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Visual body signals are designated body poses that deliver an application-specific message. Such signals are widely used
for fast message communication in sports (signaling by umpires and referees), transportation (naval officers and aircraft
marshallers), and construction (signaling by riggers and crane operators), to list a few examples. Automatic interpretation
of such signals can help maintaining safer operations in these industries, help in record-keeping for auditing or accident
investigation purposes, and function as a score-keeper in sports. When automation of these signals is desired, it is traditionally
performed from a viewer’s perspective by running computer vision algorithms on camera feeds. However, computer vision
based approaches suffer from performance deterioration in scenarios such as lighting variations, occlusions, etc., might
face resolution limitations, and can be challenging to install. Our work, ViSig, breaks with tradition by instead deploying
on-body sensors for signal interpretation. Our key innovation is the fusion of ultra-wideband (UWB) sensors for capturing
on-body distance measurements, inertial sensors (IMU) for capturing orientation of a few body segments, and photodiodes
for finger signal recognition, enabling a robust interpretation of signals. By deploying only a small number of sensors, we
show that body signals can be interpreted unambiguously in many different settings, including in games of Cricket, Baseball,
and Football, and in operational safety use-cases such as crane operations and flag semaphores for maritime navigation, with
> 90% accuracy. Overall, we have seen substantial promise in this approach and expect a large body of future follow-on work
to start using UWB and IMU fused modalities for the more general human pose estimation problems.

CCS Concepts: • Human-centered computing→ Ubiquitous and mobile computing systems and tools; • Hardware
→ Sensor applications and deployments.
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1 INTRODUCTION
Visual body signals, where individuals communicate or broadcast messages using hand gestures or specific body
postures, are important for accurate and unambiguous message delivery in a variety of fields, such as sports,
construction, and transportation. It might come as a surprise that equipment worth billions of dollars and lives of
millions of people directly or indirectly depend on accurate delivery and interpretation of body signals even today.
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(a) (b) (c) (d)
Fig. 1. Visual body signals are ubiquitous; examples from (a) construction industry (b) sports (c) naval operations (d) aircraft
marshalling.
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Fig. 2. The overall envisioned ViSig system.

Some examples of body signals are shown in Fig. 1. Visual body signal are directly used by over 600,000 people
on a regular basis in the United States alone. According to the 2021 Labor Force Statistics [11], this includes
around 360,000 construction equipment operators, around 158,000 aircraft pilots and flight engineers, around
31,000 airfield operations specialists, around 51,000 crossing guards and flaggers, and around 17,000 umpires
and referees. There are several reasons why body signals prevail even to this day and age: (1) Body signals are
language agnostic and universal; (2) They can be used in very loud environments such as at construction sites and
at airports, where audio communication can be challenging; (3) Body signals work even at fairly large distances
without requiring a communication channel to be established beforehand, such as in the case of pilots taxiing at
an airport.
In this work, we plan to create a system that can automatically interpret the signaller’s actions. These

interpreted actions can be stored in memory, or used to provide real-time feedback to the signaller, or make
the signal interpretation available to the receiver of the signal, depending on the exact use-case. For example,
in the case of aircraft marshalling interpreted actions can be stored for record-keeping and auditing purposes
which can be particularly helpful during accident investigations. Immediate feedback to the signaller will be
helpful in the construction industry to ensure correct signals are being given and to allow quick correction of
errors. Finally, broadcasting the signal’s interpretation could help automatic score keeping in sports to keep the
audience informed based on the umpire signals. While automatic interpretation of body signals would simplify
score keeping in sports which might be thought of as a mere convenience, in the context of construction and
transportation, it can enable safer operations and avoid catastrophic accidents [1, 23, 45] caused due to signaling
errors or misinterpretation. Due to their critical nature and importance, body signals are often standardized by
organizations such as the International Civil Aviation Organization [52] and Occupational Safety And Health
Administration (OSHA) [65]. While body signals are irreplacable, non-invasive and contact-free technology
interventions can increase their effectiveness, and improve record-keeping, accident investigations, and auditing.

We envision a system that captures body signals using on-body distance measurement sensors (see Fig. 2) and
transmits their meaning to the intended recipient, be it broadcasting on TV (for sports), or to airplane pilots, or
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crane operators, or even just as a feedback to the signaling person, as confirmation that their intended signal was
indeed conveyed through the action correctly (see Fig. 2). Most existing works in this space attempt to automate
interpretation of signals from a viewer’s perspective, using computer-vision based analysis [30, 80]. In this work,
we break with tradition by instead using on-body sensors to interpret the signals—a starkly different approach
to solve the signal interpretation problem. We believe, doing so provides significant simplifying benefits: (1)
the signals are captured at their source where corruption of the signal is least-likely; (2) the person signaling
is already instrumented using on-body sensors, meaning we do not need to identify the signaling person from
a crowd as camera-based systems require; and (3) distance from the capturing cameras and occlusions do not
hinder detection when signals are captured directly on the person’s body.

