secure Evaluation of the Greater Than Predicate 32

of membership in a set consisting of all even integers on a large interval (y, z) can be

represented as a conjunction of two small instances of interval memberships (S = {x|x0 <

1∧ x ∈ (y, z)}, where x0 is the low bit of x). In such cases, using our solutions may have

significant advantages over the general set intersection solution of [43].

We consider the setting with computationally unbounded receiver (Alice) and poly-

time limited Bob. We refer the reader to Sect. 2.4 for the justification of this model,

more details and discussion. We note that our protocols are secure in the more difficult

setting (unbounded Alice), while achieving performance only slightly worse than the best

known approach in the easier (polynomially bounded Alice) setting.

3.1.2 Contributions and Outline this Chapter

We start with a discussion of Conditional Oblivious Transfer (COT) (Sect. 3.2). We

wish to strengthen the current definition of [32] in several respects. Firstly, we observe

that the definition of [32] does not require the privacy of the sender’s private input.

Secondly, we propose and justify the “1-out-of-2” Q-COT, where the receiver obtains

one of two possible secret messages depending on Q, but without learning the value of

Q. This is opposed to the “all-or-nothing” approach of [32] where the receiver receives

either a message or nothing, which necessarily reveals the value of Q. Our approach

significantly adds to the flexibility of COT functionalities and allows for more powerful

compositions of COT protocols. We propose a definition of strong conditional oblivious

transfer (SCOT) that incorporates the above observations and some other (minor) points.

(We note that DiCrescenzo [33] informally described a concept of Symmetrically-private

COT, which is similar to SCOT. We stress that our work was performed independently

of [33]. Unlike [33], we give formal definitions of SCOT; our discussions and justifications

further contribute to the understanding of the concept. We also note that other notions

similar to COT were previously proposed, some of which are briefly discussed in Sect.

4.2. However, the notion of COT is most relevant to our discussion, and we limit our

Chapter 3. Secure Evaluation of the Greater Than Predicate 33

comparisons to this notion only.)

Then, in Sect. 3.3, we discuss previous work on the GT problem and present our

main tool – an efficient protocol for computing GT-SCOT built from a homomorphic

encryption scheme. We exploit the structure of the GT predicate in a novel way to ar-

rive at a solution that is more efficient and flexible than the best previously known (of

Fischlin [41] and DiCrescenzo [33]) for our model with unbounded Alice. Additionally,

our construction is the first to offer transfer of c-bit secrets, with c ≈ 1000 for practical

applications, at no extra cost, with one invocation of the protocol, as opposed to the nec-

essary c invocations of previous protocols. This results in additional significant efficiency

gains.

Then, in Sect. 3.4, we show how to use the bandwidth of our GT-COT solution

and present protocols for efficiently computing SCOT based on the interval membership

(which we call I-SCOT) and SCOT based on the membership in a union of k intervals

(which we call k-UI-SCOT). Because of their modularity, these protocols can also be

constructed based on Fischlin’s [41] and Di Crescenzo’s [33] solutions at the efficiency

loss described in the previous paragraph. Because they leak the private inputs of the

sender, we do not know of an efficient way to extend solutions of [32] to compute these

functionalities. We remark on how to use UI-SCOT to compute the conjunction or

disjunction of the memberships in unions of intervals. Finally, we compare and summarize

resource requirements of schemes of Fischlin, Di Crescenzo, Di Crescenzo et al., and ours

in the Table in Sect. 3.4.2.

3.1.3 Our Setting

We remind the reader what our setting is. We are working in a setting with two semi-

honest participants, who use randomness in their computation. A computationally un-

bounded Alice sends the first message; polytime limited Bob replies, and Alice outputs

the value of the evaluated function. We prove security with respect to standard def-

Chapter 3. Secure Evaluation of the Greater Than Predicate 34

initions. See Goldreich [49] or Chapter 2 (specifically Sect. 2.6.2) for definitions and

in-depth discussion.

As discussed in Sect. 2.6.2, although our constructions and analysis are presented for

fixed security and correctness1 parameters ν and λ, we have in mind their asymptotic

notions.

3.2 Strong Conditional Oblivious Transfer

The notion of COT was introduced by Di Crescenzo, Ostrovsky and Rajagopalan [32]

in the context of timed-release encryption. It is a variant of Oblivious Transfer (OT)

introduced by Rabin [81]. Intuitively, in COT, the two participants, a receiver R and a

sender S, have private inputs x and y respectively, and share a public predicate Q(·, ·).

S has a secret s he wishes (obliviously to himself) to transfer to R iff Q(x, y) = 1. If

Q(x, y) = 0, no information about s is transferred to R. R’s private input and the value

of the predicate remain computationally hidden from S.

3.2.1 Our Definitions

We start by describing several ways of strengthening the existing definition with the goal

of increasing modularity and widening the applicability of SCOT protocols. Our own

construction for UI-SCOT, for example, requires its building blocks to have the proposed

features.

First, while sufficient for the proposed timed-release encryption scheme, the definition

of [32] lacks the requirement of secrecy of the sender’s private input. We would like the

new definition to include this requirement.

Secondly, we prefer the “1-out-of-2” approach. In our proposed setting, the sender

possesses two secrets s0 and s1, and wishes (obliviously to himself) to send s1 if Q(x, y) =

1Correctness parameter specifies the allowed probability of error in the protocols.

Chapter 3. Secure Evaluation of the Greater Than Predicate 35

1, and to send s0 otherwise. Unlike the COT “all-or-nothing” definition, this allows SCOT

protocols to have the property of not revealing Q(x, y) to the receiver. This proposal

strengthens the definition since while a SCOT protocol can be trivially modified to satisfy

COT definitions of [32], it is not hard to see that the opposite does not (efficiently)

hold2. Further, note that it follows from our requirements that a Q-SCOT protocol can

be trivially modified into a (¬Q)-SCOT protocol. This also does not hold for COT. We

will use this important property in our constructions later in this chapter.

The definition of [32] is presented in the common random string model, while ours is

not. We do not see the need of including it, since we are able to construct useful (more)

efficient COT protocols in the standard setting.

Finally, as a minor point, we only require statistical, as opposed to perfect, correctness

and security against R, to allow for easier analysis of the protocols and wider applicability

of the SCOT notion.

We now present our definition. Let sender S and receiver R be the participants of the

protocol3. Let ν be the security parameter and λ be the correctness parameter, upper-

bounding error probability by O(2−λ). Let DI and DS be the respective domains of the

parties’ private inputs and sender’s secrets. Let dI = |DI | and dS = |DS|. We assume

that both domains are known to both parties. Let R have input x ∈ DI , and S has input

(y ∈ DI , s0, s1 ∈ DS). Let Q : DI × DI 7→ {0, 1} be a predicate. Consider the SCOT

functionality:

Functionality 2.

fQ−SCOT(x, (y, s0, s1)) =















(s1, empty string) if Q(x, y) = 1,

(s0, empty string) otherwise

(3.1)

2Clearly, because secure function evaluation can be based on OT (Kilian [63]), COT implies SCOT.
This solution, however, is inefficient.

3While our definitions do not impose any round complexity restrictions, our constructions are one-
round. Thus, Alice (the party who sends the first message) will be the Receiver, and Bob will be the
Sender

Chapter 3. Secure Evaluation of the Greater Than Predicate 36

There are many models in which we can consider computing this functionality. Each

of the two parties may be malicious or semi-honest and each party may or may not

be computationally limited4. We wish to give one definition that refers to all possible

models and rely on existing definitions of secure computations in these models. We refer

the reader to Goldreich [49] for in-depth presentations of definitions of security in many

interesting models.

Definition 11. (Q-Strong Conditional Oblivious Transfer)

We say that a protocol Π is a Q-strong conditional oblivious transfer protocol with respect

to a given model, if it securely implements functionality fQ−SCOT (2) in the given model.

We note that this general definition covers the case when Q is probabilistic.

One of the more practical and interesting settings is the model with the semi-honest

unlimited receiver, semi-honest polytime sender and deterministic Q. We discuss our

constructions in this model, and thus wish to explicate the definition for this setting.

Definition 12. Let receiver R, sender S, their inputs x and y, secrets s1 and s0, unary

parameters ν and λ, and predicate Q be as discussed above. We say that Π is a strong

conditional oblivious transfer protocol for predicate Q in the semi-honest model with

computationally unlimited receiver and polytime sender if

• Transfer Validity. With overwhelming probability in λ: If Q(x, y) = 1, R obtains

s1, otherwise R obtains s0.

• Security against R. (R obtains essentially no information other than the transferred

secret) There exists a simulator SimR, such that for any x, y, s, s′ from appropriate

domains:

if Q(x, y) then {SimR(x, s)}ν
s
≡ {VIEWΠ

R(x, (y, s′, s))}ν

if ¬Q(x, y) then {SimR(x, s)}ν
s
≡ {VIEWΠ

R(x, (y, s, s′))}ν

4Of course, in some of the combinations it is not possible to have nontrivial secure SCOT protocols,
such as when both parties are computationally unlimited.

Chapter 3. Secure Evaluation of the Greater Than Predicate 37

• Security against S. (S gets no efficiently computable information about x)

There exists an efficient simulator SimS, such that for any x, (y, s0, s1) from ap-

propriate domains:

{SimS(y, s0, s1)}ν
c
≡ {VIEWΠ

S (x, (y, s0, s1))}ν.

As further justification, we wish to point out an interesting use of Q-SCOT protocols.

When sufficiently long secrets are chosen randomly by S, upon completion of a Q-SCOT

protocol, R does not know either the value of Q, or the non-transferred secret. Thus this

can be viewed as a convenient way to share the value of Q among R and S. Further, the

secret that R received may serve as a proof to S of the value of Q. For example, R, by

sending the received secret to S, convinces him of the value of Q, even if R may have

tried to cheat. This is not possible with COT, as R is only able to provide such proof if

Q(x, y) = 1.

3.3 The GT-SCOT Protocol

Research specifically addressing the GT problem is quite extensive. It was considered as

a special case in the context of general secure function evaluation [5, 70, 76, 85, 90, 89].

This general solution is impractical. However, because the circuit for computing GT

is quite small, the general solution based on the natural circuit for computing GT is

the best currently known one-round approach in the model with the computationally

bounded Alice. As people searched for efficient solutions to special classes of problems in

different models, more efficient GT solutions implicitly appeared. Naor and Nissim [73]

presented a general approach to securely computing functions with low communication

overhead. While the application of their solution to GT is quite efficient in the message

length, it needs at least O(log n + log 1
ε
) 1-out-of-O(n) oblivious transfers and the same

number of rounds, where ε is the tolerated probability of error.

Chapter 3. Secure Evaluation of the Greater Than Predicate 38

Fischlin [41] proposed a solution that significantly reduced the number of modular

multiplications, while also reducing the message size and maintaining the minimal one-

round efficiency. This is the best previously known solution to the GT problem in the

model with unbounded Alice. The number of modular multiplications required to com-

plete his protocol is 6nλ + nλ log N , where 2−λ is the allowed error probability. The

message complexity (in bits) is n log N(λ + 1). Fischlin also extends this protocol (at

the cost of approximately doubling the communication and computation costs) to satisfy

our definition of GT-SCOT, with the exception of leaking the value of the predicate. We

remark that this extension can be further extended to fully satisfy our definitions at the

expense of further approximately doubling the communication and computation costs.

Di Crescenzo [33] proposed a GT protocol, secure according to our SCOT definition.

Its cost is 12n2 +8n2 log N modular multiplications and message complexity is 8n2 log N

bits.

3.3.1 Our Construction

Our constructions use semantically secure additively homomorphic encryption schemes

with large message domains. For the ease and clarity of presentation and to enable

resource analysis, we “instantiate” our protocols with the original Paillier scheme. We

remark that the Paillier scheme has received much attention in the literature recently,

and several variants, including an elliptic curve version [44], have appeared. Using more

efficient implementations may further improve our results.

Let (Gen, Enc, Dec) be the instance generation, encryption and decryption algorithms,

respectively, of such a scheme. As in Definition 12, let R and S be the receiver and the

sender with inputs x and y respectively and common parameters ν and λ. Let x, y ∈ DI

and s0, s1 ∈ DS. Let dS = |DS| and, without loss of generality, dI = |DI | = 2n.

Throughout this section, we will work with numbers which we will need to represent

as binary vectors. For x ∈ N, unless specified otherwise, xi will denote the ith most

Chapter 3. Secure Evaluation of the Greater Than Predicate 39

significant bit in the n-bit binary representation of x, including leading zeros, if applicable.

Where it is clear from the context, by x we mean the vector 〈x1, x2, ..., xn〉 of bits, and

by Enc(x) we mean a vector 〈Enc(x1), Enc(x2), ..., Enc(xn)〉. We will also write Enc(x)

instead of Encpk(x), where pk is clear from the context.

For the clarity of presentation, we describe the setup phase outside of the protocol.

We stress that it is run as part of R’s first move, and in particular, after the parties’

inputs x, and (y, s0, s1) have been fixed.

Setup Phase. R sets up the Paillier encryption scheme with group size N = pq by

running Gen and generating secret and public keys (sk and pk). He chooses the number

of bits in N to be max{ν, |dS|+ λ}, where |dS| is the bit-length of the integer dS.

We will view DS as a subset of ZN , and will perform operations on elements of DS

modulo N .

Observation 1. We envision the following practical parameter choices for our GT pro-

tocols. First, choose N and λ to satisfy the security and correctness requirements of

the encryption scheme. In practice, log N(≈ 1000) � λ(≈ 40..80), so we set |dS| =

log N − λ > 900 bits of the bandwidth of the encryption scheme to be used for sending

secrets. If DS needs to be much larger than that, it may be more practical to split it in

blocks of size |dS| and run GT-SCOT several times. Choosing parameters in this manner

also simplifies comparison of our results to others, and we follow this approach in Sect.

3.4.2.

Observation 2. There is a negligible (in λ) minority of elements of DS in the group of

size N .

For our protocols, we are only interested in binary comparisons, i.e. one of {>, <,≤

,≥}. We can trivially reduce {≥,≤} to {>, <}. Furthermore, we assume that x 6= y.

This can be enforced by mapping, for instance, x 7→ 2x, y 7→ 2y+1. Similarly, we assume

that s0 6= s1. The case when s0 = s1 can be reduced to the s0 6= s1 case by, for example,

S setting y = max{DI} and s1 ∈R DS \ {s0}, ensuring that x < y and s0 is always sent.

Chapter 3. Secure Evaluation of the Greater Than Predicate 40

We now present the GT-SCOT construction. The intuition behind each step is pre-

sented immediately below, in the proof of the corresponding security theorem. Note that

the arithmetic operations in the presentation of the construction are in the group of the

plaintext domain of the encryption scheme.

Construction 1. (Computing functionality GT-SCOT)

1. R runs the setup phase, then encrypts each bit xi of x with the generated pk and

sends (pk, Enc(x1), ..., Enc(xn)) to S.

2. S computes the following, for each i = 1..n:

(a) an encryption of the difference vector d, where di = xi − yi.

(b) an encryption of the flag vector f , where fi = xi XOR yi = (xi − yi)
2 =

xi − 2xiyi + yi.

(c) an encryption of vector γ, where γ0 = 0 and γi = 2γi−1 + fi.

(d) an encryption of vector δ, where δi = di + ri(γi − 1), where ri ∈R ZN .

(e) a random encryption of vector µ, where µi = s1−s0

2
δi + s1+s0

2

and sends a random permutation π(Enc(µ)) to R.

3. R obtains π(Enc(µ)), decrypts it, and determines the output as follows: if µ con-

tains a single v ∈ DS, output v, otherwise abort.

Theorem 1. The protocol of Construction 1 is a GT-SCOT protocol in the semi-honest

model, assuming semantic security of the employed encryption scheme.

Proof. We will first show that the protocol correctly computes the desired functionality.

This part of the proof also provides the intuition of the construction.

It is easy to see that the homomorphic properties of the encryption scheme allow S to

perform all necessary operations. For example, step 2b is possible because yi are known

to S.

Chapter 3. Secure Evaluation of the Greater Than Predicate 41

Step 2a computes the (encryption of) the bit difference vector d.

Observe that the flag vector f , whose encryption is computed in Step 2b, is a {0, 1}-

vector, with the ones in positions where x and y differ. Furthermore, γ, whose encryption

is computed in Step 2c, is a vector with the following structure: it starts with zero or more

zeros, then a one, then a sequence of non-ones. Moreover, with overwhelming probability

the non-zero elements (γi − 1) are not multiples of either p or q, i.e. are in Z
∗
N . This is

because the fraction of multiples of p or q in ZN is negligible, and p and q are chosen

randomly and independently of x and y.

Let ind1 be the (only) position where γind1 = 1. This position is where x and y

first differ, and thus dind1 determines GT(x, y). The transformation (γ, d) → δ of Step

2d randomizes all coordinates of δ, while setting δind1 to the value of dind1. Because,

with overwhelming probability, (γi − 1) ∈ Z
∗
N , multiplying it by ri ∈R ZN randomizes δ

perfectly in ZN .

With overwhelming probability, the transformation (δ, s0, s1)→ µ of Step 2e is a per-

mutation on ZN that maps −1 7→ s0, 1 7→ s1. Indeed, it is not such a permutation only

when (s1 − s0) is a multiple of p or q, an event that occurs with negligible probability,

because p and q are are chosen randomly and independently of s1 and s0. This permuta-

tion preserves the randomness properties of all elements of the vector, and (as is easy to

verify) performs the mapping we are looking for. Random re-encryption of Step 2e hides

the information that may be contained in the randomness of the encryption. Finally, the

random permutation π(µ) of Step 2 hides the index of the determining di.

Consider the probability that there is not exactly one element of size |dS| in the vector

decrypted by R. It easily follows from Observation 2 that this probability is negligible.

Thus, with overwhelming probability, R terminates and outputs the correct value.

Security of R (against the semi-honest S) trivially holds because of the semantic

security properties of the employed encryption scheme.

We now prove security of S against an unlimited semi-honest R by constructing a

Chapter 3. Secure Evaluation of the Greater Than Predicate 42

protocol view simulator SimR(x, s), where x is the input, and s is the output of the

protocol. SimR(x, s) has to generate a distribution statistically close to the view of R in

a real execution - VIEWR(x, (y, s0, s1)) = {x, r, Enc(π(µ))}, where r is the randomness

used by R to generate pk and sk (of the setup phase) and the random encryptions of

the first message, and π(µ) is defined in the protocol construction. SimR(x, s) proceeds

as follows. It first generates a random string r′ of appropriate length (to match r). It

uses r′ to compute the keys sk and pk (including N). It then computes a candidate

µ′: for i = 1..n, pick random µ′
i ∈R ZN . It then replaces a random element of µ′ with

the received s, and outputs {x, r′, Encpk′(µ′)}, where Encpk′(µ′) is a vector of random

encryptions of coordinates of µ′ under the pk′. Because of the previously presented

arguments of the randomness of all elements of π(µ) (other than the one that carries

the secret) and the randomness of re-encryption, it is easy to see that SimR generates

a distribution statistically close to the view of R. We note that the simulation is not

perfect, since the transfer of the other secret is possible during the real execution, with

negligible probability.

We observe that a GT-SCOT protocol, such as presented above, immediately implies

solution to GT, in the semi-honest model. Indeed, running GT-SCOT with at least

one of the secrets si known to R (say s1 = 1), immediately yields the desired func-

tionality. Moreover, for GT, the transformation of step 2e is unnecessary (while the

re-randomization of the same step is still required).

3.3.2 Resource Analysis

We evaluate the message and modular multiplication efficiency of our construction based

on the use of Paillier encryption scheme. We note that we do not include the relatively

small computational cost of key generation, to be consistent with the compared results

of [32], [33] and [41]. Let n be the length of inputs x and y in binary, N -the size of the

Chapter 3. Secure Evaluation of the Greater Than Predicate 43

plaintext domain of the Paillier scheme. Then message complexity of Construction 1 is

l = 2n log(N 2) = 4n log N bits.

Let w = w(y) ≤ n be the weight (i.e. the number of ones) of the binary representation

of y. To encrypt each bit, log N multiplications are required. Observe that it is not

necessary to perform expensive randomized encryption in the intermediate steps of S.

This allows us to make do with only w multiplications for each of the steps 2a, 2b, 2n -

for step 2c, and (log N + 2)n - for step 2d, and (|si| + log N)n ≤ 2n log N - for step 2e

of the protocol. We note that if we do not perform the transformation of step 2e (when,

for example, computing GT), we only need n log N multiplications for the last step.

Decryption takes 2n log N multiplications. Thus, in total, the protocol requires no

more than (5n + 1) log N + 6n modular multiplications ((4n + 1) log N + 6n for GT).

We stress that transferring up to log N − λ bit secrets requires the same resources. We

observe that the encryption and re-encryption multiplications can be precomputed once

the encryption scheme is initialized.

We compare the efficiency of our approach to that of Fischlin [41] and Di Crescenzo

[33], using appropriate parameters. We first note that in practice, no known attack on the

Paillier system is better than factoring the modulus N . Clearly, factoring based attacks

would also be effective against the GM scheme with the same modulus size. Thus, having

already assumed CCRA (see Sect. 2.7.2), we also assume that the security of Paillier

and GM schemes with the modulus of the same size are approximately the same. We

note that our modular multiplications are four times slower, since we are working with

modulus length twice that of the Goldwasser-Micali encryption scheme employed in [41]

and [33]. The comparisons are summarized in the Table in Sect. 3.4.2.

Chapter 3. Secure Evaluation of the Greater Than Predicate 44

3.4 SCOT for Unions of Intervals

In this section we present new efficient protocols for I-SCOT (SCOT based on the mem-

bership in an interval) and UI-SCOT (SCOT based on the membership in a union of

intervals), both of which are generalizations of GT-SCOT. More specifically, in I-SCOT,

the secret s1 (resp. s0) is transferred to R if R’s input point x belongs (resp. doesn’t

belong) to the interval that is the input of S. Similarly, in UI-SCOT, the secrets are

transferred based on whether R’s input point x belongs to the set of intervals that is

the input of S. We will sometimes write k-UI-SCOT, to emphasize that S’s input to

UI-SCOT has k intervals.

We build the I-SCOT and UI-SCOT protocols on our GT-SCOT solution. While

other GT-SCOT approaches (such as based on Fischlin’s protocol) are also suitable for

these constructions, our solution is simpler and produces more efficient protocols in terms

of both multiplication and communication complexity. In our constructions, we denote

the instance of the Q-SCOT functionality with the secrets s0, s1 on parties’ inputs x, y

by Q-SCOT (s1|s0?Q(x, y)).

In Sect. 3.4.1 we show how to reduce UI-SCOT to I-SCOT and I-SCOT to GT-

SCOT. (We chose this modular way of presentation because it appears to be simpler.)

We note that in our model, secure reductions provide us with secure protocols when the

underlying oracles are replaced by their secure implementations (see Goldreich [49] for

the composition theorem.) Furthermore, in our model the oracles’ implementations may

be run in parallel, which, with our implementations, provides secure one-round protocols

for I-SCOT to UI-SCOT.

3.4.1 The UI-SCOT protocol

In the I-SCOT setting, S’s input x1, x2 ∈ DI represents an interval I. We need S to

obliviously transfer to R the secret s1 (resp. s0) if x ∈ I (resp. x 6∈ I), for R’s input

Chapter 3. Secure Evaluation of the Greater Than Predicate 45

x ∈ DI . Without loss of generality, we assume that the domain of secrets DS is an

additive group5
Z

+
dS

. In our discussion, all additions of secrets will be done in DS, unless

specified otherwise.

The intuition of the reduction of I-SCOT to GT-SCOT is as follows, illustrated on

the diagram below. Interval I splits DI in three parts, and S wishes to transfer s1

“on the central part” (I) and s0 “on the side parts” (DI \ I). The idea is to represent

these secrets as sums of independently random (i.e. random if taken separately) elements

(a1, a2, b1, b2 ∈ DS) which are to be transferred using GT-SCOT.

a1

b1 b2

a2

s0s0 s1

x2x1

Construction 2. (Reducing I-SCOT to GT-SCOT)

1. S randomly chooses a1 ∈ DS and sets b1, a2, b2 ∈ DS to satisfy s0 = a1+b1 = a2+b2

and s1 = a2 + b1

2. -Reduction: R and S (in parallel) invoke oracles for GT-SCOT(a1|a2?x < x1) and

GT-SCOT(b1|b2?x < x2).

3. R obtains a′, b′ ∈ DS from GT-SCOT oracle executions and outputs a′ + b′.

Theorem 2. The protocol of Construction 2 securely reduces functionality I-SCOT to

GT-SCOT in the semi-honest model.

Proof. The transfer validity property of this reduction trivially holds. Since S does not

receive any messages from R or oracle executions, the reduction is secure against semi-

honest S. We show how to construct SimR, simulating the following ensemble (view of

R): VIEWR(x, (x1, x2, s0, s1)) = {x, r1, r2}, where r1, r2 are the sent (via the GT-SCOT

oracles) ai, bj. Let s be the transferred secret. Then SimR(x, s) = {x, r′1, r
′
2}, where r′i

5We stress that we use GT-SCOT as black box, and, in particular, addition in DS is unrelated to the
corresponding operation in the GT-SCOT implementation.

Chapter 3. Secure Evaluation of the Greater Than Predicate 46

are independently random elements of DS that sum up to s. Because, by construction,

r1, r2 are also independently random with the same sum, SimR perfectly simulates view

of R.

We now wish to reduce UI-SCOT of polynomially many intervals to I-SCOT. Here,

S’s input represents a set of disjoint intervals {Ii = (xi1, xi2 ∈ DI)}, and the secrets

s0, s1 ∈ DS. S wishes to transfer s1 if x ∈
⋃

Ii, and transfer s0 otherwise. Let k be the

number of intervals in the set (to avoid leaking k to R, S can pad it to a known upper

bound by adding empty intervals).

We represent
⋃

Ii as the intersection of k intervals as follows, which is also illustrated

on the diagram below. The bottom line represents the input set of intervals on the

domain, and all other lines represent the constructed intervals that together correspond to

this set. (All intervals are marked by bold lines.) The si are the secrets to be transferred

by the UI-SCOT construction, and the sij are the intermediate secrets to be created by

UI-SCOT and transferred by the existing I-SCOT protocol. Because the input intervals

are disjoint, the cut out (thin, on the diagram) parts of the constructed intervals do not

intersect, and thus any x either belongs to all or to all but one constructed intervals.

sk1

s1s1 s0s0s0 s1s0s1

s10 s10s11

s21 s20 s21

sk0 sk1

To reduce UI-SCOT to I-SCOT, we need to choose sij ∈ DS based on the given si.

Because of the above observation we only need to satisfy the following: s1 =
∑

i si1

and s0 = (
∑

i6=j si1) + sj0, ∀j = 1..k Observe that the second condition is equivalent to

requiring s1 − s0 = sj1 − sj0, ∀j = 1..k.

Construction 3. (Reducing UI-SCOT to I-SCOT)

1. S chooses s11, ..., s(k−1)1 ∈R DS and sets sk1 = s1 −
∑

i=1..k−1 si1 and si0 = si1 −

(s1 − s0), i = 1..k.

Chapter 3. Secure Evaluation of the Greater Than Predicate 47

2. -Reduction: S and R (in parallel) invoke oracles for I-SCOT(si1|si0?x ∈ Ii), for

each i = 1..k.

3. R obtains a1, ..., ak ∈ DS from k oracle executions and outputs
∑

i ai.

Theorem 3. The protocol of Construction 3 securely reduces functionality UI-SCOT to

I-SCOT in the semi-honest model.

Proof. The transfer validity property of this reduction trivially holds. Since S does not

receive any messages from R or oracle executions, the reduction is secure against semi-

honest S. We show how to construct SimR simulating the view of R VIEWR(x, y) =

{x, r1, ..., rk}, where r1, ..., rk are the oracle sent elements of DS defined by step 1 of the

construction. Let s be the transferred secret. Then SimR(x, s) = {x, r′1, ..., r
′
k}, where

r′i ∈R DS with the restriction s =
∑

i ri. SimR perfectly simulates view of R because

both ensembles are (k − 1)-wise independent random numbers that sum up to the same

value s.

The (
∧

i Qi(xi, yi))-COT Protocol.

We now build
∧

i Qi(xi, yi))-COT using oracles for corresponding Qi-SCOT. R now has in-

put x1, ..., xn, and S has y1, ..., yn. S wishes to send a secret s to R iff
∧

i(Qi(xi, yi)) = 1.

The idea is to introduce “specialness” of s like we did for GT-SCOT, by, for exam-

ple, extending the domain of secrets DS to group D′
S = Z

+
d′

S
, where d′

S = |D′
S| �

|DS|, Then S represents s ∈ DS as a sum of random secrets si ∈R D′
S, and runs Qi-

SCOT(si|ri?Qi(xi, yi)), where ri ∈R D′
S. Indeed, if the conjunction holds, then only the

si’s will be transferred, and they will sum up to s ∈ DS. If any (or any number of)

predicates do not hold, one (or more) ri will be transferred, which will randomize (in

D′
S) the sum obtained by R.

Construction 4. (Reducing (
∧

i Qi(xi, yi))-COT to Qi-SCOT)

1. S chooses r1, ..., rn, s1, ..., sn−1 ∈R D′
S and sets (in D′

S) sn = s−
∑

i=1..n−1 si.

Chapter 3. Secure Evaluation of the Greater Than Predicate 48

2. R and S in parallel invoke oracles for Qi-SCOT(si|ri?Qi(xi, yi)), ∀i = 1..n.

3. R obtains a1, ..., an ∈ D′
S from the Qi-SCOT oracle executions and sets v =

∑

i ai.

R outputs v, if v ∈ DS, and outputs ⊥ otherwise.

Theorem 4. The protocol of Construction 4 securely reduces functionality

(
∧

i Qi(xi, yi))-COT to Qi-SCOT in the semi-honest model.

Proof: The simple proof is very similar to the previous ones and is omitted. �

Corollary 1. There exists (via construction 4 and DeMorgan laws) efficient one-round

protocols for computing conjunction and disjunction of memberships in sets of intervals,

secure against computationally unlimited R.

3.4.2 Resource Analysis

We continue and expand the resource analysis of Sect. 3.3.2. Recall that λ and ν are the

correctness and security parameters, n is the number of bits in the compared numbers,

and N is the modulus of the employed encryption scheme. As discussed in Observation

1, we choose ν = log N and λ as in [41]. This determines the secrets domain DS to be of

size 2ν−λ. As noted in Sect. 3.3.2, we do not include the cost of key generation in any of

the compared solutions.

It is easy to see that our k-UI-SCOT construction (Constr. 3) makes 2k calls to the

underlying λ-bit GT-COT oracle. Thus, when using our implementation of GT-SCOT,

UI-SCOT requires sending 8kn log N bits and performing about 40kn log N multiplica-

tions in group of size N . Using λ-bit GT-SCOT oracle implementation based on Fischlin’s

and Di Crescenzo’s GT results in almost full factor of 2k blowup in communication since

server sends most of the traffic. The 2k factor blowup in the computation also seems

necessary when using these schemes.

The following table summarizes the cost of comparable modular multiplications and

communication of our protocol in relation to others.

Chapter 3. Secure Evaluation of the Greater Than Predicate 49

Protocol
GT predicate c-bit GT-SCOT, c<ν-λ

mod. mult. comm. mod. mult. comm.

of [41] 6nλ + nλ log N λn log N 24ncλ + 4ncλ log N 4ncλ log N

of [32] 8n + 4n log N 4n log N N/A N/A

of [33] 6n2 + 4n2 log N 4n2 log N 12n2c + 8n2c log N 8n2c log N

our work 16n log N 4n log N 20n log N 4n log N

Protocol
k-UI-SCOT

mod. mult. comm.

of [41] 48knλ2 + 8knλ2 log N 8knλ2 log N

of [32] N/A N/A

of [33] 24kn2c + 16kn2c log N 16kn2c log N

our work 40kn log N 8kn log N

We see no obvious way to transform the schemes of [32] to GT-SCOT, and thus do

not include the corresponding resource calculations.

Chapter 4

Comparing Encrypted Numbers

4.1 Introduction

Summary of the contributions of the chapter. We consider the problem of com-

paring two encrypted numbers and its extension – transferring one of the two secrets,

depending on the result of comparison. We show how to efficiently apply our solutions

to practical settings, such as auctions with the semi-honest auctioneer, proxy selling,

etc. We propose a new primitive, Conditional Encrypted Mapping, which captures com-

mon security properties of one round protocols in a variety of settings, which may be of

independent interest.

4.1.1 Motivation of the Problem and the Setting

In this chapter we continue studying secure evaluation of the Greater Than (GT) pred-

icate. Recall, it is one of the most basic and widely used functionalities. It plays an

especially important role in secure financial transactions and database mining applica-

tions.

Auctions and Bargaining. With the continuing expansion of the Internet, elec-

tronic commerce and especially online auctions continue to grow at an impressive pace.

50

Chapter 4. Comparing Encrypted Numbers 51

Many sellers also discover the appeal of flexible pricing. For example, sites such as

priceline.com ask a buyer for a price he is willing to pay for a product, and the deal is

committed to if that price is greater than a certain (secret) threshold.

In many such situations, it is vital to maintain the privacy of bids of the players.

Indeed, revealing an item’s worth can result in artificially high prices or low bids, specif-

ically targeted for a particular buyer or seller. While a winning bid or a committed deal

may necessarily reveal the cost of the transaction, it is highly desirable to keep all other

information (e.g. unsuccessful bids) secret.

There has been a large stream of work dedicated to ensuring privacy and security of

online auctions and haggling (e.g.,[21, 33, 41, 76]). Our work complements, extends, and

builds on it. We discuss the Private Selective Payments protocols of Di Crescenzo [33]

and show how our improvements benefit this application.

The need for comparing encrypted numbers. It is often beneficial to both

sellers and buyers to employ a mutually semi-trusted server S to assist them in their

transaction. The use of such a server simplifies secure protocol design, allowing for more

efficient protocols. It allows the seller to be offline most of the time, allowing S to act on

behalf of the seller in handling bid requests. Further, a reputable S (such as eBay) may

provide additional assurance of security to the potential buyer. However, since sellers

and buyers wish to hide their inputs from S, the latter must work with, e.g. compare,

encrypted numbers. We propose a formalization of this setting, as well as new, more

efficient GT protocols for it. We note that the concept of server-aided computation is

not new, and is subject of considerable amount of research (e.g. [39, 71]).

Other applications. In Sect. 3.1.1, we mentioned other interesting applications

(distributed database mining, set intersection, etc.) that benefit from efficient secure

evaluation of GT. These applications might need to employ a proxy server S, as above;

if so, the work of this chapter improves their performance as well.

Chapter 4. Comparing Encrypted Numbers 52

4.1.2 Our Contributions, Setting and Outline of the Work

We approach several practical problems (auctions, proxy selling, GT) in a variety of

settings, concentrating on a setting with a semi-honest helping server.

We are interested in one-round protocols, where clients send their encrypted inputs

to a “cypto computer” S, who produces an output that can be decoded by the clients.

Such scenarios arise in a variety of practical settings. To enable formal discussion of

crucial parts of our protocols in a number of settings simultaneously, we extract what

these settings have in common – the following requirements on the output of S: it

allows the reconstruction of the value of the function, and does not contain any other

information. This allows us to postpone the (easy but tedious) discussion of setting-

specific clients’ privacy requirements. We formalize (Def. 13) a special case of this

notion, which we call Conditional Encrypted Mapping (CEM). Here, S has two secrets

s0, s1, is given encryptions of two values x, y, and outputs something that allows (only)

reconstruction of sQ(x,y), where Q is a fixed public predicate. We note that our statistical

privacy requirement on the output of S is very strong, e.g., precluding Yao’s garbled

circuit-based solutions.

We propose two new, more efficient CEM protocols for the GT predicate (Sect. 4.4).

We use ideas of our protocol of Chapter 3. Recall, that protocol requires S to know one of

the compared numbers, and thus cannot be naturally cast as a CEM. We overcome this

with a new tool – a randomized way to represent secrets to be transferred by S (presented

in Sect. 4.4.3). The cost of the new solution is comparable to that of Chapter 3. We

believe this method may be used to improve efficiency of other constructions relying on

homomorphic encryptions.

In Sect. 4.5, we show how our constructions result in new, more efficient, protocols

for the examples of private selective payments of Di Crescenzo [33] and proxy selling. We

discuss methods of protection against malicious behavior of parties. We mention that

efficient CEM schemes exist for any NC1 predicate (Sect. 4.4.7).

Chapter 4. Comparing Encrypted Numbers 53

In Sect. 4.6 we summarize and compare resource requirements of schemes based on

the work of Di Crescenzo [33], Fischlin [41], Laur and Lipmaa [68] and ours.

4.2 Related Work

We discuss related work in both directions of our contributions – definition of CEM and

concrete protocols for auction-like functionalities.

Variants of CEM. Several notions similar to CEM were previously proposed.

The notion of Conditional Oblivious Transfer (COT) was introduced by Di Crescenzo,

Ostrovsky and Rajagopalan [32] in the context of timed-release encryption. It is a variant

of Oblivious Transfer (OT) [81]. Intuitively, in COT, the two participants, a receiver R

and a sender S, have private inputs x and y respectively, and share a public predicate

Q(·, ·). S has a secret s he wishes (obliviously to himself) to transfer to R iff Q(x, y) = 1.

If Q(x, y) = 0, no information about s is transferred to R. R’s private input and the

value of the predicate remain computationally hidden from S.

A similar notion to COT, Conditional Disclosure of Secrets (CDS), was introduced by

Gertner, Ishai, Kushilevitz and Malkin [46] in the context of multi-server Symmetrically

Private Information Retrieval (SPIR). In their work, the receiver of the secret apriori

knows the inputs of the (many) senders. The secret is unknown to the receiver and sent

to him only if a predicate holds on the inputs.

Aiello, Ishai and Reingold [1] adapt CDS into the single server setting, where the

(single) sender holds encryptions of parts (i.e. bits) of input. The receiver knows both

the input and the decryption key. Again, the receiver does not know the secret; it is sent

to him only if a predicate holds on the input.

Laur and Lipmaa [68] extend the study of CDS for the case of additive homomorphic

encryptions, give generic constructions and specific protocols (GT).

The lack of requirement of privacy of the value of Q(x, y) and the sender’s input often

Chapter 4. Comparing Encrypted Numbers 54

prevents the use of COT or CDS as a building block of other protocols. Di Crescenzo

[33] described a stronger concept, Symmetrically-private COT, by additionally requiring

that both parties’ inputs x, y remain private. Later, we independently proposed and

formalized a similar notion, which we call Strong COT (see Chapter 3 or [14]). Of the

above, CEM is most similar to this notion. We note that CEM is a stronger (than SCOT)

notion, explicitly allowing reuse of generated encryption keys in multiple executions.

We also have the feature of not specifying the precise security properties of the used

encryptions, allowing for more flexibility and applicability (see Sect. 4.1.2 and 4.3 for

more discussion).

Auctions and Private Selective Payments Protocols (PSPP). PSPP, intro-

duced by Di Crescenzo [33], solve the following practical problem. A server has a private

message representing, say, a signed authorization, and wants to give it to one among

several clients, according to some public criteria, evaluated on the server’s and clients’

private inputs. Client’s inputs may represent their auction bids, and a server’s input may

be a lowest acceptable price or a required signature. Di Crescenzo considers a natural in-

stance of PSPP, where the highest bidding client obtains the authorization. He considers

a setting with a helping semi-honest server and malicious clients.

Di Crescenzo designs his protocols in several phases. During registration, executed

between each client and the server, the client’s public/private key pair is established,

and the server obtains the public key. Then the selection protocol is executed between

all registered clients and the server, during which the selected client obtains the server’s

secret. Finally, in the verification phase, the selected client presents his claim – the

obtained secret – and convinces the server that he indeed is the selected client. The

registration and verification phases are designed using standard cryptographic tools; it

is the selection phase that is the challenging computationally expensive area. The main

contribution of [33] is the novel maximum bidder selection protocols.

Our main contribution, GT-CEM constructions, can be used to replace the core –

Chapter 4. Comparing Encrypted Numbers 55

the selection protocols – of the PSPP of [33] (with corresponding natural modifications

of the other two phases). Appropriately modified protocols of Fischlin [41] and Laur and

Lipmaa [68] can be similarly used. We discuss more details and the resulting efficiency

improvements of our protocols in Sect. 4.5 and 4.6.

We also mention the following related work in settings significantly different from ours.

Naor, Pinkas and Sumner [76] use Yao’s garbled circuit approach in the setting with a

semi-honest mostly offline server, whose role is to ensure that the auctioneer does not

cheat. Cachin [21] suggested a protocol for private bidding with the semi-honest server

in the setting where the bidders additionally exchange messages among each other.

4.3 Conditional Encrypted Mapping

We consider the setting where one of the players is a facilitator of the computation of the

multi-party functionality f . This player – the Server S – is given the encrypted inputs to

f ; he produces some representation of the value of f . The value of f can later be decoded

from this representation using the private key of the employed encryption scheme. This

scenario is appealing for its round efficiency and is widely applicable in practice. For

example, it applies to auctions with semi-honest servers. There, the server S is given

encryptions of parties’ bids, and he wants to commit to a deal (e.g. by sending a secret)

with the winner.

The first step in designing secure protocols is making explicit the setting in which they

are run and the necessary security requirements. This is a difficult task, especially since

we would like our constructions to be applicable to a variety of settings. For example,

the server S may obtain encrypted inputs from parties A and B and let either A or B or

a third party C decode the output. Protocols can use encryption schemes, which may or

may not be re-initialized for each execution of the protocol. Players A, B or C may have

different levels of trust.

Chapter 4. Comparing Encrypted Numbers 56

Encompassing all these situations in one definition is difficult. We propose to extract

and formalize what these definitions would have in common – requirements of correctness

and privacy of the output of the semi-honest Server S. This modularity is very convenient,

since we can now model S as a non-interactive algorithm. A variety of setting-specific

requirements for hiding the input from the server can be later defined and satisfied with

appropriate use of encryption.

Encrypted Mapping. We model the Server S as a polytime randomized mapping

algorithm Rmap. Rmap takes as input the public key of the encryption scheme E, the

(encrypted with E) input(s), and outputs some representation of the value of f . Of

course, this output should be interpreted. We require existence of the polytime recov-

ery procedure Rec, which takes the representation of the value of f and the private key

of E and computes the intended output (this is the correctness condition). Further,

we require that the randomized representation statistically hides all other information,

ensuring privacy of arbitrary compositions of outputs of Rmap even against computa-

tionally unlimited attackers. We call the pair (Rmap, Rec) an Encrypted Mapping (EM).

We formalize a variant of this notion in Def. 13 below.

We consider it advantageous not to specify the requirements of security of encryption

in the definition, for the following reason. It allows a protocol designer to concentrate

on the high-level combinatorial properties of EM and defer discussion of detailed setting-

specific concerns. Such low-level concerns include considering whether some inputs to S

contain decryption keys (which would allow S to learn more than he should) and con-

sidering malicious behaviour, such as providing invalid or substituted inputs. A protocol

designer can now first describe the combinatorial Rmap and Rec, which would imply

solutions to a variety of settings in the semi-honest model, assuming the semantic secu-

rity of the employed encryption scheme. Afterwards, the protocols can be adapted to a

variety of specific settings and modified to withstand certain malicious behaviours (e.g.

using the conditional disclosure techniques of [1, 68]. See more in Sect. 4.5.1).

Chapter 4. Comparing Encrypted Numbers 57

We wish to give a very strong definition, so that the constructions can be used in a

variety of settings. In particular, we want our construction to work with all instantiations

of used encryption schemes. In many popular encryption schemes (e.g. Paillier [78]) the

plaintext domain DP varies with different instantiations. Many interesting functions f are

defined on fixed domains, independent of DP . We handle this detail by ensuring that DP

includes the domain of inputs to f by appropriately modifying the family of encryptions

to only include members with sufficiently large DP . We note that a sufficiently large DP

is usually implied by the semantic security requirement of the scheme.

We remark that we achieve a very strong definition by quantifying over all valid inputs

and randomness used by encryptions – i.e. over everything but the randomness used by

Rmap. This, for example, ensures that adversary does not benefit from knowing (and

even choosing) the randomness used for encrypting inputs to Rmap.

Conditional Encrypted Mapping. In this work, we are mainly interested in

constructing the protocols for transferring a secret (e.g. a sale commitment or a rejection)

depending on whether a certain predicate on two inputs (e.g. the bid is greater than the

asking price) holds. We call the corresponding EM a Conditional Encrypted Mapping

(CEM). We give a formal definition for this special case and note that a more general

EM definition can be naturally constructed.

We define CEM with respect to an encryption scheme E = (Gen, Enc, Dec). Denote

by (sk, pk) a public/private key pair for E, and by Epk denote the initialized encryption

scheme E. Let DPpk
denote the plaintext domain of Epk and DRpk

denote the domain of

randomness used by Encpk. Denote by Encpk,α(x) the encryption of x under pk using

randomness α. Let Q : DQ×DQ 7→ {0, 1} be a deterministic predicate defined on a fixed

domain. Recall, we only consider families of Epk where DQ ⊂ DPpk
. Let ν be the security

Chapter 4. Comparing Encrypted Numbers 58

parameter1. Let DS be the (fixed) domain of secrets2.

Definition 13. (Q-Conditional Encrypted Mapping) A Q - Conditional Encrypted Map-

ping (Q-CEM) is a pair of polytime algorithms (Rmap, Rec) (with implicitly defined do-

main of mappings DMpk
), such that the following holds.

The probabilistic randomized mapping algorithm Rmap takes as input

(s0, s1, e0, e1, pk), where e0, e1 are encryptions under Epk, and s0, s1 ∈ DS. Rmap outputs

an element from DMpk
. The deterministic recovery algorithm Rec takes as input secret

key sk and an element from DMpk
and outputs an element from the domain of secrets DS

or a failure symbol ⊥.

Rmap and Rec satisfy the following conditions:

• (correctness) ∀(sk, pk) ← Gen(ν), ∀s0, s1 ∈ DS, ∀α, β ∈ DRpk
, ∀x, y ∈ DQ : with

overwhelming probability in ν, taken over random inputs of Rmap:

Rec(Rmap(s0, s1, Encpk,α(x), Encpk,β(y), pk), sk) = sQ(x,y).

• (statistical privacy) ∃ Sim, s.t. ∀(sk, pk)← Gen(ν), ∀s0, s1 ∈ DS, ∀x, y ∈ DQ,

∀α, β ∈ DRpk
: the statistical distance

Dist(Sim(sQ(x,y), pk), Rmap(s0, s1, Encpk,α(x), Encpk,β(y), pk))

is negligible in ν.

Note, Def. 13 does not require E to have any security properties. Thus, formally,

inputs e0, e1 to Rmap are simply encodings of elements in DQ (and Q-CEM can be

constructed unconditionally). In practice, however, we envision using a semantically

secure E; thus we call e0, e1 encryptions. Jumping ahead, we note that in our GT

constructions of Sect. 4.4.4, the inputs e0, e1 to Rmap are bitwise encryptions of the

1In practice, we are also interested in the correctness parameter λ. Security and correctness properties
of Def. 13 are formulated with the notion of statistical closeness. Since ν and λ are polynomially related,
we, for simplicity, use only the parameter ν.

2Even though for simplicity of presentation the domains DQ and DS are fixed, their elements repre-
sentation is polynomially related to all other parameters. Further, in practice (and in our constructions),
DQ and DS can grow with ν at no extra cost.

Chapter 4. Comparing Encrypted Numbers 59

clients’ bids. Note that Def. 13 allows this interpretation, since encrypting x bit-by-bit

can be viewed as an encryption scheme itself.

Further, Def. 13 does not guarantee either correctness or privacy if e0 or e1 are not

proper encryptions of elements of DQ. This is sufficient in the semi-honest model; we

discuss methods of handling malicious behaviour in Sect. 4.5.1.

4.4 The GT-CEM Construction and Protocols

Our construction builds on the ideas of the GT protocol (Construction 1 of Chapter 3.

This protocol can be cast as a variant of GT-CEM, where one of the inputs is given

in plaintext. We present its main idea and observe that a part of this protocol – the

randomization procedure – requires S to know his input. In Sect. 4.4.2, we discuss the

necessary properties of our new randomization, which works with encryptions only. In

Sect. 4.4.3, we present such a randomization procedure and in Sect. 4.4.4 we give a

GT-CEM construction. We give an alternative randomization procedure in Sect. 4.4.5,

which can be incorporated into our GT-CEM.

4.4.1 The GT Protocol of Chapter 3

For convenience, we give a brief overview of the protocol (Construction 1 of Chapter 3)

and emphasize its relevant aspects. Recall, there are two players, a receiver R with input

x and a sender S with input y, s0, s1. S needs to send R the secret sGT (x,y).

The protocol operates on (homomorphically encrypted) bits of the inputs. The idea

is to isolate the “important” position – the one where input bit strings first differ – by

mapping it to a predetermined value and simultaneously randomizing values in all other

positions. The rest is easily accomplished by applications of linear functions. In this

work, we pay special attention to and improve the isolating randomization procedure.

In Construction 1, the Receiver R sends bitwise additively homomorphic encryption

Chapter 4. Comparing Encrypted Numbers 60

of his input x = 〈x1, ..., xn〉 to the Sender S. For each bit position i, S computes (an

encryption of) fi = xi ⊕ yi, i.e. whether xi = yi. S computes fi as xi − 2xiyi + yi; note

that this requires the knowledge of yi; knowing Enc(yi) is not sufficient. It is easy to

see that GT (x, y) = xj, where j = minfi 6=0i. Recall, S’s randomization procedure of

Construction 1 crucially relies on the fact that fj = 1. In contrast, the randomization

procedure of this chapter relies on the (encrypted) difference vector di = xi − yi, the

“important element” of which may be (an encryption of) one of {−1, 1}.

4.4.2 The Intuition of GT-CEM and the Formalization of the

Randomization Requirements

Recall, we are given secrets s0, s1 and bitwise encryptions of inputs x and y. We can

compute an encryption of the bit difference vector d, where di = xi − yi. Elements of

the difference vector d assume one of {−1, 0, 1}. Let j = mindi 6=0i be the index of the

“important” position. Our goal is to isolate the value dj by computing an encryption of

vector µ, such that ∀i 6= j, µi ∈R DPpk
and µj = dj. As in Construction 1, we can obtain

such µi for i ≥ j by computing for i = 1..n: µ0 = 0; µi = riµi−1 + di, where ri ∈R DPpk
.

Now vector µ is a vector of encryptions of (in order): one or more 0, either a 1 or a

−1, one or more random elements of DPpk
. We need to map the zeros of µ to random

elements in DPpk
, while preserving the properties of µi, i ≥ j. Our randomization maps

−1→ s0, 1→ s1 (under encryption). At the same time, it maps 0 and random elements

from DPpk
to random elements from DPpk

. It is not hard to see (and we explicitly show

it in Sect. 4.4.4) that such randomization naturally leads to a GT-CEM.

We believe that such randomization may be useful in other applications as well.

Therefore, we formalize its requirements. We present the definition in a slightly more

general way, by allowing arbitrary constants instead of −1, 1. Further natural extensions

of this definition are possible.

Let v0, v1 ∈ Z\{0} be fixed, and v0 6= v1. Let E, ν, sk, pk, Epk, DPpk
, DRpk

, DS be as in

Chapter 4. Comparing Encrypted Numbers 61

Def. 13. Let i ∈ {0, 1}. We view vi as an element of DPpk
in the natural manner (i.e. as

vi mod |DPpk
|). We note that even though this representation may vary with the choice

of pk, vi is a constant. Further, we require vi 6= 0 mod |DPpk
| and v0 6= v1 mod |DPpk

|.

Definition 14. ((v0, v1)-Randomizing Mapping) A (v0, v1) - Randomizing Mapping (RM)

is a pair of polytime algorithms (Rmap, Rec) (with implicitly defined domain of mappings

DMpk
), such that the following holds.

The probabilistic randomized mapping algorithm Rmap takes as input

(s0, s1, e, pk), where e is an encryption under Epk, and s0, s1 ∈ DS. Rmap outputs an

element from DMpk
. The deterministic recovery algorithm Rec takes as input secret key

sk and an element from DMpk
and outputs an element from the domain of secrets DS or

a failure symbol ⊥.

Rmap and Rec satisfy the following conditions:

• (correctness) ∀(sk, pk)← Gen(ν), ∀i ∈ {0, 1}, ∀s0, s1 ∈ DS, ∀α ∈ DRpk
,

for x ∈R DPpk
, with overwhelming probability in ν:

Rec(Rmap(s0, s1, Encpk,α(vi), pk), sk) = si

Rec(Rmap(s0, s1, Encpk,α(x), pk), sk) =⊥,

where the probability is taken over choices of x and random inputs of Rmap.

• (statistical privacy at v0, v1) ∃Sim, s.t. ∀(sk, pk)← Gen(ν), ∀s0, s1 ∈ DS,

∀i ∈ {0, 1}, ∀α ∈ DRpk
: the statistical distance

Dist(Sim(si, pk), Rmap(s0, s1, Encpk,α(vi), pk)) is negligible in ν.

• (statistical privacy at 0 and at random elements of DPpk
) ∃Sim0, such that

∀(sk, pk)← Gen(ν), ∀s0, s1 ∈ DS, ∀α ∈ DRpk
: the statistical distances

Dist(Sim0(pk), Rmap(s0, s1, Encpk,α(0), pk)) and

Dist(Sim0(pk), Rmap(s0, s1, Encpk,α(R), pk))

are negligible in ν, where R is uniform on DPpk
.

Chapter 4. Comparing Encrypted Numbers 62

We note that a stronger definition might require the last property to hold everywhere,

other than at v0 and v1. We choose not to include this, since the stronger notion is not

necessary for our protocols, and, moreover, Construction 5 would not satisfy it.

4.4.3 A space-efficient (−1, 1)-RM

We present a construction for (−1, 1)-RM, based on the Paillier encryption scheme [78],

which we use to construct GT-CEM. Let E be the Paillier scheme initialized as described

in Def. 14. Let Rmap be given an encryption under Epk. Our (−1, 1)-RM is space optimal

in the sense that Rmap outputs a single encryption under Epk.

At first glance, the requirements on Rmap are conflicting: we must satisfy three data

points ((v0, s0), (v1, s1), (0, random)) with a linear function (only linear functions can

be applied under the homomorphic encryption). Our idea is for Rmap to produce not

encryptions of secrets si, but of their randomized encodings Si. We carefully randomize

the encodings Si, such that their linear combination of interest (i.e. the value that 0 is

mapped to) is a random element in DPpk
.

Let f = ax + b be a linear mapping, such that f(−1) = −a + b = S0 and f(1) =

a + b = S1. Then b = (S0 + S1)/2 and a = S1 − (S0 + S1)/2 = (S1 − S0)/2. We want to

ensure that f(0) = b = (S0 + S1)/2 is random, while, for i ∈ {0, 1}, Si encodes si and

contains no other information.

Construction 5. ((−1, 1)-RM)

Let λ and ν be the correctness and security parameters. Let the plaintext group of

Epk be DPpk
= ZN , where N = pq is of bit size n > ν. Let k = b(n − 1)/2c. Define the

domain of secrets to be DS = DSpk
= {0, 1}k−λ, and the domain of mappings DMpk

to be

the domain of encryptions under Epk.