Others have also proposed on-body sensor solutions to tackle the action recognition problem, most of which
concentrate on inertial and magnetic sensors (IMU) [32, 39, 51, 62, 86]. IMUs are indeed useful to obtain orientation
of body joints which results in a skeletal estimation of the human pose. However, using IMUs alone is inherently
limiting since they can only capture orientation of individual skeletal points and not where these points are with
respect to the rest of the body. For example, an IMU on the wrist cannot distinguish between parallel positions of
the hand which are similarly oriented. Furthermore, orientation estimation can be erroneous when the person
is moving or near magnetic materials (a common occurrence in locations where body signals are used, e.g.,
construction sites). Such errors occur because orientation calculations depend on two external forces—the earth’s
acceleration due to gravity, and the earth’s magnetic field—whose measurements can be influenced by the user’s
movements and other magnetic fields in the vicinity. Therefore, IMUs alone cannot provide a robust solution
to identify body signals. To make fundamental innovations in this field, it is important to take a step back and
rethink the problem space of visual body signal identification from first principles.
At a high level, body signal interpretation can be thought of as being a subset of the more general human

activity recognition (HAR) problem. In fact, identifying body signals is a simpler problem since only a small set of
well defined gestures are performed when signaling, and inter-individual variations are minimal. However, this
does not mean that automatic interpretation of body signals is trivial. We show in this work that several challenges
must be overcome to achieve our goal and, in doing so, we embark on exploring new ways of capturing a person’s
pose. Challenge 1: Human signals comprise many different actions made using a combination of independent
movements of appendages including hands, legs, fists, and fingers. How can we use a small number of sensors to
capture this multi-dimensional action space? Challenge 2: All sensors have shortcomings; some sensors allow
fast interpretation of the signal, while others are robust over a long period of time, some are affected by the
environment while others are affected by the body itself. How can we then produce a solution that identifies
signals in real-time, but also works over a substantial amount of time without drifting or accumulating errors?
Challenge 3: Applications differ in the number and shape of body signals. Can we devise a general software
pipeline? How can we enable numerous applications without having to redesign the entire software solution
stack from scratch for every application?
We believe the answer to the first challenge lies in a careful choice of on-body sensors. We take inspiration

from the simplicity of stick-figure icons (see Fig. 3 for some examples) expressing the signals we wish to interpret,
and enlist the broad distinguishing factors between different signals: (1) the distance of the user’s hands and feet
from the torso, (2) the dynamic motion performed in some of the signals, (3) the orientation of the hand and (4)
the finger configuration. Taking a first-principles approach we explore the appropriate sensors to detect these
distinguishing factors.

Tomeasure the distance between various parts of the body, we employ ultra-wideband (UWB) radios, performing
wireless ranging with each other at strategic points on the body. This covers the first two distinguishing factors:
body-distances and dynamic motions. However, we observe that distance measurements alone are not sufficient
to distinguish between certain signals. Consider for example the difference between “raise boom” and “lower
boom” in Fig. 3 (crane operator signals). The only difference is the orientation of the hand. We therefore employ
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Fig. 3. Example body signals used in sports and the construction industry.

IMUs to obtain the orientations. Finally, gestures of the fingers are not captured by any of the other sensors. We
employ photodiodes at the base of the fingers to distinguish between different finger configurations. Together,
these sensors address Challenge 1. It is natural to wonder, will it be cumbersome to wear these on-body sensors?
Paying attention to the domain where these signals are used is important to answer this question. The signallers
are often already wearing specially designed gear including heavy-duty shoes, helmets, high-visibility vests and
so on. Therefore, we believe that the additional light-weight on-body sensors will not be an increased burden for
the users.
The combination of sensors we employ work in concert to achieve our desired goals. IMUs and UWBs

complement each other when used together. While IMUs are affected by the magnetic noise in the environment,
UWB distance measurements remain stable. Similarly, in cases where UWB signals are blocked by the human
body and produce erratic distance reading, IMUs can verify that the user is actually static. Finger configurations
obtained from photodiodes need to be assessed only in specific poses. UWB and IMUs together act as a filter to
enable processing of the photodiode signals only when relevant poses are detected. Further, UWB radios serve a
dual-purpose: sensing and communication. UWB wireless packets simultaneously measure distances while also
communicating IMU and photodiode values to the outside world. Thus together, UWB, IMU, and photodiode
sensors complement each other’s shortcomings and address Challenge 2.
Finally, we develop an integrated software pipeline that first sanitizes UWB distance measurements through

guidance from IMU sensors, and then extracts a set of features that describe both static poses and dynamic
movements with a neural network. Our learner trains on domain specific body signals to appropriately weigh
input features, resulting in a class label. Challenge 3 is addressed by decoupling the domain specific class labels
and training, from the overall data sanitization and feature extraction. Further, the wearable sensors that we have
designed can be thought of as personal belongings. While the underlying mechanisms for interpretation of body
signals must be general, the user’s sensors can be trained to interpret signals from just their own user, just like
personal assistance tools such as Amazon Alexa, or Google Home, are routinely trained to interpret the home
owners’ voices [42, 56].
We call our on-body system for interpreting visual body signals, ViSig. Our contributions are:

(1) A unique sensor system that captures body signals.
(2) A fast software pipeline to obtain pair-wise distance measurements and transmit them along with IMU and
photodiode data to the outside world.
(3) A machine learning based fusion algorithm to detect and identify the obtained body signals based on UWB,
IMU, and finger configuration data.
The rest of this paper is organized as follows. We first present a primer that describes background material on
IMU orientation and its issues, and presents a background on UWB ranging. We then discuss ViSig’s system
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design starting with a design overview, followed by the specifics. We then describe our implementation using
custom built UWB + IMU sensors and flexible PCBs for finger signals, followed by our experimental setup and
evaluation through an IRB approved user study.