Rmap on input (s0, s1, e, pk) proceeds as follows. Set s′i = si0
λ (to help distinguish

secrets from random strings). View s′0, s
′
1 as elements of ZN . Choose R ∈R

�
N and a bit

Chapter 4. Comparing Encrypted Numbers 63

c ∈R {0, 1}. Let r1 (resp. r0) be the integer represented by k lower (resp. remaining) bits

of R, i.e. R = r02
k + r1.

Set S0, S1 as follows. If c = 0, then set S0 = r02
k + s′0 and S1 = s′12

k + r1. If c = 1,

then set S0 = s′02
k + r1 and S1 = r02

k + s′1.

Compute a = (S1 − S0)/2 mod N and b = (S0 + S1)/2 mod N .

Finally, apply f = ax + b to e under the encryption and re-randomize the result, that

is, choose r′ ∈R Z
∗
N and output eagbr′N mod N2.

Rec on input (e′, sk) proceeds as follows. Rec computes d = Decsk(e
′). Let dn, ..., d1

be the bit representation of d. Let D1 = d2k, ..., dk and D0 = dk, ..., d1. For i ∈ {0, 1}, if

Di = s0λ, output s and halt. Otherwise output ⊥.

Theorem 5. (Rmap, Rec) described in Construction 5 is a (−1, 1)-RM.

Proof. We first show that the two correctness properties hold. It is easy to follow the

construction of Si and observe that either its lower k bits or the remaining bits contain

the intended secret si. Further, the part of Si that does not represent the secret is

random. Therefore the secret is easily distinguishable thanks to the added trailing zeros.

Thus, the first correctness condition holds with overwhelming probability in λ. Further,

f applied by Rmap is a linear function, which is a permutation on ZN with overwhelming

probability in ν. (Indeed f = ax + b is not a permutation only if a = (S1 − S0)/2 is not

invertible.) Therefore, Rmap, evaluated on an encryption of a random element of ZN ,

produces a random encryption of a random element of ZN . It is easy to see that Rec

outputs ⊥ on an encryption of a random element with overwhelming probability in λ.

The privacy at v0, v1 condition also holds. Indeed, given a secret s ∈ DS, and pk,

the required Sim(s, pk) simulates the output of Rmap(s0, s1, Encpk,α(vi), pk) as follows.

Choose a random bit c′ ∈R {0, 1} and a random S ′ ∈
�

N . If c′ = 0 set the lower k bits

of S ′ to be s0λ. If c′ = 1 set the the higher n− k bits of S ′ to be s0λ. Return a random

encryption of S ′ under pk. It is easy to see that Sim satisfies the necessary conditions.

Chapter 4. Comparing Encrypted Numbers 64

The privacy at 0 and at random elements of ZN holds for the following reasons. Firstly,

as shown in the proof of correctness, Rmap, evaluated on encryptions of random elements

of ZN , produces random encryptions of random elements of ZN . This is easy to simulate

with only knowing pk. It remains to show that Rmap evaluated on an encryption of 0

does the same. Recall, Rmap applies f to the input encryption. There are two cases.

If c = 0 then f(0) = 1/2(S0 + S1) = 1/2(r02
k + s0 + s12

k + r1) = 1/2(r02
k + r1 + s0 +

s12
k) = 1/2(R + s0 + s12

k).

If c = 1 then f(0) = 1/2(S0 + S1) = 1/2(s02
k + r1 + r02

k + s1) = 1/2(r02
k + r1 + s1 +

s02
k) = 1/2(R + s1 + s02

k).

In any case, f(0) is random on ZN due to the additive random term R/2.

4.4.4 GT-CEM Based on Bitwise Paillier Encryption of Inputs

Let n be the length of the compared numbers. We will use the Paillier encryption

scheme E to encrypt inputs to Rmap in the bitwise manner. That is, Gen(ν) is run,

fixing (sk, pk) and the instance Epk. The inputs to Rmap are (s0, s1, e0, e1, pk), where

e0 = 〈Encpk(x1), ..., Encpk(xn)〉, e1 = 〈Encpk(y1), ..., Encpk(yn)〉, where x1 and y1 are the

most significant bits. The sender additionally has the secrets s0, s1 ∈ DS as inputs. Let

(Rmap1, Rec1) be a (−1, 1)-RM based on the Paillier encryption scheme (e.g. Constr.

5), instantiated with Epk. Let DMpk1
, DS1 be the domains of mappings and secrets of

(Rmap1, Rec1).

Construction 6. (GT-CEM)

Let λ and ν be the correctness and security parameters. Let the plaintext group of Epk

be DPpk
= ZN , where N = pq is of bit size n > ν. Define the domain of secrets DS = DS1

and the domain of mappings DMpk
= Dn

Mpk1
.

Rmap on input (s0, s1, e0, e1, pk) computes, for each i = 1..n :

1. an encryption of the difference vector d, where di = xi − yi.

Chapter 4. Comparing Encrypted Numbers 65

2. an encryption of vector γ, s.t. γ0 = 0 and γi = riγi−1 + di, where ri ∈R

�
N .

3. a randomized mapping vector µ, where µi = Rmap1(s0, s1, Encpk(γi)).

Rmap outputs a random permutation π(µ).

Rec on input (µ′
1..µ

′
n, sk) proceeds as follows. For i = 1..n, let zi = Rec1(µ

′
i, sk). If

zi 6= ⊥, output zi and halt. Otherwise, if ∀i = 1..n, zi = ⊥, output ⊥.

Theorem 6. Construction 6 is a GT-CEM.

Proof. We will first show that Construction 6 satisfies the correctness requirement. It is

easy to see that the homomorphic properties of the encryption scheme allow Rmap and

Rec to perform all necessary operations.

Let j be the position where x and y first differ; thus dj determines GT(x, y). With

overwhelming probability, γ is a vector with the following structure: it starts with zero

or more zeros, then, in position j, a one or a minus one, then a sequence of random

elements in
�

N . It is not hard to see that, by the correctness and privacy properties of

(−1, 1)-RM, Rec, using Rec1, will recover sGT (x,y).

We now show that the privacy condition holds as well. We construct simulator

SimGT (s, pk), where pk is the public key established in the setup phase and s = sQ(x,y).

SimGT (s, pk) has to generate a distribution statistically close to the output of Rmap.

SimGT (pk, s) proceeds as follows, using the simulators Sim0 and Sim, required by (−1, 1)-

RM. It runs Sim0(pk) n− 1 times and Sim(s, pk) once, obtaining a vector z ′ of n simu-

lated mappings. SimR(s, pk) outputs a random permutation π′(z′). It is easy to see that

SimGT (pk, s) statistically simulates the output of Rmap, due to properties of Sim0 and

Sim.

4.4.5 A General (v0, v1)-RM Construction

We informally present the construction for any two constants v0, v1. We note that it can

be naturally generalized for any number of constants v1, ..., vn.

Chapter 4. Comparing Encrypted Numbers 66

Rmap proceeds as follows. First, as in Construction 5, add trailing zeros to s0, s1 to

distinguish them from random elements in DPpk
. For i = 1..2 do the following. Choose

random linear functions fi = aix + bi on the plaintext domain DPpk
of the underlying

(Paillier) encryption, such that fi(vi) = si. Apply fi to the encrypted input, obtaining

Encpk(si) if x = vi, or an encryption of a random value otherwise. Re-randomize and

randomly permute the two obtained encryptions. It is easy to see that this sequence

encodes at most a single secret si and contains no other information. Rec decrypts the

vector, recognizes the secret and outputs it with overwhelming probability.

This (v0, v1)-RM can be used with Construction 6, producing GT-CEM with slightly

different performance properties. Because this (v0, v1)-RM uses larger domains of map-

pings DMpk
than Construction 5, the resulting GT-CEM is less efficient for transferring

smaller secrets. When the transferred secrets are large, this (v0, v1)-RM performs better

due to slightly smaller loss in bandwidth due to redundancy in secrets. See Table in Sect.

4.6 for detailed comparisons.

4.4.6 Resource Analysis

We evaluate the message and modular multiplication efficiency of Construction 6, used

with (−1, 1)-RM of Sect. 4.4.3 (which we refer to as CEM1) and of Sect. 4.4.5 (CEM2).

The generated encryption key is reused for a polynomial number of executions of our

protocols, thus we do not count the relatively small computational cost of key generation.

Let n be the length of inputs x and y in base 2, and N be the size of the plaintext domain

of the Paillier scheme. Then the message complexity (the size of the output of Rmap) of

CEM1 is l1 = n log(N2) = 2n log N bits, and that of CEM2 is l2 = 2n log(N 2) = 4n log N .

We do not count the encrypted inputs x, y for message complexity, since their length is

usually small, and, in many settings, they are not sent to S, but computed by S.

To encrypt the 2n input bits, 2n log N multiplications are required. Step 1 of Con-

struction 6 requires n multiplications, and step 2 requires (log N + 1)n multiplications.

Chapter 4. Comparing Encrypted Numbers 67

Step 3 of CEM1 requires (3 log N + 2)n multiplications (2 log N + 1 multiplications for

application of the linear function f , and log N to re-randomize the encryption). Similarly,

step 3 of CEM2 requires (6 log N + 4)n multiplications.

Rec of CEM1 (resp. CEM2) costs 2n log N (resp. 4n log N) multiplications (We

expect to perform half of them before Rec recovers the secret and halts).

In total, CEM1 (resp. CEM2) requires no more than ≈ 8n log N (resp. ≈ 13n log N)

modular multiplications. Of those, 4n log N (resp. 7n log N) are performed by Rmap,

and 4n log N (resp. 6n log N) are spent for encrypting inputs and reconstructing the

output. Note that the encryption and re-encryption multiplications can be precomputed

once the encryption scheme is initialized.

Our modular multiplications are four times slower than those of [33, 41], since they

are performed mod N 2, while the Goldwasser-Micali (GM) multiplications (used in

[33, 41]) are mod N .

One execution of CEM1 (resp. CEM2) allows transfers of secrets of size up to

(log N)/2− λ (resp. log N − λ) for the same cost.

Care must be taken in choosing appropriate parameters for comparisons of our results

with the performance of other schemes, in particular those based on the potentially weaker

quadratic residuocity assumption ([33, 41]). Note that in practice no known attack on

the Paillier system is better than factoring the modulus N . Clearly, factoring based

attacks would also be effective against the GM scheme with the same modulus size.

Thus we assume that the security of Paillier and GM schemes with the same size moduli

is approximately the same.

The performance comparisons are summarized in the Table in Sect. 4.6.

Chapter 4. Comparing Encrypted Numbers 68

4.4.7 CEM for any NC1 Predicate From Homomorphic Encryp-

tion

We note that it is possible to construct CEM for any NC1 predicate Q, using, for example,

our information-theoretic abstraction of Yao’s garbled circuit of Chapter 5. (Recall, NC1

is the class of decision problems solvable by polynomial size Boolean circuits of depth

O(log(n)), and fan-in 2.) The idea is to assign two specially constructed secrets to each

input wire of the (polysize) formula representation of the NC1 circuit. Here each secret

corresponds to one of the two possible wire values. The secrets satisfy the following

property: a set of secrets, one for each wire of the circuit, allows us to compute the value

of the circuit on the corresponding input, and carries no other information.

It is easy to use the homomorphic encryption properties to allow Rec to reconstruct

only one appropriate secret for each wire. Combined with the tools discussed in the

previous paragraph, this implies CEM for any NC1 predicate.

4.5 Protocol Constructions from GT-CEM

As mentioned in the discussion of CEM in Sect. 4.3, natural protocol constructions

immediately arise from CEM in the semi-honest model. We demonstrate this on a special

case of PSPP of [33], where the server S runs the auction with two bidders C0, C1. (Our

solution can accommodate more bidders, using natural techniques.) As discussed in Sect.

4.2 and [33], in the initialization phase, each of the clients generates and publishes his

public key pki with S.

The main selection phase proceeds as follows. Each client Ci sends to S two en-

cryptions of his input, with his own and with the other client’s public keys (i.e. S

obtains Encpki
(xi), Encpk1−i

(xi)) from Ci). S applies GT-CEM twice (once under each

key) and sends the outputs of Rmap to the corresponding Ci for reconstruction. That

is, S sends mi = Rmap(s0, s1, Encpki
(xi), Encpki

(x1−i), pki) to each Ci, who then applies

Chapter 4. Comparing Encrypted Numbers 69

Rec(ski, mi) and obtains s1 if his bid is greater and s0 otherwise. (We note that the

receipt of the non-winning s0 is crucial to hide the rank of the bid of Ci in auctions with

more than two parties [33].)

It is easy to see that this protocol is secure in the semi-honest model. Indeed, by the

definition of CEM, each mi contains only the intended secret and no other information.

Further, it is not hard to see that computationally-bounded S does not learn anything

from seeing semantically secure encryptions of clients’ bids (under a natural assumption

that the secrets s0, s1 are a polytime computable function of the transcript of S’s view of

execution of the auction and arbitrary information available prior to the key generation

phase).

4.5.1 Handling Malicious Behaviours

One of the main reasons for the introduction of the semi-honest facilitator is the sim-

plification and efficiency improvement of protocols. In this discussion, we assume the

presence of such semi-honest S running Rmap and discuss methods of protection against

malicious behaviour of other participants. We note that the CEM model is well suited for

this task, since the malicious actions of parties are limited to improper input submission

and reporting of the decoded output.

First, we observe that the free choice of secrets by S is a powerful tool. For example,

when sufficiently long secrets are randomly chosen, they may serve as a proof of the

value of Q in the evaluated Q-CEM. Indeed, the recipient of si is not able to claim

Q(x, y) = 1 − i, since he cannot obtain s1−i. Further, for example, secrets can contain

S’s signatures, proving the correctness of reconstruction to anyone.

A harder task is ensuring that malicious players do not gain from submitting contrived

inputs to S. Firstly, zero-knowledge (ZK) techniques could be used to ensure players’

compliance with the prescribed protocol. This is often computationally expensive and

requires either a common random string or an extra round of interaction. There exist

Chapter 4. Comparing Encrypted Numbers 70

light-weight alternatives to ZK, such as conditional disclosures of Aiello, Ishai and Rein-

gold [1] and Laur and Lipmaa [68]. Their idea, well suited for our setting, is to ensure

that an improperly formed input will render useless the obtained output of Rmap. For

example, suppose Rmap requires input encryption e to be a Paillier encryption of a bit

(i.e. that Dec(e) ∈ {0, 1}). We ensure that non-compliant inputs result in garbled out-

put as follows. Let s0, s1 ∈ DS be inputs to Rmap. We choose a random r ∈R DS and

run Rmap with secrets s0 ⊕ r, s1 ⊕ r. We now only need a CEM procedure that would

transfer r iff Dec(e) ∈ {0, 1}, which can be easily constructed.

4.5.2 Proxy Selling with a Secret Reserve Price

We sketch how to apply GT-CEM to an interesting variant of a proxy selling task, men-

tioned in Sect. 4.1. Here, the seller wishes to be offline and delegate selling to the semi-

honest S. The seller initializes Epk, publishes pk and sends an encryption Encpk(x) of his

lowest acceptable price (i.e. reserve) to S, who later interacts with buyers as follows. On

an encrypted offer Encpk(y), S replies with Rmap(s0, s1, Encpk(y), Encpk(x), pk), where

s1 serves as S’s certification of the successful buyer (e.g. in a form of a signature), and

s0 is a non-winning (e.g. empty) secret. Thus, successful buyers obtain (an encryption

of) the contract, which they later present to the seller.

Combining GT-CEM with the general CEM techniques based on secret representa-

tions, described in sect. 4.4.7, allows us to obtain very efficient CEM depending on

several GT evaluations. This allows us to proxy sell not only based on a reserve price,

but on a price range, delivery date ranges, etc.

4.6 Comparison with Previous Work

We continue the resource analysis of Sect. 4.4.6. Note that the protocols of [33, 41, 68] can

be appropriately modified to be cast as GT-CEM. We summarize the cost of comparable

Chapter 4. Comparing Encrypted Numbers 71

modular multiplications and communication of evaluating GT-CEM based on [33, 41,

68] and our constructions CEM1 and CEM2 (i.e. Construction 4.4.4 instantiated with

(−1, 1)-RM of Sect. 4.4.3 and 4.4.5 respectively).

Here c-bit secrets are transferred based on comparison of n-bit numbers. λ and ν are

the correctness and security parameters, and N > 2ν is the modulus of the employed

encryption scheme (GM for [33, 41] and Paillier for [68] and our work). We do not include

the one-time cost of key generation. We measure communication as the size of the output

of Rmap.

Solutions of [33, 41] transfer one-bit secrets per execution, therefore c-bit secrets can

be transferred at a factor c cost increase. Our CEM1 (resp. CEM2) protocols transfer

secrets of size c < ν/2− λ (resp. c < ν − λ) per execution. Today’s common parameters

ν ≈ 1000, λ ≈ 40..80 imply transfers of approximately 450 (resp. 950)-bit secrets per

execution of CEM1 (resp. CEM2). For CEM of longer secrets, multiple execution is

needed. Note the significant advantage of CEM1 for the most frequent case where the

transfer of medium-size secrets is required.

Costs and Comparisons. GT-COT of [68] can be modified to obtain GT-CEM

similar in cost to CEM2. The solution of Chapter 3 (in a more restricted setting, where

one of the compared numbers is given in plaintext) carries approximately half of the cost

of CEM2. Other costs and comparisons are summarized below. (The cost of (client-run)

GM decryption, used in [41, 33], is not less than log N modular multiplications. For

simplicity, we assume that it is log N .)

Chapter 4. Comparing Encrypted Numbers 72

Protocol
Comparable Modular Multiplications Communication Comment

client server total

of [41] 4ncλ log N 24ncλ 24ncλ + 4ncλ log N 4ncλ log N

of [33] 8n2c log N 12n2c 12n2c + 8n2c log N 8n2c log N

CEM1 16n log N 16n log N 32n log N 2n log N c < ν/2− λ

CEM2 24n log N 28n log N 52n log N 4n log N c < ν − λ

Chapter 5

Information Theoretically Secure

Formula Evaluation

5.1 Introduction

Summary of the contributions of the chapter. We propose Gate Evaluation Secret

Sharing (GESS) – a new kind of secret sharing, designed for use in secure function

evaluation (SFE) with minimal interaction. The resulting simple and powerful GESS

approach to SFE is a generalization of Yao’s garbled circuit technique.

We give efficient GESS schemes for evaluating binary gates and prove (almost) match-

ing lower bounds. We give a more efficient information-theoretic reduction of SFE of a

boolean formula F to oblivious transfer. Its complexity is ≈
∑

d2
i , where di is the depth

of the i-th leaf of F .

5.1.1 Motivation of the Problem and the Setting

We continue our study of one-round SFE. In this chapter, we give a generic construction

for secure evaluation of any NC1 circuit. (Recall, NC1 is the class of decision problems

solvable by polynomial size Boolean circuits of depth O(log(n)), and fan-in 2.) We

73

Chapter 5. Information Theoretically Secure Formula Evaluation 74

approach the problem in a general way by unconditionally reducing SFE to oblivious

transfer (OT). OT is a powerful primitive, and is the subject of a vast amount of research.

It has been studied in many settings; for example, OT is instantiable with information-

theoretic (IT) security (e.g. with noisy channels or a distributed sender [74]). Our SFE

constructions automatically apply to all of the above (and many other) settings and

will benefit from future OT research. For a discussion of the subtleties, importance and

benefits of our setting, see Sect. 2.3 and 2.4.

5.1.2 Our Contributions and Outline of the Work

Our main idea is a new simple way of evaluating circuit gates securely by using a new

type of secret sharing, which we call Gate Evaluation Secret Sharing (GESS). Our method

can be viewed as a generalization of Yao’s garbled gate evaluation procedure, offering

a simple and powerful approach for designing efficient SFE protocols. Our method is

flexible, and not limited to ∨,∧,¬ gates. Circuits with special purpose (e.g. non-binary)

gates may be designed and implemented via GESS to achieve better efficiency for specific

functions (see, e.g., Sect. 5.2.6).

We show how a composition of GESS schemes can be used to efficiently reduce SFE

to (parallel executions of) 1-out of-2 OT. Given a boolean formula, we obtain a one-

round reduction, meaning that an instantiation of OT results in a SFE protocol, the

security and round complexity of which are that of the underlying OT. Our reduction is

very efficient. Previous approaches in part suffer from the exponential (in depth) cost of

evaluation of a gate, which has intuitively appeared necessary. We break this intuition

by providing a scheme for gate evaluation whose cost is only quadratic in the depth of

the gate. Further, in our reduction, we don’t “pay” for the internal gates of the formula.

For a depth d circuit, this results in a factor of approximately 2O(
√

d) improvement over

previous solutions: O(2dd2) vs Θ(2d2Θ(
√

d)). (Like all other approaches, ours suffers from

the fact that the number of gates may be exponential in depth. Thus, we offer polytime

Chapter 5. Information Theoretically Secure Formula Evaluation 75

reduction of only NC1 circuits.) We prove non-trivial lower bounds, showing that our

constructions are almost optimal in the GESS framework.

The GESS approach is especially efficient on small circuits, since it does not use

encryption. In Sect. 5.2.6, we demonstrate this by a new efficient protocol for the

Two Millionaires problem. This protocol also serves as an example of designing and

implementing custom GESS gates.

We start with describing previous approaches and giving conceptual and performance

comparisons to our work (Sect. 5.1.3). We then present intuition for our approach

and introduce the necessary formal definitions in Sect. 5.2 and 5.2.1. We present our

constructions, lower bounds and performance analysis in Sect. 5.2.3 – 5.2.5. In Sect.

5.2.6 we present a new solution of the Two Millionaires problem.

In Sect. 5.3, we show how to use GESS to allow polytime SFE of polysize circuits,

when Alice (the party who sends the first message) is polytime. In effect, we obtain

another implementation of Yao’s garbled circuit approach for the model with polytime

Alice, offering essentially the same computational and communication complexity as its

best implementations. The natural and efficient handling of the computational setting

demonstrates the generality of the GESS approach. We mention that the efficiency of

Yao’s garbled circuit technique in the standard model can be (slightly) improved by using

IT GESS on “the bottom part” of the circuit (see discussion in Sect. 5.3).

We note that, for the ease of understanding, in the main body of this chapter, we

present special cases of definitions and proofs. This is, however, sufficient to maintain a

high level of formalism in discussion and formally present the underlying ideas. General

definitions and more formal proofs are delayed until Sect. 5.4. We stress that the

material of Sect. 5.4 is but a relatively simple (but detailed and technical) formalization

and generalization of the ideas of this chapter.

Chapter 5. Information Theoretically Secure Formula Evaluation 76

5.1.3 Comparisons with Related Previous Work

General discussion. Note the frequent use of a variety of secret sharing schemes in

the area of secure function evaluation. They are always used, however, to share secrets

among players. We contrast this with our novel use, where secrets are shared among

wires and given to the player who performs reconstruction.

We note that some of the previous approaches (e.g. [29, 60, 61, 63]) are applicable

to more general representations of functions (e.g. by arithmetic formulas or branch-

ing programs (BP)). Many functions may have especially efficient representations when

not restricted to boolean formulas (the setting we consider); secure evaluation of such

functions may not benefit from our constructions.

Although our reductions are efficient for polysize boolean formulas of arbitrary depth,

they perform better on balanced formulas. For the latter, the complexity is quasi-linear

(vs. cubic for highly unbalanced formulas) in the size of the formula. Note that it is

possible ([19, 16]) to rebalance any formula to obtain an equivalent log-depth balanced

formula, at the cost of small increase in its size (see end of Sect. 5.2.4 for more discussion).

Therefore, for the remainder of this section, assume that we are given a boolean

formula (or an NC1 circuit, which can be viewed as one), which is rebalanced if it

benefits the approach considered.

Let d be the depth of the formula or the circuit.

Comparing our reduction to previous constant-round approaches.

Kilian [63] was the first to show a one-round IT reduction (of complexity Θ(4d)) of SFE

to OT. Kilian relies on Barrington’s [4] representation of NC1 circuits as permutation

BPs. It is possible to replace Barrington’s representation in Kilian’s construction with

a more efficient construction of Cleve [29] (see, e.g. Cramer et al. [30]). The resulting

complexity is Θ(2d2Θ(
√

d)), which is the best previously known for NC1 circuits and

(re)balanced formulas.

Ishai and Kushilevitz [60, 61] suggested a way of representing a circuit as a predicate

Chapter 5. Information Theoretically Secure Formula Evaluation 77

on a vector of degree 3 (degree of the input variables xi is 1) randomizing polynomials.

Their construction assigns an (exponential in d in size) polynomial representation to each

wire of the corresponding fan-out 1 circuit, and implies a one-round SFE-to-OT reduction,

of complexity Θ(4d). They also previously suggested a related Private Simultaneous

Messages (PSM) model [59] of computation. They showed how to evaluate functions

computed by BPs in the PSM model (and also in our SFE-to-OT reduction model)

with resources quadratic in the size of the BP. (Recall, BPs are more powerful than

permutation BPs or formulas.) For our setting, their approach implies a one-round SFE-

to-OT reduction of cost Θ(4d), using an (almost) linear in size transformation of a formula

to a BP [47].

Our reduction of boolean formulas is simpler and more efficient (costing O(2dd2))

than the above approaches.

Yao’s garbled circuit approach can also be used for such reduction (see, e.g. [61]).

The idea is to use an IT-secure encryption scheme (e.g. using one-time pad) in Yao’s

garbled circuit. The keys of such a scheme must be more than twice the size of the secret,

causing an exponential (in d) growth of the size of secrets, even in fan-in 1 circuits1. The

complexity of such a scheme is about Θ(4d) (up to 2d leaves, each of size up to 2d). Our

approach is a generalization and an improvement of this approach.

Sander, Young and Yung (SYY) ([86]) present a “fully homomorphic” encryption

scheme and apply it to SFE. The encryption size grows exponentially with the number

of the applied OR operations, resulting in Θ(8d) cost of SFE. Beaver [6] suggests an

optimization of the SYY pyramid and extends the approach to the multi-party setting,

achieving complexity Θ(4d). Further, using the representation of Feige, Kilian and Naor

[38] of NLOGSPACE as a product of polysize matrices, he shows how to compute it in one

round, bootstrapping the SYY approach, also achieving complexity Θ(4d). Our approach

1Note the distinction between this flavour of Yao’s approach and its standard version for evaluation
of polysize circuits (e.g. [5, 85, 76, 70]). The latter is not a reduction to OT; e.g, it cannot be used to
construct one-round protocols IT-secure against Alice.

Chapter 5. Information Theoretically Secure Formula Evaluation 78

is conceptually different, simpler, more composable, uses fewer assumptions, and offers

complexity of at most O(2dd2). Also, unlike SYY, we do not have the requirement of a

layered circuit, which further increases our performance improvement.

5.1.4 Our Setting

We are working in a setting with two semi-honest participants who use randomness in

their computation. A large part of our work concerns the reductions of various problems

to the OT oracle. In the semi-honest model, secure reductions result in secure protocols

when the called oracles are replaced by their secure implementations. Further, the oracles’

implementations may be run in parallel, which, with natural OT implementations, results

in secure one-round protocols. See Goldreich [49] for definitions, discussion and the

composition theorem.

5.2 The GESS Approach

The intuition behind the GESS approach. Suppose first that the circuit C consists

of a single binary gate G with two inputs, one held by Alice, and one by Bob. To transfer

the value of the output wire to Alice, Bob encodes possible values of each of the two input

wires and transfers to Alice two of the four encodings – one for each wire. Encoding of

Alice’s wire value is sent via OT. Each pair of encodings that can be possibly sent, has

to allow the recovery of the corresponding (to G) value of the output wire, and cannot

carry any other useful information. Consider the following example.

s′1 s′′1s′0 s′′0

0
G

1

Given the possible output values 0, 1 and the semantics of the gate G, Bob generates

encodings of the input wires’ values (s′0, s
′
1), (s

′′
0, s

′′
1), such that each possible pair of en-

codings s′i, s
′′
j , where i, j ∈ {0, 1}, allows to reconstruct G(i, j), and carries no other

Chapter 5. Information Theoretically Secure Formula Evaluation 79

information. Now, if Bob sends Alice shares corresponding to their inputs, Alice would

be able to reconstruct the value of the output wire, and nothing else.

This mostly corresponds to our intuition of secret sharing schemes. Indeed, the pos-

sible gate outputs play the role of secrets, which are shared and then reconstructed from

the input wires encodings (shares).

Our next observation is that Bob need not share the values of the output wire, but

instead can share their encodings, which, in turn, may be input shares of another gate.

Thus, Alice and Bob can recursively apply the GESS approach to multi-gate circuits.

For each wire, Alice will only be able to obtain one secret – the one corresponding the

the value of the wire on the parties’ inputs.

Relationship to Yao’s garbled circuit approach. As briefly mentioned above,

our protocols can be easily modified into Yao’s garbled circuit procedure. See Sect. 5.3 for

a construction and proof of security. The construction of Sect. 5.3 additionally provides

intuition on the relationship between our contributions and Yao’s solution. We remind the

reader of the main difference – the standard Yao’s construction relies on computational

assumptions (private-key encryption), and thus is not secure against computationally

unbounded adversaries.

5.2.1 The Definition of Gate Evaluation Secret Sharing

We now formally state the desired properties of the secret sharing scheme. While the

idea of the definition is quite simple, it is somewhat burdened with notation due to the

necessary level of formalism. For simplicity, we present the definition for the case of a

gate with two binary inputs and a binary output, postponing the presentation of its most

general form to Sect. 5.4.1 (Def. 16). A simple instructive example of a GESS scheme is

Constr. 8 in Sect. 5.2.3.

Let G be a gate with two binary inputs and a binary output. Also denote by G :

{0, 1} × {0, 1} 7→ {0, 1} the function computed by gate G. Let SEC be the domain of

Chapter 5. Information Theoretically Secure Formula Evaluation 80

secrets. Suppose we’ve associated a secret si ∈ SEC with each of the two possible values

i of the output wire of G. In general, distributions of s0 and s1 may be dependent, so we

talk about a tuple of secrets 〈s0, s1〉 from a domain of tuples TSEC ⊂ SEC2 associated

with the output wire. We want to assign a share to each value of the two input wires,

such that each combination of shares allows reconstruction of (only) the “right” secret.

As do secrets, shares on a wire form a tuple: 〈sh10, sh11〉 ∈ TSH1 ⊂ (SH1)
2 on wire 1,

and 〈sh20, sh21〉 ∈ TSH2 ⊂ (SH2)
2 on wire 2. In our notation, shij ∈ SHi is the share

of the i-th input wire (i ∈ {1, 2}), corresponding to the value j ∈ {0, 1}.

Definition 15. (Gate evaluation Secret Sharing) A gate evaluation secret sharing scheme

(GESS) for evaluating G as above (we also say GESS implementing G) is a pair of

algorithms (Shr, Rec) (with implicitly defined secrets domain SEC, secrets tuples domain

TSEC, two share domains SH1 and SH2 and two share tuples domains TSH1, TSH2),

such that the following holds.

The probabilistic share generation algorithm Shr takes as input a two-tuple of secrets

〈s0, s1〉 ∈ TSEC and outputs two tuples of shares (one for each wire), where, ∀i ∈ {1, 2},

the i-th tuple ti ∈ TSHi consists of two shares shij ∈ SHi. The deterministic share

reconstruction algorithm Rec takes as input two elements sh1 ∈ SH1 and sh2 ∈ SH2 and

outputs s ∈ SEC.

Let v = 〈v1, v2〉 ∈ {0, 1} × {0, 1} be a selection vector. Define the selection function

Sel(〈sh10, sh11〉, 〈sh20, sh21〉, v) = 〈sh1v1 , sh2v2〉. Write V1 ≡ V2 to denote that V1 and V2

are distributed identically.

Shr and Rec satisfy the following conditions:

• correctness: for all random inputs of Shr and secrets tuples 〈s0, s1〉 ∈ TSEC,

∀v ∈ {0, 1}2, Rec(Sel(Shr(〈s0, s1〉), v)) = sG(v)

• privacy (selected shares contain no information other than the value sG(v)): There

exists a simulator Sim, such that ∀〈s0, s1〉 ∈ TSEC and any v ∈ {0, 1}2:

Chapter 5. Information Theoretically Secure Formula Evaluation 81

Sim(sG(v)) ≡ Sel(Shr(〈s0, s1〉), v)

Observation 3. A simple generalization of this definition (required for discussion in

Sect. 5.2.3 and 5.2.4) considers the identity gate GI with a four-valued output wire,

where each output corresponds to a pair of inputs. In this case, the secrets form a 4-tuple

〈s00, ..., s11〉, while there are still two two-tuples of shares. Note that we can convert GESS

implementing GI into GESS implementing any other binary gate by simply restricting

some of the secrets to be equal. Denote the correspondence between a secret s ∈ SEC

and the wire value v ∈ {0, 1} by s↔ v. Then setting s01 = s10 = s11 ↔ 1, s00 ↔ 0 gives

the implementation of the OR, and s00 = s01 = s10 ↔ 0, s11 ↔ 1 – of the AND gates.

NOT gates can be implemented “for free” by simply eliminating them and inverting the

correspondence of the appropriate wire’s values and secrets.

Observation 4. We note that, in contrast with the traditional approach of multi-secret

sharing schemes, our definition allows the possibility that a single share gives out some

information about a secret. It is easy to see, however, that for the gates that depend on

both inputs, this information must be common to every secret, since otherwise it is possible

to determine whether a corresponding combination of secret/share occurred, which allows

to easily construct a distinguisher breaking the privacy requirement of GESS. Further,

shares of the same wire, corresponding to different values, must be distributed identically

(otherwise a distinguisher exists).

The definition is given for specific input and output domains, and therefore we do not

talk about polynomial bounds on Shr and Rec. However, in practice, we are interested

in ensembles of schemes and want them to be uniform polytime algorithms. Note that in

the definition, we don’t insist on an ensemble of efficient simulators. This is because an

efficient simulator exists if any one exists. Indeed, an efficient simulator Simeff can simply

output Sel(Shr(〈s0, s1〉), v), where at least one of the secrets si is equal to s, and v is any

selection vector, such that G(v) = i. Seff is as efficient as the Shr function. Further, the

Chapter 5. Information Theoretically Secure Formula Evaluation 82

existence of the (possibly inefficient) simulator guarantees the equality of distributions

Sel(Shr(〈s0, s1〉), v) for all inputs as above. Therefore the the perfect simulation property

of Simeff holds.

5.2.2 Reduction of SFE to OT using GESS

Suppose Alice and Bob have a circuit C, consisting of fan-out 1 gates G1, G2, We

formally describe a reduction of securely evaluating C on their inputs to calls to OT,

resulting in a one-round protocol. Again, for simplicity of presentation we assume that

all gates Gi are fan-in 2 binary gates.

Assume that for every gate G of C, there exists a GESS GESSG : (ShrG, RecG) of Def.

15 with appropriate secret domains (as described below). We give explicit constructions

(e.g. Constr. 8 in Sect. 5.2.3) of such schemes for all gates with two binary inputs. We

note that GESS for every other gate can be constructed (e.g. from Constr. 7 instantiated

with GESS of Constr. 8).

Construction 7. (Reducing SFE to OT) Bob’s precomputation. Bob starts with the

output gate. He sets the secrets domain SEC of it to be {0, 1} and sets the secrets tuple

to 〈0, 1〉. He proceeds through gates of C recursively as follows.

Consider a gate G. Let TSEC and a secrets tuple t = 〈s0, s1〉 ∈ TSEC are given for

G. Let GESSG be a GESS scheme implementing G with secrets tuples domain TSEC ⊂

SEC2. Bob runs ShrG on the secrets tuple t and obtains two tuples of shares t1 ∈ TSH1

and t2 ∈ TSH2, corresponding to the first and second input wires of G respectively. Let

G′
i be the i-th input gate of G (i ∈ {0, 1}). Then Bob processes G′

i as follows. He treats

the tuple of shares ti ∈ TSHi of G’s input wire as the tuple of secrets of G′
i, and TSHi

– as the secrets tuples domain of G′
i. Bob now applies the algorithm of this paragraph to

G′
i.

Eventually, Bob obtains secrets tuples for all input wires of C. Note that Bob’s choices

of instances of GESS schemes for the gates of C are deterministic and built into the

Chapter 5. Information Theoretically Secure Formula Evaluation 83

protocol; this makes explicit the corresponding Rec procedures.

Interaction. For each input wire associated with Alice, she and Bob make (parallel)

calls to OT oracles. Alice has the wire’s input and Bob has the tuple of secrets as their

inputs of each of the calls. For each input wire associated with Bob, Bob sends Alice the

corresponding secret from that wire’s tuple of secrets2.

Alice’s computation. Alice obtains results of the OT and the secrets corresponding

to Bob’s inputs. Alice proceeds, from the top down on the circuit C, as follows. For each

gate, Alice knows the secrets corresponding to the inputs of the gate, and the corresponding

Rec procedure. She runs Rec on the input secrets and obtains the output secret. She

proceeds in this manner until she obtains the secret corresponding to the output wire.

Alice outputs this secret.

Theorem 7. Constr. 7 is a non-cryptographic reduction (thus unconditionally secure

against both Alice and Bob) of SFE of C to OT, in the semi-honest model.

The proof of Theorem 7 is intuitive and is delayed until Sect. 5.4.2.

Observation 5. A circuit C with fan-out greater than 1 can be converted into a corre-

sponding (potentially very large) tree-circuit C ′ by duplicating C’s subtrees where appro-

priate. Equivalently, one can view the secrets as being computed and propagated by Bob

in parallel on the same wire. Note that we, however, need not increase the number of cor-

responding OT instances due to the growth of C ′ relative to C (until a certain efficiency

threshold is reached). Rather, Bob’s inputs to OT will be longer (without the increase in

the total number of bits transferred). This will often result in significant computational

and communication savings.

2This message is appended to Bob’s messages of the n-round instantiations of OT oracles to form an
n-round protocol.

Chapter 5. Information Theoretically Secure Formula Evaluation 84

5.2.3 GESS for gates with two binary inputs

We now present an efficient ensemble of GESS schemes (indexed by the secrets domains)

implementing any binary gate with two binary inputs. This construction is a building

block of a more efficient Constr. 9. We present GESS for the 1-to-1 gate function G :

{0, 1}2 7→ {00, 01, 10, 11}, where G(0, 0) = 00, G(0, 1) = 01, G(1, 0) = 10, G(1, 1) = 11

(see Observation 3 for justification).

Let the secrets domain be SEC = {0, 1}n, and four (not necessarily distinct) secrets

s00, ...s11 ∈ SEC are given; the secret sij corresponds to the value G(i, j) of the output

wire. Note that |SEC| ≥ 4 need not hold; our scheme is interesting even when |SEC| ≥ 2.

Intuition of the scheme. The main idea of the design of the GESS scheme is as

follows. We first randomly choose two strings R0, R1 ∈R SEC to be the shares sh10

and sh11 (corresponding to 0 and 1 of the first input wire). Now consider sh20 – the

share corresponding to 0 of the second input wire. We want this share to produce

either s00 (when combined with sh10) or s10 (when combined with sh11). Thus, the

share sh20 = B00B10 will consist of two blocks. One, B00 = s00 ⊕ R0, is designed to be

combined with R0 and reconstruct s00. The other, B10 = s10 ⊕ R1, is designed to be

combined with R1 and reconstruct s10. Share sh21 = B01B11 is constructed similarly,

setting B01 = s01 ⊕ R0 and B11 = s11 ⊕ R1. Note the indexing notation – the secret sij

is always reconstructed using Bij.

Both leftmost blocks B00 and B01 are designed to be combined with the same share R0,

and both rightmost blocks B10 and B11 are designed to be combined with R1. Therefore,

we append a 0 to R0 to tell Rec to use the left block of the second share for reconstruc-

tion, and append a 1 to R1 to tell Rec to use the right block of the second share for

reconstruction. Finally, to hide information leaked by the order of blocks in shares, we

perform the following. We randomly choose a bit b; if b = 1, we reverse the order of

blocks in both shares of wire 2 and invert the appended pointer bits of the shares of wire

1. More formally:

Chapter 5. Information Theoretically Secure Formula Evaluation 85

Construction 8. (GESS ensemble for gates with two binary inputs.) Let SEC = {0, 1}n

and TSEC = SEC4 be the secrets domains. Let the secrets tuple

〈s00, ..., s11〉 ∈ TSEC be given. The domains of shares are: SH1 = {0, 1} × SEC and

SH2 = SEC2. Note that TSH1 = SH2
1 and TSH2 = SH2

2 .

Shr chooses b ∈R {0, 1}, R0, R1 ∈R SEC and sets blocks

B00 = s00 ⊕R0, B01 = s01 ⊕R0, B10 = s10 ⊕R1, B11 = s11 ⊕R1.

Shr sets the tuples of shares 〈sh10, sh11〉 ∈ SH1, 〈sh20, sh21〉 ∈ SH2 as follows

wire 1 wire 2, if b = 0 wire 2, if b = 1

wire value 0 sh10 = bR0 sh20 = B00B10 sh20 = B10B00

wire value 1 sh11 = b̄R1 sh21 = B01B11 sh21 = B11B01

Rec proceeds as follows. On input Sh1 = b′r, Sh2 = a0a1, Rec outputs r ⊕ ab′ .

Theorem 8. For each n ∈ N, Constr. 8 is a GESS scheme.

Proof. To prove correctness, we need to show that no matter what the random choices

of Shr and the wire values i1, i2 are, Rec always reconstructs sG(i1,i2).

For the proof of security, suppose secrets s00, ..., s11 are given. This determines the

distribution on the Shr generated shares. Let the input wire values i1, i2 be given.

Then the distribution P on the corresponding pair of shares 〈sh1i1 , sh2i2〉 and the secret

s = sG(i1,i2) shared by the pair are determined. The goal of the simulator is, given

only s, to generate a pair of shares distributed identically to P . Note that this exactly

corresponds to the privacy condition Sim(sG(i1,i2)) ≡ Sel(Shr(s00, ..., s11), 〈i1, i2〉) of Def.

15.

The following natural simulator Sim(s) suffices. On input s ∈ SEC, Sim chooses

a random bit d ∈R {0, 1} and random strings p, q ∈R SEC. If d = 0, he outputs

(〈d, p〉, 〈p⊕ s, q〉), otherwise he outputs (〈d, p〉, 〈q, p⊕ s〉).

Proof of correctness and security is simple and is done by case analysis. We need

to consider the four possible combinations of gate input values i1, i2 ∈ {0, 1}. We show

Chapter 5. Information Theoretically Secure Formula Evaluation 86

correctness and that Sim perfectly simulates the corresponding truly generated shares.

Denote random variables 〈sh1, sh2〉 = 〈b′r, a0a1〉 = Sel(Shr(s00, ..., s11), 〈i1, i2〉). We

write out only one case; others are analogous.

Case i1 = 0, i2 = 0. Thus s = sG(0,0).

Correctness: If b = 0, then b′ = 0, sh1 = 0R0, sh2 = (s00⊕R0, s10⊕R1). Rec(sh1, sh2) =

R0 ⊕ (s00 ⊕ R0) = s00 = s. If b = 1, then b′ = 1, sh1 = 1R0, sh2 = (s10 ⊕ R1, s00 ⊕ R0).

Rec(sh1, sh2) = R0 ⊕ (s00 ⊕ R0) = s00 = s.

Security: Clearly, Sim(s) perfectly simulates sh1. Further, sh2 consists of two blocks

B00 = s⊕R0 and B10 = s10 ⊕R1. Observe that B10 = s10 ⊕R1 is distributed uniformly

randomly on SEC (since R1 is random on SEC and secret). Therefore, sh2 consists of

two blocks from SEC, where one block is random on SEC and the other is equal to

s ⊕ R0, where the non-random block is pointed by the bit b′ of sh1, Therefore Sim(s)

also perfectly simulates sh2 and the pair 〈sh1, sh2〉, since d is distributed identically to

b′.

The Permute and Point (PP) Technique. We note the application of the follow-

ing technique: we permuted the blocks of the shares of the second wire, and appended

pointers to the shares of the first wire, hiding information contained in the order of blocks.

We use the same idea in all other constructions in this chapter (of Sect. 5.2.4 and 5.2.6).

We believe this technique is likely to be useful in many other GESS constructions; it may

also have other applications.

Observation 6. We note that the simulator Sim of Theorem 8 is the same for every

gate function – it is only the secrets semantics that defines the semantics of the gate.

Therefore, Sim can simulate gates without knowing what they are. Therefore, when this

secret sharing scheme is plugged into the protocol of Sect. 5.2.2, semantics of all gates

are unconditionally hidden from Alice - she only knows the wire connections of C.

Chapter 5. Information Theoretically Secure Formula Evaluation 87

5.2.4 The Main Construction – GESS for AND/OR/NOT Cir-

cuits

Note the inefficiency of Constr. 8, causing the shares corresponding to the second input

wire be double the size of the gate’s secrets. While, in some circuits, we could avoid the

exponential (in depth) secret growth by balancing the direction of greater growth toward

more shallow parts of the circuit, a more efficient solution is desirable. We discuss only

AND/OR circuits, since NOT gates are given for “free” (see Observation 3).

Recall, in Constr. 8 each of the two shares of the second wire consists of two blocks.

Observe that in the case of OR and AND gates either left or right blocks of the two

shares are equal. We use this property to reduce (relative to Constr. 8) the size of the

shares when the secrets are of the above form. Our key idea is to view the shares of the

second wire as being the same, except for one block.

Suppose each of the four secrets consists of n blocks and the secrets differ only in the

jth block, as follows:

s00 = (t1 . . . tj−1 t00j tj+1 . . . tn), ...

s11 = (t1 . . . tj−1 t11j tj+1 . . . tn),

where ∀i = 1..n: ti, t
00
j , t01j , t10j , t11j ∈ D, for some domain D of size k. It is convenient

to consider the columns of blocks, spanning across the shares. Every column (with the

exception of the j-th) consists of four equal blocks. We stress that the index j is only

determined by the secrets, and must not be recovered at reconstruction.We construct a

GESS for gates with two binary inputs, where the size of each share of the first wire is

n(k + dlog(n + 1)e) and of the second wire is (n + 1)k. Further, each share of the first

wire consists of n blocks of size |D|+ dlog(n + 1)e, and all but one pair of corresponding

blocks are equal between the shares. Each share of the second wire consists of n + 1

blocks of size |D| and, for OR and AND gates, all but one pair of corresponding blocks

are equal between the shares. Since the generated shares satisfy the above conditions on

Chapter 5. Information Theoretically Secure Formula Evaluation 88

secrets, repeated application of this GESS for OR and AND gates is possible.

The scheme’s intuition. For simplicity of presentation, we do not present the

GESS scheme in full generality here (this is postponed to Sect. 5.4.3). We show its main

ideas by considering the case where the four secrets consist of n = 3 blocks each, and

j = 2 is the index of the column of distinct blocks.

Our idea is to share the secrets “column-wise”, that is to treat each of the three

columns of blocks of secrets as a tuple of subsecrets and share this tuple separately,

producing the corresponding subshares. Consider sharing the 1-st column. All four

subsecrets are equal (to t1 ∈ D), and we share them trivially by setting both subshares

of the first wire to a random string R1 ∈R D, and both subshares of the second wire to

be R1⊕ t1. Column 3 is shared similarly. We share column 2 as in Constr. 8 (highlighted

on the diagram), omitting the last step of appending the pointers and permutation. This

preliminary assignment of shares (still leaking information due to order of blocks) is

shown on the diagram.

R1 ⊕ t1 R3 ⊕ t3R2 ⊕ t012 R′
2 ⊕ t112

sh20 =

sh21 =

s00 =

s01 =

s10 =

s11 =

G

R2R1

R3

R3

R1 R′
2

R1 ⊕ t1 R2 ⊕ t002 R3 ⊕ t3R′
2 ⊕ t102

t1
t1

t1
t1

t002
t012
t102
t112

t3
t3
t3
t3

= sh10

= sh11

Note that the reconstruction of secrets is done by XOR’ing the corresponding blocks of

the shares, and, importantly, the procedure is the same for both types of sharing we use.

For example, given sh10 and sh21, we reconstruct the secret (R1⊕ (R1⊕ t1), R2⊕ (R2⊕

t012), R3 ⊕ (R3 ⊕ t3)) = s01.

The remaining (PP) step (not shown on the diagram) is to randomly permute the

order of the four columns of both shares of wire 2 and to append (log 4)-bit pointers to

each block of the shares of wire 1, telling Rec which block of the second share to use.

Note that the pointers appended to both blocks of column 1 of wire 1 are the same.

Chapter 5. Information Theoretically Secure Formula Evaluation 89

The same holds for column 3. Pointers appended to blocks of column 2 are different.

For example, if the identity permutation was applied, then we will append “1” to both

blocks R1, “2” to R2, “3” to R′
2, and “4” to both blocks R3. Because G is either an OR

or an AND gate, both tuples of shares maintain the property that all but one pairs of

corresponding blocks are equal between the shares of the tuple. Note that it is not a

problem that the index of the column with different entries on input wire 1 is the same

as that on the output wire: since the adversary never sees both shares of any wire, this

index remains unconditionally hidden.

Construction 9. (GESS for AND/OR gates) The presented construction can be natu-

rally generalized for an arbitrary number of blocks n of size k and for arbitrary index j

of the column with differing blocks. The formal presentation of this general construction

is postponed to Sect. 5.4.3 (Constr. 12).

Theorem 9. For each n, k, j ∈ N, Constr. 9 is a GESS scheme as defined by (a gener-

alization of) Def. 15.

We give the intuition of the proof and refer the reader to Sect. 5.4.3 for details.

First, the correctness of the reconstruction is easily verifiable. Further, each of the

four pairs of shares, reconstructing their corresponding secret s ∈ {s00, .., s11}, has the

following structure. Let s = (t1, ..., tn). The second share in each pair of shares is a

sequence of n + 1 randomly chosen blocks ri from D: sh2 = (r1, ..., rn+1). The first

share in each pair is a sequence of n “blocks with pointers” sh1 = (B1, ..., Bn), as follows.

∀i ∈ {1..n}, Bi = 〈pi, bi〉, where p1, ..., pn is a random permutation of a random n-element

subset of {1..n + 1}, and bi = ti ⊕ rpi
∈ D. This implies the simulator Sim(s), required

by Def. 15.

GESS’ performance. From above, if the secrets of the output wire of G consist

of n blocks of size k, then the secrets of G’s inputs consist of no more than n + 1

blocks of size k + dlog(n + 1)e. Similarly, d levels deeper, wires’ secrets consist of no

Chapter 5. Information Theoretically Secure Formula Evaluation 90

more than n + d blocks of size k +
∑

i=1..ddlog(n + i)e. Therefore, starting with one-

bit secrets (n = 1, k = 1), a tree circuit will have at depth d secrets of size at most

(d + 1)(d log(d + 1) + 1) = d2 log(d + 1) + d log(d + 1) + d + 1. The shares grow very

slowly: as d→∞, the “share expansion factor” — the ratio of sizes of shares to sizes of

secrets of a GESS scheme for a gate G at depth d — approaches 1. Since the gates have

exactly two inputs, there are at most 2d input wires to the circuit, and the total size of

Bob’s secrets to be sent to Alice is 2d(d2 log(d + 1) + d log(d + 1) + d + 1) ≈ 2dd2 log d,

dominated by the 2d term.

Rebalancing C. We note that rebalancing C prior to applying the above reduction

may result in substantial performance improvement. Bonet and Buss [16] and Bshouty,

Cleve and Eberly [19] prove the following fact (and exhibit the rebalancing procedure).

Let C be a {∨,∧,¬}-formula of leaf size m. Then for all k ≥ 2, there is an equivalent

{∨,∧,¬}-formula C ′, such that depth(C ′) ≤ (3k ln 2) · log m, and leafsize(C ′) ≤ mα,

where α = 1 + 1
1+log(k−1)

.

Consider a highly unbalanced C of size m. Direct application of our reduction costs

Θ(m3), more than BP based approaches [59, 60, 61] of cost O(m2). Rebalancing C as

above, even sub-optimally setting k = 9, results in a formula C ′ of size m1.25 and depth

≈ 18.5 log m. Applying the reduction to C ′ yields a much better cost O(m1.25 log2 m).

An optimal (w.r.t. the cost of the GESS reduction) choice of k or better rebalancing will

further improve our (but not BP’s) performance.

5.2.5 Lower Bounds for GESS – The Optimality of Our Con-

structions

Let i, j ∈ {0, 1}. Denote by Ai (resp. Bi) the random variable of the share corresponding

to the wire value i of the first (resp. second) input wire. Denote by Sij the random

variable of the secret corresponding to the gate output value G(i, j). Let H(·) be Shannon

entropy. We start with proving a technical lemma.

Chapter 5. Information Theoretically Secure Formula Evaluation 91

Lemma 1. For any GESS scheme implementing a gate with binary inputs, H(Ai) +

H(Bj)≥H(Si(1-j)|B1-j) + H(S(1-i)j|A1-i) + H(Sij|Si(1-j)S(1-i)jS(1-i)(1-j)).

Proof. For simplicity, prove the lemma for i = j = 0, i.e that H(A0) + H(B0) ≥

H(S01|B1) + H(S10|A1) + H(S00|S01S10S11). Other cases are analogous.

First, since H(S01|A0B1) = 0, and using the chain rule twice, obtain

H(A0|B1) = H(A0S01|B1)−H(S01|A0B1) = H(A0S01|B1) = H(S01|B1) + H(A0|B1S01).

Similarly, H(B0|A1) = H(S10|A1) + H(B0|A1S10).

By definition, A1, B1 do not reveal anything about S00 (other than what’s implied by

S11), and, further, A0, B0 recover S00. Then H(S00|S01S10S11) ≤ H(S00|A1B1S01S10) ≤

H(A0B0|A1B1S01S10) ≤ H(A0|A1B1S01S10) + H(B0|A1B1S01S10) ≤

H(A0|B1S01) + H(B0|A1S10).

Thus, H(A0) + H(B0) ≥ H(A0|B1) + H(B0|A1) ≥ H(S01|B1) + H(A0|B1S01) +

H(S10|A1) + H(B0|A1S10) ≥ H(S01|B1) + H(S10|A1) + H(S00|S01S10S11).

Because all shares corresponding to the same wire must be distributed identically

(see Observation 4), their entropies must be equal. Thus Lemma 1 implies that ∀i1, i2 ∈

{0, 1} : H(Ai1) + H(Bi2) ≥

MAXi,j∈{0,1}(H(Si(1−j)|B1−j) + H(S(1−i)j|A1−i) + H(Sij|Si(1−j)S(1−i)jS(1−i)(1−j))).

Consider non-trivial gates – those that depend on both (binary) inputs. Note that

the gate output need not be binary. We show the optimality of constructions for the

natural case when the secrets are drawn independently at random from the same domain

(with only the restrictions of secrets equality imposed by the semantics of G). In that

case, by Observation 4, H(Si(1−j)|B1−j) = H(Si(1−j)) and H(S(1−i)j|A1−i) = H(S(1−i)j).

Consider the two possible cases.