2 PRIMER: IMU, UWB BACKGROUND
To achieve the desired performance in body signal interpretation through wearable sensing, it is important to
fully understand how various body signals are differentiated and the limitations of current solutions.
In the field of anthropometry, a visual body signal is uniquely defined by state parameters including angles,

velocity, acceleration, rhythmic pattern, space envelope, etc., of joints, bones and muscles of the human body [25].
Because of the complexity of obtaining all the state parameters, current solutions simplify it to only observing
the orientation of a few skeleton joints of the human body by mounting IMUs at strategic points on the body.
Of course, it is not desirable to exhaustively mount sensors on every joint since it makes the system quite
cumbersome. Therefore, one of the research focuses in this area is to reduce the number of mounted on-body
sensors. For instance, [33, 78] have made it possible to recover simple human poses with only 6 IMUs on body,
improving upon another work [61] that uses 17 IMU sensors. However, we argue that with sparse sensors, an
IMU-only solution is not sufficient to perform visual signal interpretation effectively. To verify this claim, it is
essential to understand how IMUs help to understand the human pose.

2.1 Inertial Measurements
A 9-DOF IMU includes accelerometer, gyroscope, and magnetometer which measure acceleration, angular velocity,
and magnetic strength in its local reference frame (LRF). Because the measured acceleration is influenced by
gravity, i.e., a static IMU should observe an acceleration equal to the earth’s acceleration due to gravity (𝑔0), the
direction of 𝑔0 can function as an external anchor to calculate the orientation of IMU in the global reference
frame (GRF). Similarly, as the magnetic strength is influenced by the geomagnetic field𝑚0, the direction of𝑚0
functions as the second anchor. With two anchors, the orientation of IMU in GRF can be easily obtained through
vector orthogonalization. IMU-only based signal interpretation derives orientation via the above process for each
mounted IMU, and uses the obtained orientation to infer the signal label. However, we find that such inferring
process faces two issues: orientation error, and body signal ambiguity.
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Fig. 4. (a) Wrong heading because of the magnetic field. (b) An IMU-only approach to pose estimation can lead to ambiguity.

2.1.1 Orientation Error. The above process for calculating orientation in GRF is based on the theoretical assump-
tion that the measured acceleration and magnetic strength is only influenced by gravity and geomagnetic field,
which does not hold in practice. Due to environmental influence on magnetometers, the calculated orientation
has a non-negligible errors, especially at construction sites or at airports where heavy machinery is commonplace.
ViSig ignores magnetometer readings and only relies on the gravity vector to avoid corruption due to magnetic
fields.
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Fig. 5. Two way ranging protocol [34, 47].

2.1.2 Signal Ambiguity. Another issue of IMU-only approaches is the inherent ambiguity in describing the human
pose with sparse IMUs. An IMU-only approach assumes the position of body joints can be uniquely determined
by the IMUs, which does not hold when IMUs are sparse. For example, with a single IMU mounted at the wrist,
one cannot tell the difference when raising the hand overhead and placing the hand beside the torso if the hand
is upright in both cases (see Fig. 4(b)). To overcome these hurdles in use of IMUs, ViSig couples acceleration from
IMU with distance measurements using UWB. We describe UWB ranging next.

2.2 UWB Ranging
A pair of UWB nodes can measure the in-air wireless time of flight (ToF) and multiply it by the speed of light to
determine the distance between them. Benefiting from its 1GHz bandwidth, UWB generates extremely narrow
pulses which can measure ToF at a sub-nanosecond level, making it possible to range with only decimeter-level
error [36]. However, in spite of the high precision in measuring ToF, the inherent clock difference between two
UWB transceivers would yield a 10𝑚𝑠–100𝑚𝑠 error, unless the clock offset and drifts are compensated. Intelligent
ranging schemes are devised to perform this compensation, which we describe next.
To remove the effect of clock difference, a pair of UWB nodes perform asymmetric double-sided two way

ranging (TWR) as specified in IEEE 802.15.4z [3, 34]. The mechanism of TWR is shown in Fig. 5. Specifically,
Device 1 will send a Poll message to initiate a ranging request. When Device 2 receives the Poll message, it will
reply with a Resp message to complete one round of ranging. In this process, Device 1 records the time duration
𝑅1 between Poll sending and Resp reception, and Device 2 records the time duration 𝐷2 between Poll reception
and Resp sending. Finally, Device 1 will reply with a Final message to complete a second round of ranging. Device
1 records the time 𝐷1 between Resp reception and Final sending, and Device 2 records the time 𝑅2 between Resp
sending and Final reception. Together the two rounds eliminate clock offsets and clock drifts [47] using the
equation shown in Fig. 5.
When more than one UWB device pair is involved, this process must be repeated for each pair. In ViSig, we

use an improved approach to significantly increase the ranging update rate in ViSig.