Case 1: there exist gate inputs i, j, s.t. G(i, j) is not equal to the gate value on any

other inputs. This is the case for most non-trivial gates (including AND and OR). In

this case, H(Sij|Si(1−j)S(1−i)jS(1−i)(1−j)) = H(Sij) and thus ∀i1, i2 ∈ {0, 1} : H(Ai1) +

Chapter 5. Information Theoretically Secure Formula Evaluation 92

H(Bi2) ≥ H(Si(1−j))+H(S(1−i)j)+H(Sij). This matches (within 1 bit) the upper bound

given by Constr. 8.

Case 2: such i, j don’t exist. Then the only non-trivial gates are XOR and ¬ XOR.

GESS of Constr. 10, presented here for completeness, implements XOR and matches the

lower bound of H(Si(1−j)) + H(S(1−i)j) for this case.

Construction 10. (GESS ensemble for XOR gates.) Let SEC = {0, 1}n and TSEC =

SEC2 be the secrets domains. Let the secrets tuple 〈s0, s1〉 ∈ TSEC be given. The

domains of shares are set as follows: SH1 = SH2 = SEC.

Shr chooses R ∈R SEC and sets sh10 = R, sh11 = s0⊕ s1 ⊕R, sh20 = s0 ⊕R, sh21 =

s1 ⊕R.

Rec proceeds as follows. On input sh1, sh2, Rec outputs sh1 ⊕ sh2.

Theorem 10. For each n ∈ N, Constr. 10 is a GESS as defined by Def. 15.

The proof of Thm. 10 is very simple and is omitted.

In conclusion, for the shares Ai and Bj of the two input wires, we proved

Theorem 11. For every GESS scheme implementing an OR or an AND gate, when

all secrets are chosen at random from the same domain SEC and each has entropy HS,

∀i, j ∈ {0, 1} : H(Ai) + H(Bj) ≥ 3HS.

Of course, the entropy of each share must be at least HS. Then all possible gates

with two binary inputs are (almost) optimally implemented by either Constr. 8 or 10.

Our Constr. 9 beats the lower bound of Theorem 11 by exploiting common information

among secrets. We leave open the question of exact lower bounds for this interesting case.

We stress that the share-size-to-secret-size ratio approaching 1, achieved by Constr. 9,

is “near optimal”, since no construction can achieve ratio smaller than 1.

Chapter 5. Information Theoretically Secure Formula Evaluation 93

5.2.6 Application of GESS: Efficient Practical Two Millionaires

We apply the GESS approach to give a new efficient solution to the two millionaires

problem. We design a GESS scheme for a new type of gate and use it to compute the

Greater Than (GT) predicate. We use the intuitive circuit C (below) that compares bits

of the parties’ inputs x and y, starting with the most significant, and sets the answer bit

when it encounters the difference.

xn

T

0

y1x1

Tyn

where T (j, xi, yi) =















































j, ifj ∈ {−1, 1},

−1, ifj = 0 ∧ xi < yi,

0, ifj = 0 ∧ xi = yi,

1, ifj = 0 ∧ xi > yi.

Here j is ternary input and xi and yi are bits. It is easy to see that C indeed computes

GT: once a ternary wire is set to −1 or 1, that value is propagated to the output wire.

We aim to minimize the expansion of the share corresponding to the input j. Note the

double application of permute and point in Constr. 11. Denote by T -gate the gate

implementing the function T above.

Construction 11. (GESS ensemble for T -gates.) Let SEC = {0, 1}n and TSEC =

SEC3 be the secrets domains. Let the secrets tuple 〈s−1, s0, s1〉 ∈ TSEC is given. The

domains of shares are set as follows: SH1 = {0, 1}×SEC, SH2 = ({0, 1}2×SEC)2 and

SH3 = SEC3.

Shr chooses R0, R1, r1, r2, r3 ∈R SEC, a ∈R {0, 1} and b = {b1, b2, b3} - a random

permutation of {0, 1, 2}, where each bi is suitably represented by 2 bits. Shr sets the shares

sh1i = Ai, sh2i = 〈Bi0, Bi1〉, sh3i = 〈Ci0, Ci1, Ci2〉, as shown on the following diagram.

r1

r3

s1 ⊕ r1 ⊕ r2

r2

r2

r1b2

B1a B1ā

B0āB0a

R1

R0

b3

b3

a

ā

aA1

A0

A-1 s-1 ⊕ r1 ⊕ r2
b1

C0b1

C1b1

C0b2

C1b2

C0b3

C1b3

s0 ⊕ R0 ⊕ r3

s-1 ⊕ R0 ⊕ r3

s1 ⊕ R1 ⊕ r3

s0 ⊕ R1 ⊕ r3

Rec, on input Sh1 = a′r, Sh2 = p0 b0 p1 b1, Sh3 = c0c1c2, outputs r ⊕ ba′ ⊕ cpa′
.

Chapter 5. Information Theoretically Secure Formula Evaluation 94

Theorem 12. For each n ∈ N, Constr. 11 is a GESS as defined by Def. 15.

Proof. Correctness of the scheme is easily verified. The simulator Sim(s) chooses random

α ∈R {0, 1}, r
′
0, ..., r

′
4 ∈R SEC, β0, β1 ∈R {0, 1, 2}, where β0 6= β1. Let β ′

i be suitable 2-bit

representations of βi. Sim outputs shares 〈(αr′2),

(β ′
0r

′
0β

′
1r

′
1), (γ0γ1γ2)〉, where γβα

= s⊕ r′2 ⊕ r′α, and the other two γi are assigned r′3 and

r′4. The proof of equality of the generated distribution to the real execution is similar to

that of previous two theorems, and is omitted.

Performance. Let n be the length in bits of the compared numbers. The secrets

corresponding to the T -gate at level i are of length i, and thus the secrets corresponding

to the corresponding xi and yi are of lengths 3i and 2i + 4. Thus, Bob needs to send

∑

i=1..n 3i = 1.5n(n + 1) bits and perform n 1-out of-2 OT’s with secrets of sizes 2 +

4, ..., 2n + 4.

The asymptotic complexity of this GT solution is worse than that of the best currently

known for either setting with limited Alice (Yao’s approach, see, e.g. [76]) or unlimited

Alice ([41] or [14]). Still, our solution performs better for comparing smaller numbers

(n ≈ 60..70), since we do not use encryption3.

We note that a reduction with a complexity similar to ours (quadratic) can be obtained

by using BP-based techniques of [61].

5.3 Extension to Evaluating Polysize Circuits

When Alice is assumed to be polynomially bounded, all polytime computable functions

can be efficiently evaluated. Beaver, Micali and Rogaway [5, 85], Naor, Pinkas and

Sumner [76] and Lindell and Pinkas [70] suggested one-round protocols following Yao’s

[90] garbled circuit approach.

3This advantage is minute with standard (public-key primitive based) OT implementations; it may
be significant in other settings.

Chapter 5. Information Theoretically Secure Formula Evaluation 95

As discussed, the OT reduction does not allow polytime evaluation of general polysize

circuits, due to the exponential growth of combined secrets size for each level of general

circuits. We now informally describe a natural extension that handles this problem in

the standard model. This demonstrates the generality and applicability of the GESS

approach. The resulting solution is essentially the standard variant of Yao’s garbles

circuit protocol. It is conceptually very clean, although slightly less efficient than the

best known approach.

The protocol is essentially Constr. 7, with the following amendment. Bob will not

propagate the secrets “up the circuit”. Instead, for a gate G with output wires w1, ..., wn

and their (already computed) corresponding secrets tuples (s1
0, s

1
1), ..., (s

n
0 , s

n
1), he encrypts

all the secrets corresponding to each gate value together. More formally, he chooses two

random keys k′, k′′ of a semantically secure private-key encryption scheme E. He com-

putes e0 = Ek′(〈s1
0, ..., s

n
0〉), e1 = Ek′′(〈s1

1, ..., s
n
1〉) and assigns G’s labels to be a random

permutation of e0, e1. He then treats the keys as the secrets to be propagated, letting k′

and k′′ correspond to wire values 0 and 1 respectively. When Bob is done, he will have

assigned secrets to each of the input wires and associated labels with each of the gates.

He sends the secrets to Alice as before, additionally sending her the gate labels.

Alice obtains the secret shares for the input wires and proceeds evaluation similarly

to the previous solution. The difference now is that, after having recovered a gate’s secret

(which is the key for one of the associated encryptions), she decrypts the corresponding

encryption to recover the outgoing wires’ secrets. To ensure that only one decryption

succeeds, we impose an additional requirement on the encryption scheme. Informally,

we need the ranges of encryptions under different keys be distinct, and that Alice is

able to tell which decryption succeeded. This is a rather weak requirement, satisfied,

for example, by schemes with elusive and efficiently verifiable ranges, formalized in [70].

Alice then uses the recovered secrets as shares in computing the child gate’s secrets, and

so on. Finally, she outputs the value of the output wire.

Chapter 5. Information Theoretically Secure Formula Evaluation 96

Theorem 13. The above construction securely (against computationally unlimited Bob

and limited Alice) reduces SFE of polysize circuits to Oblivious Transfer, in the semi-

honest model.

The proof of the theorem is rather intuitive and is delayed until Sect. 5.4.4.

The performance of the resulting approach is very similar to that of the currently

best known solutions (e.g. [70, 76]). Indeed, our wire secrets are of the same size as theirs,

and thus the only difference in performance is caused by the size of the gate labels. In

[76], each gate has four labels of size N each4, where N is the security parameter. It

is easy to see that each gate of our solution adds up to 6N bits to the collection of all

gate labels (two secrets of length N expand into two shares of length N + 1 and two

shares of length 2N , which then are encrypted and stored as labels.). Some optimization

of this number is also possible. For example, we need not encrypt (and thus add the

corresponding labels) for the secrets that are just larger than N . This can reduce the

gate induced label size gate by up to 2N bits.

We further note that in our scheme we only need to use encryptions once the secret

sizes grow too large (i.e some threshold larger than encryption keys). Thus our method

improves the performance of the evaluation of “the bottom part” of every circuit, and

can be combined with Yao’s garbled circuit implementations.

5.4 Formal Definitions and Proofs

In the previous discussion of this chapter, we presented special cases of definitions and

intuition of proofs, which was sufficient to have a formal discussion, and, at the same

time, allowed to concentrate on conveying the ideas of our constructions. In this section

we present formal general definitions and proofs of theorems. The material of this section

4The authors also mention an optimization that allows using only three labels.

Chapter 5. Information Theoretically Secure Formula Evaluation 97

is a simple (but technical) formalization and generalization of the preceding material.

5.4.1 The General Definition of GESS

We give a general definition of a GESS scheme that allows to share a tuple of secrets. Let

G be a gate with k inputs from domain DI = DI1× ...×DIk
and one output from domain

DO. We also denote by G : DI 7→ DO the function computed by gate G. Let SEC be the

domain of secrets and TSEC ⊂ SEC |DO| be the domain of tuples of secrets to be shared.

For simplicity of presentation and without loss of generality, assume that all domains DIi

and DO are initial sequences of non-negative numbers, e.g. DI1 = {0, 1, 2, ..., |DI1| − 1}.

Definition 16. (Gate evaluation Secret Sharing) A gate evaluation secret sharing scheme

(GESS) for evaluating G (we also say GESS implementing G) is a pair of algorithms

(Shr, Rec) (with implicitly defined secrets domain SEC, secrets tuples domain TSEC, k

share domains SH1, ..., SHk and k share tuples domains TSH1, ..., TSHk), such that the

following holds.

The probabilistic share generation algorithm Shr takes as input a dO = |DO|-tuple of

secrets 〈s0, ..., sdO−1〉 ∈ TSEC and outputs a sequence (of length of k) of tuples of shares,

where the i-th tuple ti ∈ TSHi consists of |DIi
| shares shij ∈ SHi. The deterministic

share reconstruction algorithm Rec takes as input a sequence of k elements shi ∈ SHi,

one from each domain, and outputs s ∈ SEC.

Let b = 〈b1, ..., bk〉 ∈ DI be a selection vector. Define the selection function

Sel(〈sh10, ..., sh1|DI1
|−1〉, ..., 〈shk0, ..., shk|DIk

|−1〉, b) = {sh1b1 , ..., shkbk
}.

Shr and Rec satisfy the following conditions:

• correctness: for all random inputs of Shr and secrets tuples 〈s0, ..., sdO−1〉 ∈ TSEC,

∀b ∈ DI , Rec(Sel(Shr(〈s0, ..., sdO−1〉), b)) = sG(b)

• privacy (selected shares contain no information other than the value sG(b)): There

exists a simulator Sim, such that ∀〈s0, ..., sdO−1〉 ∈ TSEC and any b ∈ DI :

Chapter 5. Information Theoretically Secure Formula Evaluation 98

Sim(sG(b)) ≡ Sel(Shr(〈s0, ..., sdO−1〉), b)

5.4.2 Proof of Theorem 7

Proof. Security against Bob is trivial since he does not receive any messages. The intu-

ition for the scheme’s security against Alice is that none of the GESS implementations

leak any information. To prove security, we show how to construct SimA, perfectly simu-

lating the following ensemble (view of Alice): VIEWA(x, a) = {x, mOT , m}, where x and

a are Alice’s input and output, mOT is the sequence of messages received from the OT

oracles and m is the message received from Bob directly.

SimA first simulates wire secrets assignment as follows. He starts with the output

wire, assigns its value to be a, and proceeds through gates from the bottom up as follows.

Given gate G, its GESSG, simulator SimG, and G’s output wire value v, SimA assigns

values to G’s input wires according to SimG(v).

Eventually, SimA assigns secrets to all input wires of C. SimA outputs {x, m′
OT , m′},

where x is Alice’s input, m′
OT and m′ are (proper representations of) the sequences of

C’s input wires assignments corresponding to Alice and to Bob respectively.

It is intuitive that the proposed simulator perfectly simulates Alice’s view. Indeed,

the vector of inputs to C defines a value assignment to each wire of the circuit, which, in

turn, defines a distribution on shares/secrets obtained (received or computed) by Alice

for each wire. We prove that wire assignment of SimA perfectly simulates the obtained

secret for each wire. It is clear that SimA perfectly assigns the secret corresponding to

the output wire by setting it to the output of the computation he obtained as its input.

Further, SimA assigns secrets to the input wires of the output gate G. These secrets are

distributed identically to the secrets that Alice reconstructs for these wires, because of

the perfect simulation of SimG. Proceeding upward to the input wires, it is clear that

SimA perfectly simulates all the wire assignments that Alice sees and reconstructs in the

real execution.

Chapter 5. Information Theoretically Secure Formula Evaluation 99

5.4.3 The General Construction of GESS for AND/OR Gates

Construction 12. (Improved GESS for gates with two binary inputs.) Let D = {0, 1}k

and SEC = Dn. Let secrets s00, ..., s11 ∈ SEC consist of n blocks of length k, and differ

only in the j-th block. That is, let

s00 = (t1 . . . tj−1 t00j tj+1 . . . tn),

...

s11 = (t1 . . . tj−1 t11j tj+1 . . . tn),

where ∀i = 1..n: ti, t
00
j , t01j , t10j , t11j ∈ D, and the index j is determined only by the secrets.

Let TSEC ⊂ SEC4 be the space of all tuples of the above form.

Shr chooses R1, ...Rn, R′
j ∈R D and a random permutation5 π : {1..n + 1} 7→

{1..n + 1}. Let τ = π−1 be the inverse of π. For m ∈ {0, 1}, Shr sets the shares

sh1m = 〈Bm1, ..., Bmn〉 and sh2m = 〈Cm1, ..., Cmn+1〉, as shown on the following diagram.

...

...

... ...

... ...

Rτ(n+1) ⊕ tτ(n+1)

C11 C1π(j) C1n+1C1π(n+1)

Rτ(n+1) ⊕ tτ(n+1)

C01 C0π(j) C0π(n+1) C0n+1

Rτ(1) ⊕ tτ(1)

Rτ(1) ⊕ tτ(1) Rj ⊕ t00j R′

j ⊕ t10j

R′

j ⊕ t11jRj ⊕ t01j
π(1)R1

B11 B1j B1n

π(n)Rn

π(1)R1

B0nB0jB01

π(n)Rnπ(j)Rj

π(n+1)R′

j

More specifically, the blocks of both shares of the first vector will be assigned R1, . . . , Rn,

with the exception of the jth block of the share corresponding to 1, which will be assigned

R′
j. Shr then, for all i, prepends π(i) to the ith block of both shares of the first vector,

with the exception of the jth block of the second share, which gets prepended π(n + 1).

Each π(i)-th block of both shares of the second pair will be set to Ri ⊕ ti, with the

exception of blocks π(j), π(n+ 1). Those blocks assignment is motivated by Construction

8. Specifically, we set the π(j)-th block of the share corresponding to 0 to Rj ⊕ t00j and

that block of the other share – to Rj ⊕ t01j . We set the π(n + 1)-st block of the share

corresponding to 0 to R′
j ⊕ t10j and that block of the other share – to Rj ⊕ t11j . This

5This permutation specifies which block of the second tuple is XOR’ed with the ith block of the first
tuple to obtain the ith block of the reconstructed secret.

Chapter 5. Information Theoretically Secure Formula Evaluation 100

completes the description of Shr.

Rec proceeds as follows. He obtains two shares sh1 = (ind1, r1, ..., indn, rn) and sh2

= (a1, ..., an+1). He reconstructs the secret s = (σ1, ..., σn) by setting σi = ri ⊕ aindi
.

Theorem 14. For each n, k, j ∈ N, Construction 12 is a GESS scheme as defined by

Def. 15. (Note that security and correctness hold w.r.t. TSEC.)

Proof. To prove security, we construct a simulator Sim(s). On input s = σ1, ..., σn,

Sim(s) does the following. He chooses random r′1, ..., r
′
n+1 ∈R D and a random permu-

tation ρ : {1..n + 1} 7→ {1..n + 1}. He outputs the shares sh1 = (ρ(1)r′1, . . . , ρ(n)r′n) and

sh2 = (σρ−1(1) ⊕ r′
ρ−1(1), . . . , σρ−1(n+1) ⊕ r′

ρ−1(n+1))

We now prove that Sim perfectly simulates the real-life generated shares. The first

share is distributed identically to both of the real-life generated shares of the first vector.

Indeed, each ri is distributed identically to each Ri, Rj and R′
j and ρ(1), ..., ρ(n) is

distributed identically to π(1), ..., π(n) and to π(1), ..., π(j−1), π(n+1), π(j+1), ..., π(n),

for any j.

As for the second share, all blocks (and their positions) are generated identically to

the real execution, with the exception of blocks in positions ρ(j) and ρ(n + 1). Proof

of the equality of their distribution to the corresponding blocks of the real distribution

closely follows that of Construction 8 and is omitted.

5.4.4 Proof Sketch of Theorem 13

Proof. (Sketch): The reduction is trivially secure against Bob, since he does not receive

any messages from Alice. To prove security against Alice, we will show how to simulate

the input wires’ secrets and gate labels that Bob sends to Alice, given the output of the

computation. We present the proof for binary fan-in 2 circuits; a more general argument

is readily obtained by natural generalization.

The simulator Sim(x, b) proceeds as follows. First, it (perfectly) simulates the secret

Chapter 5. Information Theoretically Secure Formula Evaluation 101

of the output wire by s.

Then, for each level of the circuit, starting from the bottom, for each gate G of the

current level: given the (previously simulated) G’s output wires’ secrets s0, ..., sk−1, it

simulates G’s input wires’ secrets and gate labels as follows. It chooses two random

keys s′, s′′ from the key domain of the employed encryption scheme. Then it computes

e0 = Encs′(〈s0, ..., sk−1〉), e1 = Encs′′(〈0, ..., 0〉) and assigns G’s labels to be a random

permutation of e0, e1. Then Sim runs the the simulator SG(s′) of the secret sharing

scheme of G. The simulator SG(s′) produces two shares (distributed identically to real

execution), each of which is the simulation of the secret of the corresponding wire.

Sim runs the above procedure on C “from the bottom up”, and eventually obtains

the simulations of the input wires and gate labels, which he outputs, suitably formatted.

We note the true randomness of all encryption keys and the perfect simulations of

secret sharing schemes. Intuitively, the only way for an adversary to distinguish the

simulation from the real execution is by distinguishing the sets of non-decrypted gate

labels. However, learning anything “substantial” that way would mean breaking the

semantic security of the employed encryption scheme, which can be shown by a simple

hybrid argument.

5.5 Conclusions

In this chapter, we gave a more efficient information-theoretic reduction of SFE of a

boolean formula F to oblivious transfer, of complexity is ≈
∑

d2
i , where di is the depth

of the i-th leaf of F . It is not known whether information-theoretic efficient reductions

exist for polysize circuits. Known constructions incur exponential overhead due to the

need of “unwrapping” the circuit in to a tree. In addition, previous constructions suffered

from exponential (in depth) cost of evaluation of each gate. With this work, we reduce

the latter cost to quadratic.

Chapter 6

Key Exchange with Passwords and

Long Keys

6.1 Introduction

Summary of the contributions of the chapter. We propose a new model for key

exchange (KE) based on a combination of different types of keys. In our setting, servers

exchange keys with clients, who memorize short passwords and carry (stealable) storage

cards containing long (cryptographic) keys. Our setting is a generalization of that of

Halevi and Krawczyk [58] (HK), where clients have a password and the public key of the

server.

We point out a subtle flaw in some instances of the protocols of HK and demonstrate

a practical attack on them, resulting in a full password compromise. We give a definition

of security of KE in our (and thus also in the HK) setting and discuss many related

subtleties. We define and discuss protection against denial of access attacks, which is not

possible in any of the previous KE models that use passwords. Finally, we give a simple

and efficient protocol satisfying all our requirements.

102

Chapter 6. Key Exchange with Passwords and Long Keys 103

6.1.1 Motivation of the Problem and the Setting

In this chapter, we part with the problem of SFE, and discuss certain aspects of protection

against external intruders.

We consider the goal of enabling multiple independent secure conversations between

pairs of parties over an insecure network. The most convenient and natural way to achieve

this is to perform a Key Exchange (KE), that is to provide the parties with matching

randomly chosen keys that can be used for securing a particular conversation. Of course,

each player wants to communicate with a particular person, and even a powerful adver-

sary Adv should not be able to match him up with a wrong partner. Therefore, players

must possess some secret information with which they can authenticate themselves. The

kind of information that is available to players determines the setting of KE. The simplest

KE setting is when players have a shared random and secret string. KE is more com-

plicated in the public key setting, where parties have public/private key pairs with the

public keys securely published. The most difficult setting is the pure password setting,

where parties only have a short (presumably memorizable) shared password. We note

that pure password KE protocols, at least in the standard model, are currently rather

complicated and inefficient, due to the complexity of the setting.

6.1.2 Our Setting

Consider the client-server setting where both long keys and short keys (passwords) are

used for KE. Assume that the server’s (e.g. bank’s) keys are securely stored. We take

advantage of the inherent logistical differences in how keys are stored by the client (pass-

word in memory, long key on a storage card), to achieve more robust security than what

is possible by using either type of key alone. Indeed, possession of long keys allows strong

security guarantees against an online attacker. However, long keys can not be memo-

rized, and thus must be stored, perhaps on a convenient plastic storage card. This is the

Chapter 6. Key Exchange with Passwords and Long Keys 104

vulnerability of this solution – the card may be (relatively) easily stolen by a physical

attacker. On the other hand, passwords may be memorized, need not be stored, and thus

can not be stolen. However, the protection against an online attacker one can hope to

achieve with passwords is rather weak – passwords can always be guessed with relatively

high probability. The only (somewhat satisfactory) protection against guessing attacks

is recognizing them and refusing connection after a predetermined number of password

failures1.

Combining the benefits of both settings allows us to obtain a system, secure against

both types of attack, and thus suitable for protection of sensitive information. This model

is even more appealing due to its wide acceptance – it is natural for us to think of a card

and a password, when we do, say, personal banking. More motivation is given in Sect.

6.3.

6.1.3 Our Contributions

We demonstrate a dangerous practical attack on some instances of the Halevi and Kraw-

czyk (HK) [58] protocols, resulting in full compromise of any client’s password (Sect.

6.2). The elegance, simplicity and practicality of the HK model and protocols resulted

in their widespread practical use (e.g. their variants are being considered for parts of the

IETF key exchange standard [42, 28]). Therefore, the discovery of our attack may also

have an important practical impact. We stress, however, that the standardized variants

of HK protocols do not suffer from the discovered vulnerability.

We propose and advocate the above Combined Key model of key exchange (ckKE2). To

the best of our knowledge, it has never been formally discussed. ckKE is a generalization

of the HK model.

1We mention (but do not explicitly address) a variation of this defense against “too many” password
guessing attacks. There the server limits the rate with which logins can be made, e.g. by exponentially
increasing wait times between unsuccessful logins.

2We choose this capitalization to be consistent with the KE literature.

Chapter 6. Key Exchange with Passwords and Long Keys 105

We give a formal definition of security of ckKE (Sect 6.3). Defining KE even in simpler

settings has proven to be notoriously difficult, with a variety of seemingly innocuous

decisions to be made. We discuss the subtleties of many of our choices, such as the

necessity of tightness in the allowed success of the adversary, distinguishing the types of

failures and reporting them, etc. Much of our discussion (e.g. on tightness of allowed

success of the adversary Adv) also applies to and benefits pure password models.

We aim to make our definition as simple and natural as possible. For example,

we require the server to explicitly indicate in its output whether a password failure

occurred. We find this more intuitive than defining password guessing attack as an act

of interference by the adversary (e.g. a successful impersonation!), as done in previous

formalizations, such as [58, 10]. Moreover, in previous formalizations, such as [58, 10, 17],

the attacks are accounted by the environment; the server may not even “know” they

occurred (e.g. in case of successful impersonation), which makes attack recognition in

practice less intuitive. We also find the game style of definitions (used in this work)

generally simpler and less prone to error than the simulation style (see discussion on the

style of definition in Sect. 6.3.1 for more details). We wish to stress, however, that we

don’t claim finding flaws in previous definitions, and, in particular, the discovered flaw

of the Halevi-Krawczyk protocol is not inherent in their model.

We discuss unique security features available in ckKE “for free”, such as the possibility

of protection against the following Denial of Access (DoA) attack. Adv, attacking a player

P , tries to connect to P ’s partner Q, using any password pwd. If pwd is correct, Adv wins;

if not, Adv continues until he wins or Q refuses to connect to P . Then a legitimate P can

no longer connect to Q. This easy to mount attack is unavoidable in any password-based

setting (including HK) and is highly disruptive. We are not aware of the prevention

of this attack being previously formalized. We formalize this attack and show how to

prevent it in our model.

Finally, we give a simple and efficient two flow KE protocol and prove its security

Chapter 6. Key Exchange with Passwords and Long Keys 106

(Sect. 6.4). An important feature of our protocol is that its flows are independent of each

other, and thus can be sent in any order (or simultaneously), allowing for more flexibility

and round efficiency.

6.1.4 Related Work

The problem of key exchange has deservedly received a vast amount of attention (e.g. [34,

11, 66, 7, 87, 25, 26]). The more complicated setting of pure password-based KE (pwKE)

was first considered by Bellovin and Merritt [12]. Formal definitions (and protocols) in

this setting were given by Bellare, Pointcheval and Rogaway [10], Boyko, Mackenzie and

Patel [18], Goldreich and Lindell [51], and, recently, by Canetti et al. [24], as well as by

many others.

Most relevant to our work is the problem of password-based KE in the asymmetric

client-server setting, where the client has a password and the public key of the server.

The question of resistance to off-line password-guessing attacks in this setting was first

raised by Gong, et al. [55]. Later, Halevi and Krawczyk [58] formalized the notion of

one-way password authentication in this setting and gave simple and efficient protocols

realizing it. They also extended their protocols to achieve key exchange with mutual

authentication and perfect forward secrecy. The HK model is much simpler than the

pure password model. The work of HK was the inspiration of our work.

Further, Boyarsky [17] criticised the protocols of the earlier version [57] of [58] and

suggested his own formalization of the same model. He showed several ways to amend a

variant of protocols of [57] to satisfy his definition. We stress that he does not criticize

protocols of the later version [58] we are considering.

Pinkas and Sander [80] consider heuristic approaches to securing password-only based

authentication. They increase the cost of password-guessing and DoA attacks by using

reverse Turing tests (RTT), that is, problems that are easy to solve for humans, but not

for computers. We approach a different problem. In particular, RTT techniques can not

Chapter 6. Key Exchange with Passwords and Long Keys 107

increase security of a particular client against a determined attacker.

6.2 Attacking the Protocols of Halevi and Krawczyk

[58]

Halevi and Krawczyk give four versions of their protocol (suitable for different tasks:

password transmission, one-way authentication, and key exchange in two settings). Three

of the four versions (with the exception of the Encrypted Password Transmission protocol)

are (similarly) affected. We demonstrate our attack on their key exchange protocol.

The Halevi-Krawczyk protocol. Let S be a server with the public key pkS, and

p be the password shared between S and the client C. Let function f(·; ·) be one-to-one

on its components, i.e. for every fixed strings p, x, functions f(p; ·) and f(·; x) are one-

to-one. Let E = (Gen, Enc, Dec) be a CCA secure encryption scheme (See Sect. 2.7.1

for definitions of encryption schemes and CCA security).

Construction 13. (The Halevi-Krawczyk Mutual Authentication and Key Exchange

Protocol (ΠHK))

S C

pick a nonce n n, pkS → verify pkS

pick random long key k

← C, n, EncpkS
(k, f(p; C, S, k, n))

decrypt and verify

y := PRFGk(n, S, C) y → check y = PRFGk(n, S, C)

set K = PRFk(y) set K = PRFk(y)

The “decrypt and verify” step outputs “FAIL” if the encryption is invalid or the

received value of f does not match what S computes himself. The nonces must satisfy

the only requirement that they never repeat.

Chapter 6. Key Exchange with Passwords and Long Keys 108

Our Attack. We exploit the structure of f . Although Halevi and Krawczyk only re-

quire that f is one-to-one on its components, their proof actually assumes that f(·; C, ·) 6=

f(·; C ′, ·) for any unequal client names C, C ′, as evident from Footnote 9 on p. 258 of

[58]. We will refer to this assumption as the HK-New requirement. We show that the

HK-New requirement is essential – use of some functions f , satisfying the HK, but not the

HK-New, requirement, allows for password guessing attacks. We note that it is possible

to make the proof (of security of one-way password authentication protocol) of Halevi

and Krawczyk protocol go through by adding the HK-new requirement.

For simplicity, we describe our attack on a specific instantiation of ΠHK. We stress

that natural variants of our attack apply to many choices for f that do not meet the

HK-New requirement, for many nonce strategies, as well as for other parameter settings.

Let client names and passwords be 10 bits long, and nonces be 30 bits long. For

a variable V , let vi be the i-th bit of V . For example, C = 〈c1, c2, ..., c10〉 is the

name of the honest player, and n = 〈n1, n2, ..., n30〉 is the nonce. Let the function

be f(p; C, S, k, n) = 〈c1, ...c9, c10 ⊕ p1, n1, ...n21, n22 ⊕ p2, ..., n30 ⊕ p10, S, k〉. Finally, let

nonces be chosen sequentially starting from 0. Note that this is a valid configuration of

ΠHK .

The attack proceeds as follows. Adv interacts with an honest server S, and attacks an

honest client C with any name C = 〈c1, c2, ..., c10〉. Adv registers with S a bad client B

with the name B = 〈c1, c2, ..., c10 ⊕ 1〉 and a randomly chosen password p′ = 〈p′1, ..., p
′
10〉.

Let p be C’s password. Suppose for now that p1 6= p′1, i.e. passwords of C and B

differ in the high order bit. Adv observes one execution of KE between S and C. Adv

records the encryption e sent by C and the nonce n (for concreteness, say n = 00..00,

e.g. n is the first nonce). Now, B logs into S as himself, as follows. S sends the nonce

n′ = n + 1 = 00..01, and B replies with 〈B, n′, e〉. Now, if S doesn’t fail, the password of

C is computed as pwd = 〈p′
1⊕1, n22⊕n′

22⊕p′2, ..., n30⊕n′
30⊕p′10〉 (since for i = 22, ..., 30,

it must be that ni−20 ⊕ pi = n′
i−20 ⊕ p′i). Also, if p = pwd, then S must accept, since

Chapter 6. Key Exchange with Passwords and Long Keys 109

f(p′; B, S, k, n′) = f(pwd, C, S, k, n). Thus, if S fails, pwd is eliminated from the possible

passwords list.

B proceeds logging in as himself another 29−2 times, eliminating different passwords

one by one, until S accepts and that fact determines C’s password. If S does not accept

after B logged in 29 − 1 times, B changes the first bit of his password with the server,

and repeats the above entire attack (say, starting with a nonce ending with nine zeros),

searching the other half-space. Finally, the two possible unchecked passwords can be

verified by the same approach (and changing the password of B).

We stress that there were no attempts at impersonating C or S, and all failures are

attributed to B. Neither C nor S know that C was attacked, thus C’s account is never

blocked. If B’s account is blocked due to failures, B can claim mistyping and restore

access. Moreover, there is no need to attack from only B’s account; the attack can be

easily distributed to try only a few passwords from each of many bad accounts. Again, it

is easy to see that our attack is naturally generalizable to many practical instantiations

of ΠHK .

On Boyarsky’s [17] amendments of HK. The earlier version [57] of [58] had

essentially the same protocol as [58], with the exception of the imposed requirements

on the encryption scheme ([57] only required so-called one-ciphertext verification attack

resistance, vs ciphertext verification attack resistance in [58]). Boyarsky [17] (indepen-

dently from the revision resulting in the current version [58]) discovered the insufficiency

of the weaker encryption. He gives his own formalization of the model and suggests three

different amendments (see Sect. 5 of [17]) of the protocols of [57]. Boyarsky limits his

consideration to the case where f is a concatenation function; thus our attack is not

applicable to his protocols.

Chapter 6. Key Exchange with Passwords and Long Keys 110

6.3 Key Exchange in the Combined Keys Model

Recall from the discussion in Sect. 6.1 that our setting (client carrying a plastic storage

card and remembering a password) allows the advantage of robustness, that is graceful

degradation of security in case one of the two types of keys is compromised. In particular,

if the client’s password is compromised, the security of KE should not suffer. On the

other hand, if the card is compromised (e.g. copied), the remaining security should be

that of the HK password model.

On resistance to server compromise. Halevi and Krawczyk briefly discuss resis-

tance to insider attacks, i.e. attacks by rogue server employees who have access to some,

but not all, private information stored on the server (see Sect. 3.3 in [58] for discussion

of heuristic defense approaches). As another advantage of our setting, we mention that

it allows stronger protection against server compromise. For example, since our clients

have storage cards, public/private key pairs for each client Ci can be set up and used

appropriately. Of course, an attacker who steals all the server data would now be able

to successfully pose as the server. However, he can be prevented from posing as a client,

as long as the client’s private key remains secret. We note that such protection will re-

quire significant additional complexity of the definition and the protocol, and we leave it

outside the scope of this work. Therefore, for clarity, as do Halevi and Krawczyk, in our

main exposition we assume that the server’s private information is never compromised.

For completeness, after presenting our protocols in Sect. 6.4, we briefly discuss how to

modify them to protect against some consequences of server compromise.

On Denial of Access (DoA) attacks resistance. Recall that in the HK (and

also in the pure password) setting, security critically depends on the ability of servers to

suspend clients’ accounts if there are “too many” password failures. At the same time,

it is all too easy for Adv to cause them, making systems unusable by a trivial and easily

mounted attack. In our combined key setting, it is natural to introduce protection against

such DoA attacks. This can be done by requiring that polytime attackers can not cause

Chapter 6. Key Exchange with Passwords and Long Keys 111

password failures (and thus account suspension) without possession of long keys, stored

on the card of the client. Of course, Adv may attempt attacks even without having the

long keys, and furthermore, such attacks may be noticed by the servers. However, it is

not hard to ensure that Adv does not learn anything from such attacks. This can be

done, for example, by server first verifying possession of the long key (e.g. in form of

a MAC), and immediately failing, if such verification failed. Then Adv does not learn

anything about pwd, since it was not even used by the server. Therefore, such password

guessing attacks are not a threat, and can be ignored. We formalize resistance to DoA

attacks in our definition.

In our view, the main reason for using two types of keys is the two qualitatively

different layers of protection against compromise. DoA resistance, although an important

bonus, may not alone justify the cost of long key storage and management.

The reader may ask why one can’t simply do two KE’s in the two relevant models

(one with parties sharing long keys, and the HK model) and combine the keys to obtain

a KE protocol in our model. There are a number of issues to be addressed there. Firstly,

a definition of security has to be given anyway – which is the bulk of our work. We

note that some of the definitional subtleties arise specifically due to the use of both keys

simultaneously. These subtleties cannot be addressed in either of the simpler models

separately. See, e.g., the discussion on password updates in Sect. 6.4. Secondly, natural

ways of combining the two KE protocols (such as establishing a secure session using long

keys, and sending the password over it) result in less efficient protocols.

6.3.1 Pre-definition Discussion

We start by briefly recalling the general setting for KE. There is a number of players

(in our case, they are divided into two types – clients and servers) who have associated

credentials, and pairs of whom may have shared common information. We think of a

player as an identity, which may have many instantiations. Whenever a player P wishes

Chapter 6. Key Exchange with Passwords and Long Keys 112

to talk to another player Q, an instance of P is created with the required credentials

passed. Thus an instance can be thought of as a participant of a particular conversation.

It is convenient to separate the notions of identity and instance for several reasons.

Firstly, it is easier to talk about the independence of instances. Independence is highly

desirable to avoid maintaining state and worry about communication and synchronization

between instances. Secondly, a need often arises to have several channels of communi-

cation open between two or more parties simultaneously. Then the notion of instance

makes it easier to implement and model concurrent executions of KE by a player.

We do not discuss how a player P knows that he wants to talk to a player Q. This

may be done as part of previous (possibly insecure) communication, scheduled to happen

at some predetermined time, or be requested by a higher level protocol. We give Adv

the power to initiate conversations between players to model all possible scenarios.

Our goal is to enable a secure conversation, or session, between the instances of two

players. Key exchange provides corresponding pairs of participants with matching keys

that can be used for securing their communication. Of course, the keys of honest parties

must appear random to the adversary Adv, and Adv must not be able to cause instances

to match up in an inconsistent way3.

To formalize the latter requirement, we need to define the notion of partners – in-

stances who end up having an intended conversation. We use session IDs (SID) to partner

instances of players. There are several ways of using SID for this purpose, and we choose

what we find to be the most natural – requiring each party that output a key to have

an additional output sid. The other ways (e.g. requiring sid to be an input to parties,

or requiring existence of a partnering function) seem to be less intuitive. We note that

many natural protocols can be naturally modified to produce session ids. The sid output

is not necessary in real protocols; it is only used for the purpose of defining and analyzing

3We note that Adv can cause confusion by mismatching instances of players and making them output
unrelated keys. We don’t regard this as a problem.

Chapter 6. Key Exchange with Passwords and Long Keys 113

security of KE protocols.

Definition 17. (KE Partners) Let P be a player. We denote by Pi the i-th instance of

P . We write P Q
i to emphasize that Pi intends to do KE with (some instance of) player

Q. We say that an instance CS
i of a client C and an instance SC

j of a server S are

partners, if they have output the same session id sid.

Note that no two instances are partners when they are created; they may become

partners once they’ve executed their KE protocols. We stress that Pi and P Q
i refer to

the same instance of P . We may omit the superscript in P Q
i , when it is clear from the

context.

Mutual authentication (MA). MA is an assurance that, if P Q
i successfully com-

pleted and output a key, there must have been a QP
j “communicating” with him. We

choose not to require it, because it can be achieved at the cost of two additional “key

confirmation” flows (and refreshing the session key). Moreover, P Q
i can never be sure

that QP
j “is there” anyway, since QP

j may go offline at any time. Note, it is rather com-

mon and accepted to not require explicit mutual authentication for these reasons (e.g.

[24]). Further, if we required MA, we must use a special ⊥ output symbol to denote

failure. In our definition we allow ⊥, but don’t insist on its use.

On the notions of attacks and failures. We first note that a special kind of failure

– the password failure – must be introduced in our model to allow protection against DoA

attacks. Intuitively, if Adv’s attack is such that the act of failure of the server may reveal

some information about the client’s password, then such failure is a password failure.

A natural approach to define adversary’s ability to attack the system is by counting

password checking attempts. However, it is less natural to define what an “attempt” is.

Indeed, previous works on password-based key exchange (e.g. [58, 10]) define “attempt”

essentially as the act of Adv’s interference with the exchange of messages between two

parties. However, it is less clear, for example, whether an act of Adv changing an in-

significant bit of a message or an act of successful impersonation is such an attempt.

Chapter 6. Key Exchange with Passwords and Long Keys 114

Moreover, previously, the number of attempts was counted not by the server instances

(they are not required to “know” whether a password guessing attack occurred), but by

the environment.

An important feature of our definition is that servers themselves determine when,

whether and what type of failure occurred. This explicates the notion of a failed password

attempt, and ensures server’s ability to identify a threat and react to it. Therefore,

depending on the kind of failure, we allow servers to output either a failure symbol ⊥, or

a password failure symbol P⊥. We count password failures as P⊥’s reported by the servers,

and clients accounts are suspended (to prevent further password guessing) based solely

on that information and a predetermined threshold q. Therefore, a misidentification of

an attack by the server is an omission of the protocol (opening a possibility of either

password checking or DoA attacks), and we deem such protocols insecure.

We note that previous definitions, such as those of [58, 10, 17], can be similarly

amended to ensure “explicit authentication” by additionally requiring that the server

output P⊥ when he thinks a password attack has occurred. However, as discussed above,

it seems to be cleaner to use the server’s output as the only criterion for determining

whether such an attack took place. Further, to ensure that the server does not misiden-

tify the attacks, his output would need to be incorporated into the definitions, further

complicating them.

On the style of definition. As mentioned earlier, we prefer the game style of

KE definitions in this work. We find it easier to understand, since the game of the

definition naturally corresponds to the actions and abilities of the adversary. We don’t

seem to need the complexity of simulation style definitions. An exception seems to

be the complex universally composable (UC) definitions, which can model subtle issues

such as password mistyping (see [24] and discussion in Sect 6.3.3). In addition to their

complexity, UC-secure protocols currently are significantly less efficient than protocols

in other frameworks. From another point of view, it is highly desirable to have different

Chapter 6. Key Exchange with Passwords and Long Keys 115

styles of definitions to discuss their relative strengths and, hopefully, prove equivalence

in some settings. This work would help us gain confidence in the KE definitions we

eventually converge on.

On modelling the adversary. We consider a powerful Adv, who schedules events

(such as creation of players and their instances) and controls all communications. This

latter is modelled by the parties not sending messages to each other, but giving them to

Adv for delivery. Adv is allowed to arbitrarily modify the messages (including dropping

and injecting them) and schedule delivery. We allow Adv to create and arbitrarily ini-

tialize a polynomial number of accounts for corrupted clients. Note that in this model

the actions of corrupt players need not be discussed separately from the actions of Adv,

since Adv can simulate all their actions. For example, a message sent by a corrupted

party can be viewed as a message injected by Adv.

Recall, Adv steals either the long key or the password of a client, and attacks one of

the several security features of the protocol. We describe the (five) possible settings as

games the attacker plays. (These games cover all cases – the cases that are not discussed

explicitly are implicitly covered by stronger settings.)

Game KE1 models the most complicated setting where Adv stole the long key of the

client, and is attacking a server (that is trying to distinguish server’s session key from

random). This is the only game where Adv can benefit from guessing a password. Thus,

in KE1 Adv is allowed a limited number of P⊥’s.

Game KE2 models the setting where Adv stole the long key and the password of the

client, but is attacking a client.

Game KE3 models the setting where Adv stole only the password of the client, and

is attacking a server.

Game DOA models the inability of Adv to cause password failures without stealing

the long key.

Game SID models the inability of Adv to cause two honest parties output differ-

Chapter 6. Key Exchange with Passwords and Long Keys 116

ent session keys, and is included for technical reasons (see discussion before the game’s

definition in Sect. 6.3.2 below).

One way to define security is to describe one adversary who, at some point in his

attack, decides which of the five games above he really wants to play. However, since

Adv’s breaking abilities vary significantly among the games, defining allowed success of

Adv in a “combined” game would be unnecessarily complicated. Therefore, we choose to

describe five adversaries, each playing the corresponding game. We define the security of

ckKE by inability of any of adversaries to win any of these games “too often”. We note

that it is possible to define the “combined” adversary model carefully, and to prove that

any protocol that is secure with respect to the five adversaries would also be secure with

respect to one “combined” adversary.

Liveness. Note that protocols may never terminate (e.g. when Adv cuts the com-

munication channels). Instances may also output special failure symbols instead of (sid,

key) pairs (e.g. when they detect Adv’s interference). To ensure usability of KE proto-

cols, we disallow these exceptional cases, unless Adv indeed attacks the system. Thus,

we require that in the absence of an adversary, when processes communicate as intended,

all sessions terminate, and intended partners output the same session id and key.

6.3.2 Formal Definition of Security of Key Exchange in the

Combined Keys Model

Let n be a security parameter, and m be the number of bits in the password. In general,

m can be a function of n; interesting cases are when m is constant or logarithmic in n.

WLOG, say, the password domain is D = {0, 1}m. All players (Adv, clients and servers)

are p.p.t. machines. Recall, the notion of partnering is defined in Def. 17.

We start by presenting the KE games. Recall, the first game models the setting where

Adv obtained the long key of the client, is attacking a server, and is allowed a limited

number of P⊥’s.

Chapter 6. Key Exchange with Passwords and Long Keys 117

Game KE1. The adversary Adv starts by deterministically choosing the active attack

threshold q ∈ 1..|D| (based on the security parameter n) and creating an (honest) server

S. Adv chooses S’s name; then S’s public and private keys are set up, and only the public

key revealed to Adv. Adv then runs the parties by executing steps 1-5 multiple times, in

any order:

1. Adv creates an honest client C. Adv is allowed to pick any unused name for the

client; the client C is registered with S, and long key ` and password pwd are set

up and associated with C. Only one honest client can be created. Adv is given the

long key `, but not pwd.

2. Adv creates a corrupt client Bi. Adv is allowed to initialize him in any way,

choosing any unused name, long key and password for him.

3. Adv creates an instance Ci of the honest client C. Ci is given (secretly from Adv)

as input: his name C, the partner server’s name S, the public key of S, the long

key and the password of C.

4. Adv creates an instance Sj of the honest server S. Sj is given (secretly from Adv)

as input: his name S, the private key of S, the partner client’s name (C or B i)

and that client’s long key and password.

5. Adv delivers a message m to an honest party instance. That instance immediately

responds with a reply (by giving it to Adv) and/or terminates and outputs the result

(either a (sid,session key) pair or the failure symbol ⊥) according to the protocol.

The server instance can additionally output the password failure symbol P⊥. If the

total number of P⊥ for the honest client is equal to the threshold q, Adv becomes

restricted – he can not deliver messages to any instances SC
j .

Adv learns the output, with the exception of its session key part. Additionally, at

any time Adv may “open” any completed honest instance – then Adv is given the

Chapter 6. Key Exchange with Passwords and Long Keys 118

session key output by that instance.

Then Adv asks for a challenge on an instance SC
j of the server S. SC

j , who has been

instantiated to talk to the honest client C, must have completed and not failed. The

challenge is, equiprobably, either the key output by SC
j or a random string of the same

length. Adv must not have opened SC
j or a partner of SC

j , and is not allowed to do it in

the future.

Then Adv continues to run the game as before (execute steps 2-5). Finally, Adv out-

puts a single bit b which denotes Adv’s guess at whether the challenge string was random.

Adv wins if he makes a correct guess, and loses otherwise. Adv cannot “withdraw” from

a challenge, and must produce his guess.

Note the following technicality of KE1. It is possible that Adv may find himself

unable to complete the game. This may happen only when he had just caused the q-th

P⊥ (and hence he is not allowed to deliver messages to servers) and he has no completed

instances whom he is allowed to challenge. One way to handle this would be to require

Adv flip a coin to determine whether he won or lost. We prefer to simply disallow, by

this discussion, such behaviour of Adv, since the stalemate can be easily avoided by Adv

having a “safety instance” complete before he risks the q-th P⊥.

In all other KE games (KE2, KE3, SID and DOA) below, it is possible (and natural)

to require that the knowledge of pwd does not help Adv. We thus choose to reveal the

password to Adv and remove restrictions on the number of P⊥’s (thus removing the

definition of q). These games are presented by modifying KE1. All of the above three

modifications are included in all games below (and the last two are omitted in individual

descriptions for conciseness).

Game KE2 models the setting where Adv stole the long key and the password of the

client, but is attacking a client.

Game KE2. This game is identical to KE1, with the following additional exceptions.

Chapter 6. Key Exchange with Passwords and Long Keys 119

• Adv is given pwd (in addition to `) and must challenge an honest client instance

CS
i , who is talking to S.

Game KE3 models the setting where Adv stole only the password of the client, and

is attacking a server.

Game KE3. This game is identical to KE1, with the following additional exceptions.

• Adv is given pwd, but not the long key `.

Game SID enforces a non-triviality condition, preventing parties from improperly

partnering up (e.g. by unnecessarily outputting the same session ids). Recall, Adv is not

allowed to challenge parties whose partner has been opened, and we need to ensure that

Adv is not unfairly restricted.

Game SID. This game is identical to KE1, with the following additional exceptions.

• Adv is given pwd (in addition to `) and does not ask for (nor answers) the challenge.

• Adv wins if any two honest partners output different session keys.

Finally, game DOA models resistance to the Denial of Access (DoA) attacks.

Game DOA. This game is identical to KE1, with the following additional exceptions.

• Adv is given pwd, but not the long key `.

• Adv does not ask for (nor answers) the challenge.

• Adv wins if a server instance SC
j outputs P⊥.

Definition 18. (Secure Key Exchange in the Combined Keys Model.) We say that a

key exchange protocol Π is secure in the Combined Keys model, if for every polytime

adversaries Adv1, Adv2, Adv3, Advsid and Advdoa playing games KE1, KE2, KE3, SID

and DOA, their probabilities of winning (over the randomness used by the adversaries,

all players and generation algorithms) is at most only negligibly (in n) better than:

Chapter 6. Key Exchange with Passwords and Long Keys 120

• 1/2 + q

2|D| , for KE1,

• 1/2, for KE2 and KE3,

• 0, for SID and DOA.

KE definition for the HK setting. We note that Halevi and Krawczyk do not

formally define the full notion of KE in their setting, but concentrate on the one-way

password authentication of the client to the server. Because ckKE is a generalization of

the HK setting and thanks to the modularity of our presentation, it is not hard to extract

the KE definition for the HK setting from Def. 18. The only difference between our and

the HK settings is that we additionally allow for the use of the long shared key `. It

turns out that it suffices to remove the games that do not allow Adv to know ` from Def.

18, to obtain a definition for the HK setting. (Of course, we also need to remove the uses

of the long key ` from the remaining games.) Indeed, it is not hard to verify that the

remaining games cover all possible attacks Adv can do in the HK setting. We explicate

this definition below.

Definition 19. (Secure Key Exchange in the HK Model.) We say that a key exchange

protocol Π is secure in the Halevi-Krawczyk, or hybrid, model, if for every polytime

adversaries Adv1, Adv2 and Advsid playing (amended as described above) games KE1,

KE2 and SID, their probabilities of winning (over the randomness used by the adversaries,

all players and generation algorithms) is at most only negligibly (in n) better than:

• 1/2 + q

2|D| , for KE1,

• 1/2, for KE2,

• 0, for SID.

We note that although the pre- and post-definition discussion (of Sect. 6.3.1 and

6.3.3) discusses the ckKE setting, much of it applies to the HK setting as well.

Chapter 6. Key Exchange with Passwords and Long Keys 121

6.3.3 Post-definition Discussion

On the sufficiency of only one honest server and one honest client. We note

that definition of security is not strengthened by allowing Adv to create additional (good

or bad) servers or good clients. The reason for this is that we assume independence in

the initialization procedures of each pair of identities, and each instance is initialized only

with information relevant to its partner. More detail follows.

Consider an adversary who wishes to attack a particular player – a client C or a

server S. Suppose we allowed creation of additional good or bad servers. Note that

initialization of a client C proceeds independently for servers S1 and S2, and, further,

CS1

i1
has no information about CS2

i2
, that is not known to Adv. Therefore, creating

accounts for C with more than one server and instances of C talking to them does not

help Adv, since it can be simulated by Adv. On the other hand, the ability to create

many clients with a server is essential, since server instances talking to different clients

do share common information among themselves – the secret key of the server. In fact,

we exploit that in our attack on ΠHK . Only one honest client is sufficient, however, since

additional honest clients can be played by Adv. We note that had we allowed clients

to possess information common to two or more servers, we would have to allow Adv to

create additional bad servers.

On the order of creation of good client and revealing the long key `. Adv

should first create the good client, and only then be allowed to see `. This is the way

the attack works in real life. Had we reversed the order, it would be easy to construct

good protocols that would be defined insecure (e.g., a server leaks some information, if

the client’s name is the same as `.)

On the allowed success of Adv in KE1. Consider the success an adversary can

always achieve (and therefore must be allowed in our definition). After q queries, Adv can

guess the password with probability q/|D|, and if he fails to guess it, he can distinguish

the key from random with probability 1/2. Therefore, we should allow Adv’s probability

Chapter 6. Key Exchange with Passwords and Long Keys 122

of success of at least q

|D| + 1
2
|D|−q

|D| = 1
2

q+|D|
|D| = 1

2
+ q

2|D| .

On independence of the states of instances. In our model, there is no global

information, and state is not preserved between executions of instances of players. There-

fore, for example, it is not possible for an instance to know exactly how many P⊥’s

occurred. Nevertheless, some communication and preservation of state can be achieved

with the help of the adversary, as follows. The private key of S now additionally in-

cludes an n-bit MAC key kM . Whenever Sj wants to publish a message m, he gives

(m, MACkM
(m)) to Adv. The server’s protocol has an optional field in one of the ex-

pected messages. Sj only accepts the properly MAC’ed messages in that field (this is

essential, so that Adv cannot forge messages). We stress that communication may only

happen if it is in the interest of Adv. Therefore, it can not be used to increase security

of protocols, but mainly to uncover weaknesses of definitions (see example in the next

topic).

On continuing the game after q P⊥’s. In the real world, at least ideally, after q

P⊥’s, the server knows there is an attack on C, and will not accept new connections and

will terminate all incomplete instances. How should we model this in our KE games?

Although S may have cut communication with C, old sessions may still exist, and we

need to ensure that they remain secure. That is why we allow the game to continue as

before, but disallow sending messages to the server instances after q P⊥’s occurred.

Observe that once Adv got the challenge, “trying” another password may not help

him much. Therefore, in particular, it is crucial to allow to challenge instances after q P

⊥’s occurred.

It is not hard to design a concrete protocol demonstrating the necessity of our choice.

Take a secure protocol Π. Modify it as follows to obtain Π′. Once a P⊥ of an honest

client C occurred in the game (see above discussion on independence of states), in all

future sessions with instances of C the all-zero session key is chosen with fixed small, but

non-negligible probability (say prob = 1
|D|3). Clearly, this is a bad protocol, since after

Chapter 6. Key Exchange with Passwords and Long Keys 123

performing only one active attack, an attacker certainly breaks into one of the next few

sessions. However, Π′ would be deemed secure according to the definition, if Adv is not

allowed to challenge after q P⊥’s (this is because Adv is allowed only one challenge, and

he does not know which is the weak session. The expected advantage of Adv is less than

what he gets from the q-th password try.)