3 SYSTEM DESIGN

3.1 Design Overview
ViSig aims at using a small number of on-body sensors that capture sufficient information to understand the position
and the orientation of a few key body joints. These positions and orientations lead to identification of the body
signals. The core innovation in ViSig is to estimate the body pose through direct distance measurements between
a few points on the body and fusing these with inertial orientation and light sensing. The distance measurements
help localize the hands (2 body-joints at the wrists), feet (2 body-joints at the ankles), and the head (1 end-point
on top of the head), with respect to the torso (1 body-joint on the waist) representing an approximate frame of
the body through a total of 6-points. The choice of these 6 points is not arbitrary, and neither is the number of
points we choose to capture—5 of the points capture the extremities of the human body with 1 central reference.
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Through pair-wise ranging, we obtain 15 non-symmetric pair-wise distance measurements providing sufficient
information to localize all the points with respect to the central reference in 3D.
All distances are measured using UWB-based wireless ranging. We thus obtain a distance matrix which

measures the inter-node distances. Our choice of UWB allows ViSig to accurately calculate the inter-node
distance at decimeter-level precision [53], owing to the large bandwidth signals employed by UWB radios. Since
the inter-node distances and per-joint positions are highly correlated, the distance matrix serves as a descriptive
feature to understand the per-joint position. The introduction of the distance matrix makes ViSig inherently
different from existing solutions, which rely solely on IMUs for determining human pose. Compared to IMU-only
solutions, ViSig addresses the ambiguity introduced when the same orientation occurs at different positions,
and is robust to the error caused by magnetic field variations. Of course, whereas ViSig offloads the position
inference from IMUs to UWB, IMU is still useful in determining the orientation of the joint. Hence we mount
one IMU on each wrist. Note that IMUs and UWBs on the wrist are co-located hence no additional space is
required for mounting IMUs. When using IMU, ViSig does not use the magnetometer for computing wrist
orientation since the magnetometer can be easily corrupted by nearby ferromagnetic materials, particularly in
the transportation and construction domains, due to prevalence of large metal objects, motors, and electromagnets.
Finally, neither UWB nor IMU can estimate finger positions, which are important in certain applications, such
as differentiating between “Bye” and “Out” in cricket umpire signals. To interpret finger signals, we mount
photodiodes on fingers which capture varying amounts of ambient light depending on the finger positions.

Fig. 6 shows data acquisition and processing pipeline of ViSig. At a high level, the design of ViSig can be split
into data acquisition phase and signal interpretation phase. In the data acquisition phase, ViSig fuses the raw
data of different modalities and transmits it to the processing computer in real-time. However, streaming data in
real-time is non-trivial because the standard TWR used by UWB incurs significant delay. While the individual
UWB packet rate can be as high as 300𝐻𝑧, delay increases quadratically as the number of nodes increase. To
tackle this issue, ViSig adopts N-way ranging [28] to re-use the timings of previously received packets for ranging.
Such a protocol is particularly applicable for ViSig since the number of UWB devices performing all-to-all ranging
is fixed and these devices are all nearby. In the body-signal interpretation phase, the distance matrix and the
IMU data are first fed into a body signal detection module. This module functions as an on/off switch or a filter
which judges if there is a meaningful body signal in the current data stream. If this module returns “True”, the
distance matrix and the IMU data will be further fed into a model consisting of LSTM layers and fully-connected
layers for primary signal interpretation. Of course, as the fingers cannot be sensed by the UWB or the IMU,
there remains ambiguity in the finger-related signals. To remove this ambiguity, ViSig adopts a finger signal
recognition (FSR) algorithm to distinguish the signals with the same body pose but different finger states. Finally,
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the signal interpretation phase generates a vector of probabilities that the given data corresponds to a certain
signal and returns the signal with the highest probability as the output.

3.2 Fast Data Collection: N-way Ranging
Real-world signal interpretation applications have a strict real-time demands. ViSig combines together the
distance from UWB transceivers, IMU data and light intensity from photodiodes as data streams, in which UWB
communication is the bottleneck for time efficiency. In this section, we first discuss the time efficiency issue of
standard TWR for multiple UWB pairs. Then, we show how ViSig employs the idea of N-way ranging, briefly
introduced1 by [28], as an N-way time transfer method (NWTT), to significantly reduce the time delay.