On the necessity of tightness in defining the allowed success of Adv. Note

that for every non-negligible slack allowed in Adv’s success, there is a natural variant

of Π′ above, deemed secure by such definition. While one may be tempted to not be

very careful in denying Adv “a few extra password tries”, Π′ has a much more dangerous

vulnerability, which really should be prevented. We remark that in the password-only

setting, if an indistinguishability of challenge based security definition does not require

tightness, a simpler variant of Π′, where players always output an all zero key with

sufficiently small (yet non-negligible) probability, would be deemed secure.

On clients mistyping the passwords. How should we model the case when an

honest client mistypes the password and causes P⊥? Consider the following protocol.

Take a secure protocol, and modify it, so that SC
j reveals ` once P⊥ occurred. It is easy

to see that the new protocol remains secure in our definition, since we implicitly assume

that C never mistypes the password. Indeed, in our definition, if a P⊥ occurred, it must

have been caused by Adv. Since Adv cannot cause P⊥ without possession of `, it is OK

if SC
j reveals `. However, intuitively, we would not want to call such a protocol secure.

The only way to formally address the issue in our model is to allow C to mistype the

password. A natural first idea is to allow Adv to instantiate clients with the password of

his choice. However, it is not clear that this models real life – most often clients mistype

their passwords to something related.

A natural next idea is to instantiate clients with the password being f(pwd), where

the deterministic function f is specified by Adv. Only such an f that does not allow to

check more than one password at a time may be allowed, and therefore strong restrictions

Chapter 6. Key Exchange with Passwords and Long Keys 124

on f are necessary. Indeed, setting f(pwd) = 0 on the first half of password domain D,

and f(pwd) = pwd on the second half, allows Adv to check half of password domain in

one try. Restricting f to be a permutation does not work either, since applying such f

allows to check whether pwd is a fixed point of f . Therefore functions f that have more

than one or fewer than |D| − 1 fixed points are not allowed. At the same time, it is not

hard to see that functions with 0, 1, |D|− 1 or |D| fixed points do not allow Adv to check

more than one password at a time when server is running a secure protocol, and thus

may be allowed in our definition. Indeed, a function with 0 fixed points always causes SC
j

to P⊥; one with 1 fixed point fp always causes P⊥, unless p = pwd, and thus allows to

check precisely one password; one with |D| fixed points (identity) never causes P⊥; one

with |D| − 1 fixed points always succeeds, unless pwd is the non-fixed point, and thus

allows to check precisely one password.

At the same time, the most natural mistyping functions (e.g. confusing the order of

digits) do not satisfy the requirements on f and do help the adversary (e.g. Adv can

quickly test if the pin consists of the same decimal digits). More generally, Adv may infer

a lot from simply observing a large volume of traffic, noting the patterns of honest clients

mistyping their passwords, and matching them with expected patterns. However, it is

not clear how to analyze this advantage, so we choose not to include password mistypes

in our model at all, with the understanding that protocol designers take this discussion

into account.

This subtlety also arises in KE in the pure password model, when passwords need not

be chosen uniformly from D. Indeed, let D1 ⊂ D be all elements of D that end with a 0,

and pwd ∈ D is chosen uniformly from D1. Then a protocol Π that reveals pwd iff pwd

is mistyped only in the last digit, would be secure under a natural definition that does

not allow mistyping. This is because pwd would not be revealed, unless Adv already had

tried it. At the same time, such protocol Π should not be deemed secure. We note that

the recent definition of password based KE in the Universal Composability model ([24])

Chapter 6. Key Exchange with Passwords and Long Keys 125

addresses the issue of mistyping by allowing the environment to both choose and type

passwords.

On reporting failures to Adv immediately after failing. We justify our defin-

itional decision to require that players don’t have private failure outputs (either ⊥ or P

⊥), and Adv is informed of failure as soon as it output.

At first glance, it may seem that the ability of players to have private failure outputs

may facilitate design of more efficient secure protocols. Indeed, consider a modification

of (a vulnerable instance of) ΠHK, where, upon a password failure, the server does not

report it to Adv, but produces a random key and simulates successful completion of

KE. This change would have prevented our attack of Sect. 6.2. However, the achieved

security would be illusory, since, in practice, it is hard to simulate successful completion

well. Indeed, a P⊥ must be somehow registered and used by S. This changes the state

of S (in particular, the counter of active attacks is incremented). Since C can login after

q − 1, but not after q P⊥’s, Adv is able to infer some information about S ′ outputs.

Because of this “side channel”, we choose not to allow private failure outputs in our

definition. We further observe that the modification of ΠHK of this paragraph is insecure

according to our definition. This is because the server does not report any P⊥’s.

We also note that protocol termination and failure reporting should be timely. Indeed,

suppose Sj at some point “knows” he is going to output P⊥, that is, Sj entered a state

from which all execution paths lead to outputting P⊥, and Adv learned this fact. Suppose

Sj does not terminate yet, but is waiting to receive another message. Then Adv can delay

the delivery of the message indefinitely, Sj would never report P⊥, and we don’t count it.

In particular, adding an extra round of communication to a secure protocol Π, in which

parties say whether they failed, makes Π insecure. This is consistent with our desire to

force a server to correctly and timely report active attacks.

Chapter 6. Key Exchange with Passwords and Long Keys 126

6.4 Our Protocol

Let n be a security parameter. Let F be a PRFG and MAC be a secure message

authentication code, as defined in Sect. 2.7.4 and 2.7.5. To simplify discussion, we

present our constructions with the domains and ranges of PRFG and MAC equal to

{0, 1}n. Let E = (Gen, Enc, Dec) be a CCA secure public key encryption scheme,

F : {0, 1}n × {0, 1}n 7→ {0, 1}n be a PRFG, and MAC : {0, 1}n × {0, 1}∗ 7→ {0, 1}n be a

message authentication code. Let NC be the name of the client C, drawn from {0, 1}n.

Shorter names can be used for efficiency, if desired.

Consider the following KE protocol Π, with two types of players, a server S and a

client C who have secretly agreed on a password pwd ∈R D, a long secret key ` ∈R {0, 1}
n.

Also, S has generated public/private key pair (pkS, skS), and gave pkS to C.

Construction 14. (KE in the Combined Key Model (Π).)

SC CS

choose r ∈R {0, 1}
n choose k ∈R {0, 1}

n ,

set α = EncpkS
(NC , pwd, k)

r → · · · ← α,MAC`(α)

verify MAC`(α) and NC ; output

if fail, output ⊥ and halt K = Fk(r), sid = (r, α)

verify pwd;

if fail, output P⊥ and halt

else output

K = Fk(r), sid = (r, α)

WLOG, we assume that all protocol messages are formed properly (i.e. values are

drawn from the appropriate domains, etc.). Then a client instance never fails, while a

server instance may. Note that Adv may cause non-partnered parties to output unrelated

keys. This is not a problem (see Sect. 6.3.1 and Footnote 3).

Chapter 6. Key Exchange with Passwords and Long Keys 127

We stress that the two flows of the protocol are independent, and thus either of the

parties can be the initiator. The DoA attacks are prevented if Adv does not have `, even

though, in particular, Adv is able to resend old messages of the client. The latter causes

a server to output a random (from the point of view of Adv) session key, thus Adv is not

able to take advantage of it. This also does not enable Adv to “reset” the fail counter

in real executions (and thus try many passwords undetected), since the same effect can

be achieved by Adv executing a KE between honest SC
j and CS

i , and then cutting the

communication.

We treat the policies of account suspension and resetting of failure counters as external

to our discussion, but stress that care should be taken in designing and implementing

them. In particular, the client’s explicit consent (communicated over a secure session)

should be necessary for resetting the failed attempts counter, since otherwise Adv can be

undetected when trying passwords between legitimate client logins. A natural scenario

would be that the server asks the client whether he mistyped the password a certain

number of times, and when client confirms, the fail counter is reset.

We further note that we can prevent Adv from resending C’s old replies to S (e.g. if it

is undesirable to have “hanging” sessions) by including r in the encryption of the client’s

reply and adding the corresponding verification step to S. We chose not to include it

because it disallows the independence of flows of KE, and it is unclear whether hanging

sessions are “worse” than hanging KE.

An alert reader will notice that smart cards may be gainfully used in place of client’s

storage cards. A smart card may hide the long key `, only exposing the MAC’ing interface.

An interesting setting is when Adv can “borrow” and return (but not copy) the card,

obtaining only a period of ability to MAC strings of his choice. Our protocol will not

benefit from such security improvements: C’s messages are independent of S’s, and thus

Adv can MAC all the strings he might possibly need for an attack (e.g. strings containing

all possible passwords) in one batch. Again, including r in the encryption of C’s reply

Chapter 6. Key Exchange with Passwords and Long Keys 128

resolves this problem.

Π is secure. We first observe that for every Advsid and Advdoa playing games SID

and DOA, their probability of winning is negligible. Indeed, in our protocol, partners

never output different keys (since the session key is determined by sid). As for Advdoa,

for a server to output P⊥, it is necessary to forge a MAC on an encryption not produced

by any of the honest clients. This is only possible with negligible probability without the

knowledge of the long key `, assuming security of MAC.

We formally consider the remaining games KEi and adversaries in Sect. 6.5. The

structure of our proof is as follows. We start by reducing the KE adversaries to ones

playing much simpler games. As a second step, we show that existence of new adversaries

implies insecurity of either of the employed primitives. We consider several adversarial

behaviours separately. Appendix 6.5.1 discusses the most interesting setting, where the

adversary sees the long key and challenges a server instance, and we formally and carefully

show the precise quantitative security of Π. Discussion of this section contains the main

ideas of our entire proof. Sect. 6.5.2 addresses the remaining two games. Altogether,

we’ve proven the following.

Theorem 15. The protocol Π of Constr. 14 is a secure key exchange protocol in the

combined keys model.

On generalizing Constr. 14. Consider creating a family of protocols parameterized

by a function f similarly to the approach of Halevi and Krawczyk. The goal is to shorten

the plaintext of the encryption α sent by C, which may improve the performance of the

protocol. We note that we already reduce the amount of data under the CCA-secure

encryption – it is smaller than in any member of the HK families of KE protocols (but

note that HK KE additionally achieve mutual authentication). We do not see how to

further significantly increase efficiency by applying the HK idea to our protocols.

KE protocols for the HK setting. It is easy to see that removing the uses

of the long key ` from the protocol of Constr. 14 casts it into the HK setting. The

Chapter 6. Key Exchange with Passwords and Long Keys 129

obtained protocol (explicated in Constr. 15 below) is a secure KE protocol in the HK

setting, according to Def. 19. This conclusion immediately follows from the method of

construction and Theorem 15.

Construction 15. (KE in the HK setting.)

SC CS

choose r ∈R {0, 1}
n choose k ∈R {0, 1}

n ,

set α = EncpkS
(NC , pwd, k)

r → · · · ← α

verify NC ; output

if fail, output ⊥ and halt K = Fk(r), sid = (r, α)

verify pwd;

if fail, output P⊥ and halt

else output

K = Fk(r), sid = (r, α)

Protection against the compromise of the server’s password file. Recall that

we previously assumed that the server’s private information is never compromised. We

now briefly discuss how storing passwords in a hashed form helps maintain a reasonable

level of security even if Adv steals the password file. This discussion is informal, since,

even though a password may be forced to be sufficiently long (40-60 bits), due to human

memory limitations, it often contains only a small amount of entropy. Consequently, it

is hard, if at all possible, to formally justify the advantage of the server storing hashes

of passwords instead of their plaintext values. Indeed, if Adv steals a file of hashed user

passwords (or any other information allowing S to verify a password), he can compute

the corresponding passwords in polytime.

From the another point of view, if Adv does not know a client C, C’s password may be

long and unpredictable to Adv. Indeed, it might include many easy to remember personal

references, which Adv does not know. Thus, the passwords may be viewed as having some

Chapter 6. Key Exchange with Passwords and Long Keys 130

probability of being chosen from a low-entropy distribution, if the user fits the profile

that Adv has. Otherwise, the passwords may be chosen from a high-entropy distribution.

In this view, resilience to server compromise is meant to protect the “strong” passwords.

Moreover, in practice it is often unclear how to exploit the even the relatively low en-

tropy of passwords. See Narayanan and Shmatikov [77] for recent results and background

in password cracking. Further, most of the attacks (including that of [77]) employ expen-

sive precomputation, after which they can attack multiple passwords at a much lower cost

per password. Recall, the benefits of precomputation are removed by “salting”, which

can be viewed as using a different hash function for each user’s password. In addition,

slow hash functions may be used to increase the cost of the attack, as discussed in [20]

and is done in the UNIX crypt() implementation.

Thus, storing passwords only in the salted hashed form on the server seems to provide

additional significant level of protection, at least with the current state of the art of

password cracking. We note that our protocols can be trivially modified to allow for this

second line of defense, e.g., as follows. The server S will store a randomly chosen salt s

and a hash h = H(pwd, s), instead of the C’s password pwd. The client C stores s on

the card. When computing α above, C includes H(pwd, s) instead of the plaintext pwd.

The password verification procedure of SC is amended correspondingly. We envision the

above modifications for most practical situations. As previously discussed, other second-

line defense techniques, e.g. those described in [58], can be used to also achieve heuristic

security against the compromise of the secret key of the server. Finally, we note that a

compromise of the long key ` of the client (which is also stored on the server) is already

addressed in our definition by allowing Adv to steal `.

How to change passwords. In practice, throughout the life cycle of a client-server

system, it might be necessary to change passwords of clients. Usually, in the KE literature

this need is treated as external to the definition and protocols. It turns out that in our

setting it requires special care. We now briefly describe the subtle problem and informally

Chapter 6. Key Exchange with Passwords and Long Keys 131

suggest several solutions.

Suppose client C securely (e.g. in a private meeting with the server S) changes his

password from pwd to pwd′. Then Adv can perform a DoA attack by simply sending

to SC C’s old messages, containing (properly encrypted and MAC’ed) pwd. Intuitively,

the problem arises from the fact that only a part of the key of C is modified when the

password is updated. In other words, clients with related credentials would exist in the

system, violating our assumption on the independence of key generation of players (see

first item in Sect. 6.3.3 for more discussion).

A natural solution is to disallow password-only updates to credentials, and to require

regeneration of the long key ` as well. Such updates will not cause problems, since the

new key (pwd′, `′) is fully independent from the old one, and all previous transcripts

obtained by Adv become useless4.

We also note that it is possible to allow password-only updates, at the cost of com-

plicating the protocol (and the definition). This may be desirable when updates of the

client’s storage are inconvenient or costly. Security in this setting can be achieved, for

example, by a modification of our protocol into a challenge-response one. Alternatively,

it is possible to preserve the property of independence of flows in the KE protocol. This

can be done at the cost of keeping (and appropriately using) password update counters

by both S and C5.

Our definitions also would need to be modified if password-only updates are allowed.

Indeed, our protocol of Constr. 14 is secure according to Def. 18, yet it is clearly

vulnerable to the DoA attack in the current setting. We leave the resulting update to

the definitions outside the scope of this work.

4Note a technicality that incomplete instances SC and CS should be terminated at the time of key
update.

5While storage on the server side is readily available, we may have a read-only client’s storage medium.
If so, the counter may be considered as part of the password, with the assumption that the upper bound
on the number of password updates is small. We stress that in this case, a non-matching counter value
will cause SC output ⊥, and not P⊥.

Chapter 6. Key Exchange with Passwords and Long Keys 132

6.5 Proof of security of the protocol of Constr. 14

(Theorem 15)

We first prove that, assuming security of the underlying primitives of Π, there does not

exist an adversary winning the game KE1 too often. The proof of this case is delicate due

to handling precise quantitative advantage of Adv; it presents main ideas for the proof

of the other cases.

Proposition 1. If the PRFG F and the CCA encryption scheme E used in Π are secure,

then for every polytime Adv, the probability p of Adv winning the game KE1 is no more

than 1/2 + q

2|D| + ε, where ε is negligibly small (in the security parameter n).

Prop. 1 follows from lemmas 2 and 3, presented in Sect. 6.5.1.

The other cases are handled by

Proposition 2. If the PRFG F , MAC, and the CCA encryption scheme E used in Π

are secure, then for every polytime Adv1 and Adv2 the probabilities of them winning the

games KE2 and KE3 respectively are no more than p > 1/2+ε, where ε is negligibly small

(in the security parameter n).

Prop. 2 follows from lemmas 4, 5 and 6, presented in Sect. 6.5.2.

Theorem 15 follows from Prop. 1 and 2.

6.5.1 Proof for the case when the adversary is given the long

key and challenges the server

Consider the following game (parameterized by n). that a distinguisher Dist1 plays. We

suggest looking at the game briefly at the first reading – the motivation behind it would

be clear in the proof of the reduction from game KE1 (Lemma 2).

Game G1. A maximum number of “password tries” q is deterministically (based on

n) chosen by Dist1 and fixed. The game initializes a CCA secure encryption scheme

Chapter 6. Key Exchange with Passwords and Long Keys 133

(by generating public and private keys pkS and skS) and randomly chooses the password

pwd ∈R D. Only the public key pkS is given to Dist1. Dist1 queries the decryption

oracle OD(e′) = DecskS
(e′) to obtain decryptions of chosen strings. Then Dist1 chooses

a “client name” NC . Then, for i = 1, ..., u, Dist1 queries the encryption oracle OE that

produces random encryptions ei = EncpkS
(NC , pwd, ki), where ki ∈R {0, 1}

n are chosen

randomly and unknown to Dist1. Here u is chosen by Dist1. Then Dist1 proceeds by

executing Steps 1 - 2 multiple times, in any order:

1. Dist1 queries the PRFG oracle OF (i, r) = Fki
(r), where ki was chosen (but not

revealed) by OE during it’s i-th query. Here r ∈ {0, 1}n and i ∈ {1..u} are chosen

by Dist1.

2. Dist1 queries the decryption oracle OD(e′), where e′ is chosen by Dist1. He is not

allowed to query OD on any ei obtained from OE.

Then Dist1 chooses i ∈ {1, ..., u} and r0 ∈ {0, 1}
n and queries the challenge oracle

OC(i, r0). OC produces a challenge as follows: it randomly chooses a bit b and a string

ρ ∈R {0, 1}
n. Then OC(i, r0) = Fki

(r0) if b = 0, and OC(i, r0) = ρ if b = 1. Dist1 is not

allowed to query OC(i, r0), if he queried OF (i, r0).

Then, Dist1 continues running Steps 1-2, with the exception that he is not allowed to

query OF (i, r0).

Finally, Dist1 generates a list of q password guesses PL = {p1, ..., pq} and outputs a

bit b′. Dist1 wins if pwd ∈ PL or if b = b′.

Lemma 2. Suppose there exists an adversary Adv that asks for the long key `, always

challenges a server instance, and breaks the protocol Π. Then there exists Dist1 winning

the game G1 with probability non-negligibly greater than 1/2+ q

2|D| , where G1 is run with

the same encryption scheme E and PRFG F as Π.

Proof. We prove the theorem by constructing Dist1 that wins G1, essentially whenever

Adv wins the KE game. Dist1 simulates an environment (i.e. KE players and their

Chapter 6. Key Exchange with Passwords and Long Keys 134

actions), in which he runs Adv, answers Adv’s queries and uses Adv’s decisions to make

decisions in G1. We say “Dist1 stops”, meaning “Dist1 finishes processing Adv’s request

and returns control to Adv”, and “Dist1 sends (outputs) m”, meaning “Dist1 simulates

the given player sending (outputting) m, by giving m to Adv”.

Dist1 starts up Adv, who outputs the threshold q and requests to create (the only)

server S. Dist1 then starts the game G1 with q, and obtains the public key pkS for Enc.

Dist1 sends pkS to Adv as the public key of the server. Dist1 initializes its password list

PL to empty.

Dist1 then runs Adv and satisfies its requests for information as follows. Note that a

client C must have been created to create its instances Ci or server instances SC
j .

1. Adv creates a bad client Bi:

Adv chooses the password and the long key, and reveals them to S (thus giving

them to Dist1).

2. Adv creates (the only) honest client C with the name NC :

Dist1 chooses the name NC for G1 to be the name of the client. Let u be the upper

bound on the number of client instances Adv creates. Then, for i = 1, ..., u, Dist1

queries oracle OE and obtains random encryptions ei = EncpkS
(NC , pwd, ki), where

ki ∈R {0, 1}
n are chosen randomly and are unknown to Dist1. (We note that Adv

did not cause any calls to OF or OC yet, although he may have created and run

server with corrupt clients. Therefore, there is no conflict with G1’s scheduling.)

Then Dist1 randomly chooses ` ∈R {0, 1}
n to be C’s long key. Adv asks for it, so

Dist1 reveals ` to Adv.

3. Adv creates an instance SC
j or SBi

j of S and starts the protocol:

Dist1 randomly chooses rj ∈R {0, 1}
n and sends it.

4. Adv creates new (i-th) instance Ci of the honest client C.

Recall that Dist1 already obtained ei from OE. Dist1 computes maci = MAC`(ei)

Chapter 6. Key Exchange with Passwords and Long Keys 135

and sends (ei, maci).

5. Adv delivers a message mCi
to an instance Ci of honest client C (allegedly) from

server S:

Dist1 gives to Adv the session id sidi = (mCi
, ei). Recall, ei is the encryption

previously sent by Ci.

6. Adv delivers a message mSj
= (e′, m′) to SC

j (allegedly) from client C (recall, C is

honest):

If m′ 6= MAC`(e
′), Dist1 outputs ⊥and stops. Otherwise Dist1 proceeds as follows.

If e′ = ei was obtained from OE, Dist1 gives to Adv the session id sidj = (rj, ei).

Recall, rj is the message previously sent by SC
j .

Otherwise, if e′ was not obtained from OE, Dist1 continues and decrypts e′ by

querying the decryption oracle OD(e′) to obtain (N ′
C , pwd′, k′). If N ′

C 6= NC , Dist1

outputs ⊥and stops. Otherwise, i.e. if the client’s name matches, Dist1 adds pwd′

to the list PL of passwords to try, unless this causes |PL| > q. (Since Adv cannot

communicate with SC
j after q P⊥’s, the only case when Adv causes the q + 1-st

execution of this clause is when Adv had produced a valid guess at C’s password.

If so, pwd has already been added to PL, and there is no benefit in adding anything

to PL.) Finally, Dist1 outputs P⊥ and stops. (Note if this response is incorrect,

then pwd has been added to PL, and Dist1 wins, so we don’t worry about properly

simulating the game anymore.)

7. Adv delivers a message mSj
= (e′, m′) to SBi

j (allegedly) from client Bi(recall, Bi

is corrupt):

Recall that Dist1 knows Bi’s long key and password. Dist1 verifies MAC; if veri-

fication fails, Dist1 outputs ⊥and stops. If e′ = ei was obtained by any oracle call

to OE, Dist1outputs ⊥and stops(since the client name would not verify6.)

6This conclusion cannot be made when attempting to reduce the KE game of the Halevi-Krawczyk

Chapter 6. Key Exchange with Passwords and Long Keys 136

Otherwise (if MAC checked and e′ was not obtained from OE) Dist1 proceeds as

follows. Dist1 decrypts e′ by querying the decryption oracle OD(e′) = (N ′
C , pwd′, k′)

and acts according to the Server’s protocol, as follows. Dist1 verifies whether N ′
C

equals to the name of Bi. If not, Dist1 outputs ⊥and stops. Then Dist1 verifies

whether pwd′ is the Bi’s password; if not, Dist1 outputs P⊥ and stops. Otherwise,

Dist1 gives to Adv the session id sidj = (rj, e
′).

8. Adv sends an open request on a (completed and not failed or challenged) client

instance Ci of C:

Note that Ci output sidi = (mCi
, ei). Dist1 queries oracle OF (i, mCi

) = Fki
(mCi

),

and gives the answer to Adv. Note that there are restrictions on when Dist1 is

allowed to call OF (OF and OC cannot be called with the same parameters). We

argue later that we are not violating them.

9. Adv sends an open request on a (completed and not failed or challenged) server

instance Sj of S:

Recall that Sj received mSj
= (e′, m′) and Sj output sidj = (rj, e

′). If e′ = ei was

generated by OE, then Dist1 queries oracle OF (i, rj) and outputs the answer. As

in 8, we will later argue that we are not violating G1’s restrictions.

Otherwise, Dist1 decrypts e′ by calling OD(e′) and outputs Fk′(rj), where k′ is the

key inside e′. Note that this is the case corresponding to the last paragraph of case

7 above, since Dist1 always reports failure when SC
j receives e′ not generated by

OE. No OF call is made in this clause.

10. Adv sends a challenge request on a (completed and not failed or opened) server

instance SC
j of S:

Recall, SC
j sent rj, received mSj

= (e′, m′) and output sidj = (rj, e
′). If e′ = ei

protocol to G1 in a natural way, and thus Dist1 cannot answer correctly without calling OD(ei). However,
it is crucial that OD(ei) is not called here.

Chapter 6. Key Exchange with Passwords and Long Keys 137

was generated by OE (i.e. sent by a client Ci), Dist1 queries the challenge oracle

ch = OC(i, rj), gives ch to Adv and (later, after submitting the list PL) submits

Adv’s output as his answer to the challenge of G1. As in 8 and 9, we will later

argue that we are not violating G1’s restrictions when querying OC(i, rj).

Note that the case when e′ of mSj
was not generated by OE cannot happen, since

Dist1 would have reported to Adv that SC
j failed.

We note that Dist1 always ensures legality of calls to OD(e) by checking that e was

not generated by OE. We now argue that all calls to OF in 8–9, and to OC in 10 will

be legal requests in G1, that is that Dist1 never calls both OF (i, r) and OC(i, r), for any

pair (i, r).

First note that OF and OC are only called when Adv opens or challenges instances,

respectively. Adv always challenges a server instance. Suppose, he challenged SC
j , and

thus caused the call OC(i, rj), where ei was generated by OE and sent by some client Ci.

Consider two possible cases. First, for k 6= j, Adv opens (either earlier or later) a server

instance Sk, causing a call OF (i′, rk). This call is legal, since Prob(rj = rk) is negligible.

Second, Adv opens a client instance CS
k , thus causing a call OF (k, mCk

). Suppose this

call is illegal, i.e. i = k (implying that ei = ek) and rj = mCk
. However, in this case, the

session ids output by the parties match. Then SC
j and CS

k are partners, and such Adv’s

behaviour is not allowed in KE1.

Now it is easy to see that the simulated messages provided by Dist1 are distributed

almost identically to those generated in a real execution, until the point when Adv does

guess the password correctly, and Dist1 incorrectly returns P⊥. What happens after that

point, however, does not matter, since Dist1 had already won the game.

By assumption of the lemma, Adv wins with probability non-negligibly more than

1/2 + q

2|D| . It is easy to see that Dist1 wins whenever Adv wins, except for a negligible

fraction of the time. Therefore, the constructed Dist1 wins the game G1 with probability

non-negligibly more than 1/2 + q

2|D| .

Chapter 6. Key Exchange with Passwords and Long Keys 138

We now show that the adversary Dist1 described in Lemma 2 cannot exist, if secure

primitives are used.

Lemma 3. If the PRFG F and the CCA encryption scheme E used in G1 are secure,

then for every polytime Dist1, the probability p of Dist1 winning the game G1 is no more

than 1/2 + q

2|D| + ε, where ε is negligibly small (in the security parameter n).

Proof. Consider a polytime Dist1. We first argue that he cannot produce a password

list PL containing pwd with probability significantly more than q/|D|. To prove this,

we strengthen Dist1 by allowing him choose ki used in the calls to OE. Then G1 can be

further simplified – Dist1 does not need access to OF (he can evaluate it himself). It

is now easy to see that if Dist1 can produce a list PL of q passwords with probability

significantly more than q/|D|, he can be used to break the security of E (since he must

have obtained some information about pwd from playing essentially the game of the CCA

security.)

Now, return to the original Dist1 and G1. Let E1 be the event of Dist1 produc-

ing PL containing pwd, and E2 be the event of Dist1 winning by answering the chal-

lenge correctly. Then the probability of Dist1 winning G1 is p = prob(E1) + (1 −

prob(E1))prob(E2|¬E1). Note that the lemma trivially holds for n, where q ≥ |D|.

From now on, consider n, such that q < |D| (q is polynomially bounded). Then,

Prob(¬E1) is bounded away from 0 by a polynomial (in n) fraction. We now show that

for Dist1, prob(E2|¬E1) < 1/2 + ε2, where ε2 is negligible. Suppose otherwise. Then we

construct a polytime D′ who, with the knowledge of pwd, answers the challenge of G1

with probability significantly better than 1/2. D′ proceeds as follows. He runs Dist1

up to the point when Dist1 produces PL. D′ checks whether pwd ∈ PL. If so, he

flips a coin to answer the challenge. If not (and this happens non-negligibly often), he

continues running Dist1 (and obtains non-negligible advantage). At the same time, it

Chapter 6. Key Exchange with Passwords and Long Keys 139

can be easily shown by standard hybrid techniques that such D′ cannot exist. Thus

prob(E2|¬E1) < 1/2 + ε1.

Therefore, if all the employed primitives are secure,

p = prob(E1)+(1−prob(E1))prob(E2|¬E1) < q

|D| +ε1 +(1− q

|D|)(1/2+ε2) = 1/2+ q

|D| +ε.

6.5.2 Other cases

In all other cases, we reduce the KE game to a simpler variant G2 of the game G1.

Game G2. G2 proceeds exactly as G1 with the following two exceptions. First, the

client’s password pwd is revealed to the distinguisher Dist2 as soon as Dist2 sets the

name C. Second, Dist2 is not allowed to win by presenting PL (thus PL generation is

omitted).

Lemma 4. If there exists an adversary Adv breaking the protocol Π that challenges a

client and is given the long key ` and the password pwd, then there exists Dist2 winning

the game G2 with probability non-negligibly greater than 1/2.

Proof. The construction of Dist2 and the following discussion proceed almost identi-

cally to construction of Dist1 of Lemma 2. Here we only point out the differences in

construction and discussion.

• PL is not created nor used in any way by Dist2.

• In Step 2, when the honest client is created, both the long key ` and the password

pwd (obtained from G2) are given to Adv.

• In Step 6 (Adv delivers a message mSj
= (e′, m′) to SC

j (allegedly) from client C)

Dist2 proceeds like Dist1, with the following exception. If e′ (an encryption of

(N ′
C , pwd′, k′)), was not obtained from OE, and the client name matches (N ′

C =

NC), then instead of modifying PL, Dist2 does the following. Recall, Dist2 knows

Chapter 6. Key Exchange with Passwords and Long Keys 140

the password pwd of C. If pwd′ 6= pwd, Dist2 outputs P⊥, otherwise Dist2 outputs

sid = (rj, e
′). Recall, rj is the message previously sent by SC

j .

• Dist2 handles a new type of request: Adv sends a challenge request on a (completed

and not failed or opened) client instance CS
i of C:

Note that CS
i previously received mCi

and output sidi = (mCi
, ei). Dist2 queries

the challenge oracle ch = OC(i, mCi
), gives ch to Adv and submits Adv’s output as

the answer to the challenge of G2. Note that there are restrictions on when Dist2

is allowed to call OC (OF and OC cannot be called with the same parameters). We

argue later that we are not violating them.

• Request 10 (challenging a server instance) is now not allowed.

We note that all oracle calls made by Dist2 are legal requests in G2. The argument is

also similar to that of Lemma 2. Indeed, as in construction of Dist1, we always ensure

that e was not generated by OE before calling OD(e).

Further, OF and OC are only called when Adv opens or challenges instances, respec-

tively. Consider the two possible cases (there are only two since Adv always challenges

a client). First, Adv opened and challenged client instances Ci1 and Ci2. Then, for the

conflict to happen, it must be that ei1 = ei2, which happens with negligible probability.

Second, Adv opened a server instance SC
j and a challenged a client instance CS

i . For the

conflict to happen, it must be that the client instance received rj, and the server instance

received ei during the game. However, in this case, the sid output by the instances would

match, and thus Ci and Sj would be partners, and Adv would not be allowed to challenge

CS
i and open Sj.

Now it is easy to see that the simulated messages provided by Dist2 are distributed

almost identically to those generated in a real execution. By assumption of the lemma,

Adv wins with probability non-negligibly more than 1/2. It is easy to see that case Dist2

wins whenever Adv wins, except for the negligible fraction of the time. Therefore, the

Chapter 6. Key Exchange with Passwords and Long Keys 141

constructed Dist2 wins the game G2 with probability non-negligibly more than 1/2.

Finally, we consider the adversary who is not given the long key `, and is attacking

the server.

Lemma 5. Suppose the employed MAC scheme is secure. Then, if there exists an ad-

versary Adv breaking the protocol Π who is not given the long key ` and is attacking

the server, then there exists Dist2 winning the game G2 with probability non-negligibly

greater than 1/2.

Proof. The construction of Dist2 and the following discussion proceed almost identi-

cally to construction of Dist1 of Lemma 2. Here we only point out the differences in

construction and discussion.

• PL is not created nor used in any way by Dist2.

• In Step 2, when the honest client is created, the long key ` is not revealed to Adv.

The password pwd (obtained from G2) is given to Adv.

• In Step 6 (Adv delivers a message mSj
= (e′, m′) to SC

j (allegedly) from client C)

Dist2 proceeds like Dist1. We note that e′ was not obtained from OE only with

negligible probability (since otherwise we can construct a forger for MAC), and

thus we don’t handle the corresponding clause.

• In Step 10 (Adv sends a challenge request on a (completed and not failed or opened)

server instance SC
j of S:) Dist2 proceeds like Dist1. (Note that e′ was not obtained

from OE only with negligible probability, due to the security of MAC; thus we don’t

handle the corresponding clause.)

We note that all oracle calls made by Dist2 are legal requests in G2. The argument

is analogous to that of Lemma 2. Thus, the simulated messages provided by Dist2 are

Chapter 6. Key Exchange with Passwords and Long Keys 142

distributed almost identically to those Adv sees in a real execution. By assumption of

the lemma, Adv wins with probability non-negligibly more than 1/2. It is easy to see

that case Dist2 wins whenever Adv wins, except for a negligible fraction of the time.

Therefore, the constructed Dist2 wins the game G2 with probability non-negligibly more

than 1/2.

We now show that the adversary described in Lemmas 4 and 5 cannot exist, if secure

schemes are used.

Lemma 6. If the PRFG F and the CCA encryption scheme E used in G2 are secure, then

there does not exist a polytime Dist2 winning the game G2 with probability p > 1/2 + δ,

where δ is not negligibly small (in the security parameter n).

The proof of Lemma 6 is done by a standard hybrid argument, and is omitted.

�

Chapter 7

Summary and Future Work

In this dissertation, we presented our results in the areas of SFE and KE. We presented

new, more efficient protocols for secure evaluation of variants and extensions of the GT

functionality, such as auctions. We presented a new, more efficient information-theoretic

reduction of secure evaluation of any boolean formula to OT. Finally, we discussed meth-

ods of securing network communication between parties authenticated by a combination

of different types of credentials.

Presented work and background discussion highlight some of the research directions of

modern cryptography and give a flavour of the problems that arise in these areas. While

we have shown some aspects of securing computation and communication of parties, we

did not consider many important issues and settings. We now give a brief overview of

research directions that naturally follow from or related to what we discussed in this

dissertation.

Secure Multi-Party Computation

Most of our work addresses two-party computation. We went slightly beyond the two-

party setting in Chapter 4, where we considered a helping semi-honest server. The

general setting with an arbitrary number of parties is a natural interesting generalization

143

Chapter 7. Summary and Future Work 144

of our setting. Current state of the art of information-theoretic multi-party evaluation of

formulas has complexity Θ(2d2Θ(
√

d)) (see, e.g. Cramer, Fehr, Ishai and Kushilevitz [30]).

It seems that the techniques developed in Chapter 5 can be applied to the multi-party

setting as well. If the overhead of this application is less than exponential (which seems

likely), then this would imply new upper bounds on general SFE.

Non-interactive blind computing

Consider the setting where the Server S wishes to evaluate the function of the Client C

on S’s data. C only learns the value of the function, and S learns nothing (not even

the function itself). This can be done by a secure evaluation of the universal circuit

[88], for example, as described in [86], and this is currently the best known method.

Using universal circuits, however, has a high overhead. One of the properties of our

GESS construction of Chapter 5 is that the evaluation of the gates of the formula is

independent of the gate semantics. It seems possible to exploit this property together

with “mangling” the wire connections of the circuit to construct more efficient solutions

to this problem.

Security of Composition of Protocols

Until very recently, in proofs of security, the execution of protocols was assumed to be

performed in relative isolation. However, in real life, a single person may simultaneously

chat, shop, bank, trade, play, and vote online. Each of these activities may require

credentials. These credentials may be correlated for the same person, further violating

the assumption that protocols are run in isolation. Moreover, failures or poor design

of some applications may affect security of other applications run by the same person.

Today’s attempts to consider security of execution in an arbitrary environment, e.g.

[23, 79, 3], are still in an early stage, and significant theoretical and practical research

effort is needed to resolve them.

Chapter 7. Summary and Future Work 145

KE

We considered KE in the specific “combined keys” setting. A number of natural gener-

alizations of this model is possible. For example, it is interesting to consider the setting,

where, instead of the storage card, the client is given a stealable but tamper-proof smart

card. We can now make an assumption that the smart card and the keys it holds cannot

be copied, and the stored keys are accessed indirectly via, for example, a signing inter-

face. Such an assumption would allow for the design of more efficient and more secure

protocol that make use of this new security feature of the storage medium.

It also seems to be interesting to address the issue of password mistyping in the

definition. Recall, in our discussion in Sect. 6.3.3, we showed that in our framework it

is not possible to model security in the presence of password mistyping. At the same

time, the more complicated Universally Composable-style of definition [23] allows for this

generality. It would be interesting to devise definitions that do not rely on the framework

of universal composability and handle password mistyping.

Bibliography

[1] William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to

sell digital goods. In Proc. EUROCRYPT 2001, pages 119–135, 2001.

[2] Joy Algesheimer, Christian Cachin, Jan Camenisch, and Gunter Karjoth. Crypto-

graphic security for mobile code. In SP ’01: Proceedings of the IEEE Symposium

on Security and Privacy, page 2. IEEE Computer Society, 2001.

[3] Michael Backes, Birgit Pfitzmann, and Michael Waidner. A general composition

theorem for secure reactive systems. In M. Naor, editor, First Theory of Cryptog-

raphy Conference, TCC 2004, volume 2951 of Lecture Notes in Computer Science,

pages 336–354. Springer-Verlag, 2004.

[4] D A Barrington. Bounded-width polynomial-size branching programs recognize ex-

actly those languages in NC1. In Proc. 18th ACM Symp. on Theory of Computing,

pages 1–5, New York, NY, USA, 1986. ACM Press.

[5] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols. In

Proc. 22nd ACM Symp. on Theory of Computing, pages 503–513, 1990.

[6] Donald Beaver. Minimal-latency secure function evaluation. In Proc. EUROCRYPT

2000, pages 335–350. Springer, 2000. Lecture Notes in Computer Science, vol. 1807.

[7] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. A modular approach to the de-

sign and analysis of authentication and key exchange protocols (extended abstract).

146

Bibliography 147

In STOC ’98: Proceedings of the thirtieth annual ACM symposium on Theory of

computing, pages 419–428, New York, NY, USA, 1998. ACM Press.

[8] Mihir Bellare, Oded Goldreich, and Anton Mityagin. The power of verification

queries in message authentication and authenticated encryption. Cryptology ePrint

Archive, Report 2004/309, 2004. http://eprint.iacr.org/.

[9] Mihir Bellare and Silvio Micali. Non-interactive oblivious transfer and applications.

In CRYPTO ’89: Proceedings on Advances in cryptology, pages 547–557, New York,

NY, USA, 1989. Springer-Verlag New York, Inc.

[10] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key exchange

secure against dictionary attacks. In EUROCRYPT 2000, pages 139–155, 2000.

[11] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In

CRYPTO ’93: Proceedings of the 13th annual international cryptology conference on

Advances in cryptology, pages 232–249, New York, NY, USA, 1994. Springer-Verlag

New York, Inc.

[12] Steven M. Bellovin and Michael Merritt. Encrypted key exchange: Password-based

protocols secureagainst dictionary attacks. In SP ’92: Proceedings of the 1992 IEEE

Symposium on Security and Privacy, page 72, Washington, DC, USA, 1992. IEEE

Computer Society.

[13] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for

non-cryptographic fault-tolerant distributed computation (extended abstract). In

STOC, pages 1–10, 1988.

[14] Ian F. Blake and Vladimir Kolesnikov. Strong conditional oblivious transfer and

computing on intervals. In Advances in Cryptology - ASIACRYPT 2004, volume

3329 of Lecture Notes in Computer Science, pages 515–529. Springer, 2004.

Bibliography 148

[15] Ian F. Blake and Vladimir Kolesnikov. Conditional encrypted mapping and compar-

ing encrypted numbers. In Financial Cryptography and Data Security Conference

2006, volume ?? of Lecture Notes in Computer Science, pages ??–?? Springer, 2006.

[16] Maria Luisa Bonet and Samuel R. Buss. Size-depth tradeoff for boolean formulae.

Information Processing Letters, 11:151–155, 1994.

[17] Maurizio Kliban Boyarsky. Public-key cryptography and password protocols: the

multi-user case. In CCS ’99: Proceedings of the 6th ACM conference on Computer

and communications security, pages 63–72, New York, NY, USA, 1999. ACM Press.

[18] V. Boyko, P. MacKenzie, and S. Patel. Provably Secure Password-Authenticated Key

Exchange Using Diffie-hellman. In B. Preneel, editor, Proceedings EUROCRYPT

2000, pages 156–171, 2000.

[19] N. H. Bshouty, R. Cleve, and W. Eberly. Size-depth tradeoffs for algebraic formulae.

In Proc. 32nd IEEE Symp. on Foundations of Comp. Science, pages 334–341. IEEE,

1991.

[20] Samuel R. Buss and Peter N. Yianilos. Secure short key cryptosystems: 40 bits are

enough. Technical report, NEC Research Institute, Princeton, NJ, 1999.

[21] Christian Cachin. Efficient private bidding and auctions with an oblivious third

party. In Proceedings of the 6th ACM Conference on Computer and Communications

Security, pages 120–127. ACM Press, 1999.

[22] Christian Cachin, Jan Camenisch, Joe Kilian, and Joy Muller. One-round secure

computation and secure autonomous mobile agents. In Proceedings of the 27th In-

ternational Colloquium on Automata, Languages and Programming, 2000.

Bibliography 149

[23] Ran Canetti. Universally composable security: A new paradigm for cryptographic

protocols. Cryptology ePrint Archive, Report 2000/067, 2000. http://eprint.

iacr.org/.

[24] Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Philip D. MacKenzie.

Universally composable password-based key exchange. In EUROCRYPT 2005, pages

404–421, 2005.

[25] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use

for building secure channels. In EUROCRYPT ’01: Proceedings of the International

Conference on the Theory and Application of Cryptographic Techniques, pages 453–

474, London, UK, 2001. Springer-Verlag.

[26] Ran Canetti and Hugo Krawczyk. Universally composable notions of key exchange

and secure channels. In EUROCRYPT ’02: Proceedings of the International Con-

ference on the Theory and Applications of Cryptographic Techniques, pages 337–351,

London, UK, 2002. Springer-Verlag.

[27] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally

secure protocols (extended abstract). In STOC, pages 11–19, 1988.

[28] T. Clancy. Eap password authenticated exchange, draft archive.

http://www.cs.umd.edu/ clancy/eap-pax/, 2005.

[29] R. Cleve. Towards optimal simulations of formulas by bounded-width programs. In

STOC ’90: Proceedings of the twenty-second annual ACM symposium on Theory of

computing, pages 271–277, New York, NY, USA, 1990. ACM Press.

[30] Ronald Cramer, Serge Fehr, Yuval Ishai, and Eyal Kushilevitz. Efficient multi-party

computation over rings. In Proc. EUROCRYPT 2003, pages 596–613, 2003.

Bibliography 150

[31] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably

secure against adaptive chosen ciphertext attack. In CRYPTO, pages 13–25, 1998.

[32] G. Di Crescenzo, R. Ostrovsky, and S. Rajagopalan. Conditional oblivious transfer

and time-released encryption. In Proc. CRYPTO 99, pages 74–89. Springer-Verlag,

1999. Lecture Notes in Computer Science, vol. 1592.

[33] Giovanni Di Crescenzo. Private selective payment protocols. In Financial Cryptog-

raphy, pages 72–89, 2000.

[34] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE

Transactions on Information Theory, IT-22(6):644–654, 1976.

[35] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography. In

Proc. 23rd ACM Symp. on Theory of Computing, pages 542–552. ACM Press, 1991.

[36] J. H. Ellis. The history of non-secret encryption. http://www.cesg.gov.uk/site/

publications/media/ellis.pdf.

[37] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for

signing contracts. Commun. ACM, 28(6):637–647, 1985.

[38] Uri Feige, Joe Killian, and Moni Naor. A minimal model for secure computation

(extended abstract). In Proc. 26th ACM Symp. on Theory of Computing, pages

554–563. ACM Press, 1994.

[39] Joan Feigenbaum. Encrypting problem instances: Or ..., can you take advantage of

someone without having to trust him? In Proc. CRYPTO 85, pages 477–488, 1985.

[40] Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for synchronous

byzantine agreement. SIAM J. Comput., 26(4):873–933, 1997.

Bibliography 151

[41] Marc Fischlin. A cost-effective pay-per-multiplication comparison method for mil-

lionaires. In RSA Security 2001 Cryptographer’s Track, pages 457–471. Springer-

Verlag, 2001. Lecture Notes in Computer Science, vol. 2020.

[42] Internet Engineering Task Force. Eap password authenticated exchange.

http://www.ietf.org/internet-drafts/draft-clancy-eap-pax-03.txt, 2005.

[43] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching

and set intersection. In Proc. EUROCRYPT 2004, pages 1–19. Springer-Verlag,

2004. Lecture Notes in Computer Science, vol. 3027.

[44] Steven D. Galbraith. Elliptic curve paillier schemes. Journal of Cryptology,

15(2):129–138, 2002.

[45] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete

logarithms. In Proceedings of CRYPTO 84 on Advances in cryptology, pages 10–18,

New York, NY, USA, 1985. Springer-Verlag New York, Inc.

[46] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting data privacy

in private information retrieval schemes. In STOC ’98: Proceedings of the thirtieth

annual ACM symposium on Theory of computing, pages 151–160, New York, NY,

USA, 1998. ACM Press.

[47] Oliver Giel. Branching program size is almost linear in formula size. J. Comput.

Syst. Sci., 63(2):222–235, 2001.

[48] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In STOC

’87: Proceedings of the nineteenth annual ACM conference on Theory of computing,

pages 218–229, New York, NY, USA, 1987. ACM Press.

[49] Oded Goldreich. Foundations of Cryptography, volume 2: Basic Applications. Cam-

bridge University Press, 2004.

Bibliography 152

[50] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random

functions (extended abstract). In FOCS, pages 464–479, 1984.

[51] Oded Goldreich and Yehuda Lindell. Session-key generation using human passwords

only. In CRYPTO ’01: Proceedings of the 21st Annual International Cryptology

Conference on Advances in Cryptology, pages 408–432, London, UK, 2001. Springer-

Verlag.

[52] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but

their validity and a methodology of cryptographic protocol design (extended ab-

stract). In FOCS, pages 174–187, 1986.

[53] S. Goldwasser and S. Micali. Probabilistic encryption and how to play mental poker

keeping secret all partial information. In Proc. 14th ACM Symp. on Theory of

Computing, pages 365–377, San Francisco, 1982. ACM.

[54] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive

proof systems. SIAM J. Comput., 18(1):186–208, 1989.

[55] L. Gong, M. A. Lomas, R. M. Needham, and J. H. Saltzer. Protecting poorly chosen

secrets from guessing attacks. IEEE Journal on Selected Areas in Communications,

11(5):648–656, 1993.

[56] Iftach Haitner. Implementing oblivious transfer using collection of dense trapdoor

permutations. In First Theory of Cryptography Conference, TCC 2004, Proceedings,

pages 394–409, 2004.

[57] Shai Halevi and Hugo Krawczyk. Public-key cryptography and password protocols.

In CCS ’98: Proceedings of the 5th ACM conference on Computer and communica-

tions security, pages 122–131, New York, NY, USA, 1998. ACM Press.

Bibliography 153

[58] Shai Halevi and Hugo Krawczyk. Public-key cryptography and password protocols.

ACM Trans. Inf. Syst. Secur., 2(3):230–268, 1999.

[59] Yuval Ishai and Eyal Kushilevitz. Private simultaneous messages protocols with

applications. In ISTCS ’97: Proceedings of the Fifth Israel Symposium on the Theory

of Computing Systems (ISTCS ’97), page 174, Washington, DC, USA, 1997. IEEE

Computer Society.

[60] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation

with applications to round-efficient secure computation. In Proc. 41th IEEE Symp.

on Foundations of Comp. Science, page 294. IEEE Computer Society, 2000.

[61] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via

perfect randomizing polynomials. In ICALP, pages 244–256, 2002.

[62] M. Kantarcioglu and C. Clifton. Privacy-preserving distributed mining of association

rules on horizontally partitioned data. In ACM SIGMOD Workshop on Research

Issues on Data Mining and Knowledge Discovery (DMKD’02), 2002.

[63] J. Kilian. Founding cryptography on oblivious transfer. In Proc. 20th ACM Symp.

on Theory of Computing, pages 20–31, Chicago, 1988. ACM.

[64] Vladimir Kolesnikov. Gate evaluation secret sharing and secure one-round two-

party computation. In Advances in Cryptology - ASIACRYPT 2005, volume 3788

of Lecture Notes in Computer Science, pages 136–155. Springer, 2005.

[65] Vladimir Kolesnikov and Charles Rackoff. Key exchange using passwords and long

keys. In Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA,

March 5-7, 2006, Proceedings, volume 3876 of Lecture Notes in Computer Science,

pages 100–119. Springer, 2006.

Bibliography 154

[66] H. Krawczyk. Skeme: a versatile secure key exchange mechanism for internet. In

SNDSS ’96: Proceedings of the 1996 Symposium on Network and Distributed System

Security (SNDSS ’96), page 114, Washington, DC, USA, 1996. IEEE Computer

Society.

[67] Eyal Kushilevitz, Yehuda Lindell, and Tal Rabin. Information-theoretically secure

protocols and security under composition. In STOC ’06: Proceedings of the thirty-

eighth annual ACM symposium on Theory of computing, pages 109–118, New York,

NY, USA, 2006. ACM Press.

[68] Sven Laur and Helger Lipmaa. Additive conditional disclosure of secrets and appli-

cations. Cryptology ePrint Archive, Report 2005/378, 2005. http://eprint.iacr.

org/.

[69] Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. In Proc.

CRYPTO 00, pages 20–24. Springer-Verlag, 2000. Lecture Notes in Computer Sci-

ence, vol. 1880.

[70] Yehuda Lindell and Benny Pinkas. A proof of Yao’s protocol for secure two-party

computation. Cryptology ePrint Archive, Report 2004/175, 2004. http://eprint.

iacr.org/.

[71] Tsutomu Matsumoto, Koki Kato, and Hideki Imai. Speeding up secret computations

with insecure auxiliary devices. In Proc. CRYPTO 88, pages 497–506, 1988.

[72] M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen

ciphertext attacks. In STOC ’90: Proceedings of the twenty-second annual ACM

symposium on Theory of computing, pages 427–437, New York, NY, USA, 1990.

ACM Press.

[73] Moni Naor and Kobbi Nissim. Communication preserving protocols for secure func-

tion evaluation. In STOC ’01: Proceedings of the thirty-third annual ACM sym-

Bibliography 155

posium on Theory of computing, pages 590–599, New York, NY, USA, 2001. ACM

Press.

[74] Moni Naor and Benny Pinkas. Distributed oblivious transfer. In Proc. ASIACRYPT

2000, volume 1976, pages 200–219. Springer-Verlag, 2000. Lecture Notes in Com-

puter Science, vol. 293.

[75] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In SODA ’01:

Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms,

pages 448–457, Philadelphia, PA, USA, 2001. Society for Industrial and Applied

Mathematics.

[76] Moni Naor, Benny Pinkas, and Reuben Sumner. Privacy preserving auctions and

mechanism design. In 1st ACM Conf. on Electronic Commerce, pages 129–139, 1999.

[77] Arvind Narayanan and Vitaly Shmatikov. Fast dictionary attacks on passwords

using time-space tradeoff. In ACM Conference on Computer and Communications

Security, pages 364–372, 2005.

[78] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity

classes. In Proc. EUROCRYPT 99, pages 223–238. Springer-Verlag, 1999. Lecture

Notes in Computer Science, vol. 1592.

[79] Birgit Pfitzmann and Michael Waidner. Composition and integrity preservation of

secure reactive systems. In CCS ’00: Proceedings of the 7th ACM conference on

Computer and communications security, pages 245–254, New York, NY, USA, 2000.

ACM Press.

[80] Benny Pinkas and Tomas Sander. Securing passwords against dictionary attacks. In

CCS ’02: Proceedings of the 9th ACM conference on Computer and communications

security, pages 161–170, New York, NY, USA, 2002. ACM Press.

Bibliography 156

[81] M. Rabin. How to exchange secrets by oblivious transfer. Technical Report TR-81,

Harvard Aiken Computation Laboratory, 1981.

[82] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of

knowledge and chosen ciphertext attack. In CRYPTO ’91: Proceedings of the 11th

Annual International Cryptology Conference on Advances in Cryptology, pages 433–

444, London, UK, 1992. Springer-Verlag.

[83] R. L. Rivest, A. Shamir, and L. M. Adelman. A method for obtaining digital

signatures and public-key cryptosystems. Technical Report LCS/TM-82, MIT, 1977.

[84] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures

and public-key cryptosystems. Commun. ACM, 26(1):96–99, 1983.

[85] Phillip Rogaway. The round complexity of secure protocols. PhD thesis, MIT, 1991.

[86] Tomas Sander, Adam Young, and Moti Yung. Non-interactive cryptocomputing for

NC1. In Proceedings 40th IEEE Symposium on Foundations of Computer Science,

pages 554–566, New York, 1999. IEEE.

[87] Victor Shoup. On formal models for secure key exchange. Technical Report RZ 3120

(#93166), IBM, 1999.

[88] Leslie G. Valiant. Universal circuits (preliminary report). In STOC ’76: Proceedings

of the eighth annual ACM symposium on Theory of computing, pages 196–203, New

York, NY, USA, 1976. ACM Press.

[89] A. C. Yao. Protocols for secure computations. In Proc. 23rd IEEE Symp. on Foun-

dations of Comp. Science, pages 160–164, Chicago, 1982. IEEE.

[90] A. C. Yao. How to generate and exchange secrets. In Proc. 27th IEEE Symp. on

Foundations of Comp. Science, pages 162–167, Toronto, 1986. IEEE.