As discussed in Section 2, the standard TWR requires 3 messages to perform ranging between one device pair.
ViSig requires the computation of the 3D locations of 6 on-body UWB devices. Performing all-to-all distance
measurements creates 15 independent equations allowing us to locate all devices in 3D space with respect to
a central node on the waist. Standard TWR would require a total of 3𝑛(𝑛 − 1) messages to obtain a fully-filled
distance matrix for 𝑛 nodes. For a 6-node UWB transceiver system, the average time it takes to obtain this distance
matrix with standard TWR is ≈ 316𝑚𝑠 (3𝐻𝑧); too slow to extract motion features of some dynamic body signals.

To increase the update rate, we require a ranging protocol that will reduce the number of messages exchanged
to perform all-to-all ranging. While this is a difficult problem in general (due to wireless reachability, collisions,
etc.), in our case, where the number and IDs of nodes are fixed, and nodes are close to each other on the user’s
body, we can exploit time division multiplexing (TDM) allowing UWBs take turns in transmitting the data.
Given the feasibility of TDM, we adopt NWTT to significantly reduce the ranging time. NWTT makes two key
improvements: (1) Instead of specifying a certain receiver ID, each UWB node broadcasts its message to all other
nodes in its turn. (2) When transmitting the message, NWTT does not explicitly specify the message type (Poll,
Resp, Final). The reception and sending time of every message will be recorded and communicated in the ranging
system. Fig. 7 shows a typical timing diagram of NWTT. We use 𝑀𝑠𝑔(𝑆𝑟𝑐𝐼𝑑, 𝑆𝑒𝑞) to identify a message in the
system. Node 1 broadcasts a message 𝑀𝑠𝑔(1, 1) to all the nodes. When the other nodes receive 𝑀𝑠𝑔(1, 1), the
next node 2 will take its turn to broadcast a message𝑀𝑠𝑔(2, 1). Note that𝑀𝑠𝑔(2, 1) will serve as both a reply to
the received𝑀𝑠𝑔(1, 1) to node 1 (like a Resp), and also a new Poll message to other nodes. When all the nodes
send out a message, one round is complete at which time each pair should complete Poll-Resp round of ranging.
Then node 1 starts a new round by sending a new message𝑀𝑠𝑔(1, 2). Similar to the previous round,𝑀𝑠𝑔(1, 2)
serves as both the Final message to previously received𝑀𝑠𝑔(2, 1),𝑀𝑠𝑔(3, 1),· · · and a new Poll message. By now,
node 1 has completed the full two way ranging with all the other nodes. For example,𝑀𝑠𝑔(1, 1),𝑀𝑠𝑔(2, 1) and
𝑀𝑠𝑔(1, 2) completes the two way ranging between node 1 and 2.
The time complexity of ranging with NWTT is 𝑂 (𝑛) as it takes only 𝑛 messages to perform all-all ranging

on average, far more efficient than naively performing TWR between every device-pair, which has 𝑂 (𝑛2) time
complexity. By applying the N-way time transfer method, the theoretical update rate increases from 3𝐻𝑧 to
45𝐻𝑧. This enables collecting sufficient data to accurately classify body signals in real-time. In our experiments,
we set data rate to 16Hz to balance real-time performance, power consumption, and compensate for the longer
UWB packets when they carry IMU data.

3.3 Body Signal Detection
We now present the system design for automatic detection of body signals, which demarcates the time a body
signal occurs. In many application domains, additional mechanisms such as whistle blowing in football, or a
1[28] provides a sketch of NWTT in slide format. To fully deploy the protocol, we had to fill in the gaps in its description. We describe details
of NWTT implementation for completeness. While we do not claim NWTT as our contribution, details of the deployment we provide are not
available elsewhere in the literature as far as we can tell.
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button press is already used for demarcating a body signal. Those remain applicable in ViSig as well, but we wish
to explore the harder problem of automatic body signal detection, only based on the sensors we use.
The distance matrix, IMU data, and light intensity collected by each sensor are streamed to a processor

continuously as time-series data. As the raw data are collected continuously, the data stream may contain many
irrelevant non-signal actions; we need to first determine the existence of a valid body signal and extract it from
the data stream. However, such signal detection is challenging as the space of irrelevant actions is unbounded. It
is extremely difficult, if not impossible, to include every possible non-signal action in the dataset to make the
model robust. Simple binary classification with a learner leads to high false positive rate. One set of solutions to
address infinite space of unknown non-signal actions is novelty detection techniques, such as one-class SVM [66]
and support vector data description (SVDD) [63, 72]. They employ a hyperplane or a hypersphere to make the
space of positive class as compact as possible. One issue in employing these techniques is that they train on only
positive classes. However, in some body signal applications, signals can have variance. Therefore, using one class
to train the model in body signals produces significant false negatives. For instance, to signal “out" in cricket,
the umpire needs to raise an arm and stretch out one finger, but there is no strict rule about how high the hand
should be raised. An unsupervised novelty detection model can easily mis-classify such variations.

To address this issue, ViSig employs a supervised neural network to train a binary classifier to perform signal
detection. We follow the idea of SVDD to use a hypersphere to separate different classes. The time-series distance
matrix and IMU data are firstly fed into an encoder which learns useful feature representations of the raw physical
data. This encoder tries to separate signals and non-signals based on their distances to the origin: signals are
closer to the origin while non-signals are farther. To avoid high false positive rate in unseen non-signal actions,
ViSig creates a soft boundary buffer between body signals and non-signal actions in the encoded feature space
(as shown in Fig. 8). The purpose of this soft boundary buffer is to leave space for unseen non-signal actions or
body signal variations. The model is trained to keep all the body signal samples inside the inner boundary and all
the non-signal samples outside the outer boundary. Specifically, for input time-series data 𝑥 in the input space X
and its label 𝑦 indicating whether this is a signal, let 𝜙 (𝑥 ;𝑤,𝑦) : X → F be a temporal neural network which
encodes the raw data to some output feature space. The objective of ViSig’s signal detection is

min
𝑤

𝑛∑︁
𝑖=1

(max{𝜙2 (𝑥 ;𝑤,𝑦 = 1) − 𝑅2
𝐼 ), 0}) + (max{𝑅2

𝑂 − 𝜙2 (𝑥 ;𝑤,𝑦 = 0)), 0}), (1)

where 𝑅𝐼 , 𝑅𝑂 (satisfying 𝑅𝐼 < 𝑅𝑂 ) are the inner radius and outer radius of the soft boundary buffer. Once the model
is trained, signals will mostly aggregate inside the inner boundary while non-signal actions will be distributed
outside the outer boundary. ViSig uses an application-specific threshold 𝜌 to judge whether a time-window
sample incorporates a valid signal.
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3.4 Body Signal Classification
After ensuring the existence of a body signal in the current data stream, ViSig will segment it into fixed-length
sliding time windows, and feed them into a classification model. However, should we feed all the data (distance
matrix, IMU, light intensity on finger) directly to one classification model? In an application-oriented view, the
interpretation of body signals is frequently a two-part process: (i) determine the position and the orientation of
main body joints and (ii) track finger pose to resolve the ambiguity if two signals are only different in finger
configuration. Thus, on-finger light intensity is separate from other inputs. In this section, we will firstly focus
on how to obtain a classification with only UWB and IMU data.

3.4.1 Avoiding Distance Errors Due to Body Blocking. The typical short-distance ranging precision of UWB in a
line-of-sight (LOS) scenerio is about 10cm [36]. For our application domain, in theory, as most body signal sets
ensure sufficient inter-class pose difference, 10𝑐𝑚 error in the distance should suffice for the classification task.
However, in practice, the human body can cause strong radio-shielding [54], effectively blocking the direct signal
path between a pair of UWBs. When blocking occurs, the measured distance is actually the in-air distance of first
multipath, which is larger than the ground-truth direct distance. For instance, in the “short run” cricket signal
(see Fig. 9), the distance between left wrist and right wrist is occasionally blocked by the torso. This leads to an
overestimation of the distance since UWB receivers detect a later path and treat it as the first path.
We ask the question: How can we correct these intermittently incorrect distance measurements in our specific

setting? Two key observations are likely to help perform these corrections: (1) any real change in distance
can only result from physical movement which should be corroborated by the IMU sensors; (2) the measured
distance can never be lower than the direct path, since this is the fastest that wireless signals can travel. These
observations lead to a detect-and-then-correct approach. We observe that a key feature indicating signal blocking
is intermittent distance overestimation as shown in Fig. 9, which results from the near-threshold direct path
power and slight joint motion when performing a ranging measurement. To avoid confusing these intermittent
distance overestimations with a dynamic signal which inherently has distance variance (e.g., “deadball” in cricket
umpire signal), ViSig first checks the acceleration in the IMU data to classify the body signal as static or dynamic.
Then ViSig calculates the distance variance, var(𝑑𝑖 𝑗 ), between UWB nodes 𝑖 , and 𝑗 , in a fixed time window for
static body signals. If var(𝑑𝑖 𝑗 ) is larger than a threshold, ViSig flattens the top 50% samples to the mean distance
in this time window, based on the key observation (2) above that direct path-length is always smaller than any
multi-path.

3.4.2 Signal Interpretation Model. Then UWB distances and IMU are fed into signal interpretation model. Only
the streaming data that have been classified as containing a body signal by the signal detection module, will be
considered for classification. As mentioned before, one of the key benefits of fusing distance and IMU features is
that joint features expose more details to understand the skeletal pose than using either of the modalities alone.
Therefore, compared to existing work [14, 29, 51], ViSig uses a much more simplified architecture to extract
features. Specifically, ViSig employs a neural network composed by a Long Short-term Memory (LSTM) layer
followed by two fully-connected layers. The hidden dimension size of the LSTM layer is set to 128. This LSTM
layer is used to extract temporal features. The outputs of the LSTM layer are then fed into two fully-connected
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layers to be encoded into feature space. A softmax layer is concatenated at the end to output a 𝑘-dimension
vector which gives the probability that the given input describes a certain body signal (𝑘 signals in all). We use
mean-square-error (MSE) of the predicted class as the loss function.

3.5 Finger Signal Recognition
Apart from the body signals identifiable through the 6 key body-points, many body signals also use different
finger signals to further differentiate signals. For instance, a baseball umpire will use the fingers to count the
number of balls and strikes pitched for the current batter. In the crane signal, one will open and close the four
fingers to additionally indicate "lower/raise the load". However, finger configuration is not covered by either the
UWB or IMU modalities. How can we correctly detect the motion of the fingers without incurring too much physical
overhead? Recent advances in wearable finger tracking includes embedding IMU, flex or EMG sensors [6, 8, 10, 43]
to sense the motion of the fingers. While existing solutions are successful in tracking fine-grained finger motion,
they rely on complicated models for training and regression on large amounts of observed data, or they need
expensive on-finger sensors to detect the state of the fingers.
To simplify the process of finger signal recognition, we make an observation that finger signs that we are

concerned with can be reduced to understanding the “stretched” and “closed” states of each finger. For example,
finger sign “two” is usually represented by stretching out index finger and middle finger. Based on this observation,
we mount 5 tiny photodiodes at the root of each finger. Due to its miniaturized size, the photodiodes can be
either mounted on gloves or embedded on accessory rings without affecting the user experience. The principle
behind using photodiodes is quite intuitive: when a finger is stretched out, the photodiode will receive more
ambient light than when a finger is closed. By establishing a threshold on light intensity, we can judge whether a
finger is closed or not. Of course, different lighting conditions can cause any fixed threshold to fail. Therefore, we
also attach an additional photodiode on the head 2 which is used as the reference ambient light level (𝐼𝑟𝑒 𝑓 ). As
the head area is less likely to be blocked, the on-head photodiode can reliably track current ambient light. Fig. 10
shows the light intensity of each photodiode (𝐼𝑓 𝑖𝑛) when performing "zero", "two" and "five" with finger signs.
Evidently, photodiodes receive little light when the fist is closed for signalling zero. For “two” and “five”, we can
observe an increase in the light intensity of corresponding stretched fingers.

With the on-finger and on-head photodiodes, ViSig performs finger signal recognition as follows: ViSig firstly
takes the label output from the process in Section 3.4. If multiple body signals correspond to this label, ViSig
calculates relative light intensity 𝐼𝑓 𝑖𝑛

𝐼𝑟𝑒𝑓
for each finger to form a quintuple. Then ViSig discretizes each finger’s

state into a binary array 𝐿 = {0, 1}5
𝑖=1 with empirically-set threshold and determines the final output based on

the minimum hamming distance from known finger configurations. Note that here the threshold varies under
different ambient light. We empirically calculate the optimal threshold setting under different light intensity in
Section 5.5. For the tested signal sets in this paper, binary finger state is sufficient to distinguish different visual
signals. Of course, signal sets heavily dependent on finger poses (e.g., ALS sign language [92]) may require more
sophisticated models for classification. Such applications are out of the scope of this work. One final challenge
remains due to the large dynamic range of lux values in full sun compared to those indoors. We tackle it by
simply reducing the incident light using a translucent tape on the photodiode when used in bright sun.

4 IMPLEMENTATION
Our real-world prototype comprises 6 UWB DWM1000 nodes [4], each connected to a Cortex M0 microcontroller.
These 6 nodes are mounted on the waist, left wrist, right wrist, left ankle, right ankle, and the head, as shown in
Fig. 11. The two nodes on the wrist also host an ISM330DHCX 6-DOF inertial sensor (accelerometer+gyroscope).
We calibrate the distances for UWB device by minimizing the Euclidean Distance Matrix error [5]. For IMUs, we
2This additional photodiode can be packaged with the head-mounted UWB/IMU sensor required for body signal classification.
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Fig. 12. ViSig’s processing pipeline in action on a real-world like
umpire movements scenario.

calibrate the gyroscope readings by removing the zero bias when the sensor is static. Additionally, we mount 5
photodiodes on a pair of gloves to detect stretched or closed state of the fingers. The photodiodes are connected
to the on-wrist sensor through a custom manufactured flexible PCB specifically designed for this work (will be
open-sourced).
UWB nodes, IMU, and photodiodes simultaneously collect and stream data to the microcontroller. Because

IMU and photodiodes stream much faster than UWB, we first perform resampling to align the data rate for each
modality. UWB nodes have the slowest data rate due to the overhead in performing NWTT. We set the data
transmission rate to 110Kbps, and center frequency to 4𝐺𝐻𝑧. Under this setting, the time to transmit a packet
is approximately 3𝑚𝑠 . In the practical implementation, we additionally insert a guard time interval of 7𝑚𝑠 to
ensure transmission reliability and allow for processing delays. Hence, it takes 6 × (3 + 7) = 60𝑚𝑠 to perform a
full all-all ranging with our NWTT protocol, resulting in a practical data collection rate of 16Hz. For IMU, we set
the sampling rate to 80𝐻𝑧. We embed 5 consecutive IMU entries in a single UWB packet so that the data rate can
be matched. For the photodiodes, we embed only one entry in a UWB packet for each photodiode. All the data
are collected by the M0 microcontroller and communicated through UWB to each other. These packets are also
overheard by a nearby UWB eavesdropper device which does not participate in the all-to-all ranging, but just
collects data. This eavesdropper device is connected to a laptop to stream received data and feed through the
ViSig pipeline. This way, all on-body sensors send their information to a single overhearing UWB device in the
vicinity; UWB is both a communication vehicle as well as a sensing signal performing the ranging operation.
While this eavesdropper is placed at about 2𝑚 from the user in our implementation, it can also be placed on body
in which case it can forward received packets to an edge device over wireless links with longer range. Our overall
setup is pictured in Fig. 11. We intend to open source body pose data in this work.

5 EVALUATION
We evaluate ViSig on 5 popular body signal applications:
• Cricket umpire signal: Cricket is an outdoor bat-and-ball game prevalent in several Commonwealth coun-
tries [82]. The umpire of a cricket game uses arm motion to signal key events in the game. There are 11 major
signals in the official cricket signal set [69].
• Baseball umpire signal: Baseball is an outdoor bat-and-ball game with wide popularity all over the world. A
baseball umpire is responsible for giving signals to indicate the start and the end, enforce the rules, and handle
unsportsmanlike conduct in a game. We use the signals in NFHS [7] in our experiment, which includes 13 signals.
Umpires also signal using the fingers in this sport.
• Crane signal: Crane signals are widely used in construction to give instructions to the crane operator. There
are 20 signals in the crane signal set [65], standardized by Occupational Safety and Health Administration (OSHA).
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Table 1. Signal detection accuracy in non-signal-well-defined datasets and non-signal-undefined datasets.

Signal Set
Softmax
classifier
(WD)

Deep-
SVDD
(WD)

ViSig
(WD)

Softmax
classifier
(UD)

Deep-
SVDD
(UD)

ViSig
(UD)

Cricket umpire signal 99.0% 80.0% 98.5% 79.7% 85.7% 91.9%
Baseball umpire signal 99.3% 84.9% 99.7% 99.1% 88.9% 99.3%

Crane signal 98.1% 77.2% 98.7% 96.7% 90.9% 97.3%
Flag semaphore 97.7% 89.3% 98.7% 85.4% 75.0% 95.1%

Football official signal 90.6% 76.0% 87.2% 88% 88.2% 88.7%
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Fig. 13. Confusion matrices of signal detection performance on UD-dataset in each application.

• Flag semaphore: Flag semaphores were used to convey information, particularly by navies world-wide [81],
and are still used today for underway replenishments [83] and emergency communication, (and in a humorous
April 1st RFC by IETF [31]). Most signals in the flag semaphore are static and do not involve the fingers. There
are 30 signals in the contemporary flag semaphore system [81].
• American football official signal: American football is the most popular sport in the US. An official needs
to use body signals to indicate the start and the end of a game, fouls, illegal action, and a wide range of other
incidents. According to NFHS, there are 47 different signals in football [9]—this large number makes classification
challenging.
In our evaluation, we first present an end-to-end overview of ViSig performance in Section 5.1. Then, we

evaluate the performance of ViSig in body signal detection (Section 5.2), body signal classification (Section 5.3),
and finger signal recognition (Section 5.4). Then we provide microbenchmark evaluation in Section 5.5. Finally,
we compare ViSig with state-of-the-art visual systems in Section 5.6.

5.1 ViSig Pipeline Overview: Signal Detection and Classification
We first show an example case of how ViSig performs body signal detection and classification in a realistic setup.
A volunteer is asked to wear the device and perform actions as if he/she is a cricket umpire. This includes two
body signals (leg-bye and out), interspersed with other random non-signal actions. In this test, ViSig first uses
the signal detector to determine whether a signal exists in the current time window. Once a potential signal is
detected, the data will be fed into the classifier for interpretation. Fig. 12 shows a layered view of ViSig’s activities.
On the top layer, camera key-frames as observed by a camera are shown for easy interpretation. In the middle
layer, we have plotted the likelihood that the current time-window contains a body signal as determined by the
signal detector module. On the bottom layer, at time windows where the detection threshold is exceeded, ViSig
classifier module produces a probability of the actual body signal detected. Both the “leg-bye” and “out” signals
are correctly identified in this example. Of course, some non-signal action such as touching the hat also increases
the detection score, but it stays below the detection threshold, demonstrating the value of tuning the 𝑅0 and 𝑅1
boundaries per application. For more such examples, we refer the reader to view our anonymized video here:
https://drive.google.com/file/d/1qnEoSr3OhQ5i63blyIqUlq1XnEe30JzA/view?usp=share_link.
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5.2 ViSig Pipeline Internals: Body Signal Detection Accuracy
Next, we evaluate ViSig’s performance on signal detection in each application, i.e., the ability to correctly identify
a signal or a non-signal action.

5.2.1 Experiment Setup. In this experiment, volunteers are asked to wear ViSig devices and perform arbitrary
signals or non-signal actions. As mentioned before, the key challenge of non-action signals is the unbounded
nature and unpredictability of the non-action signal set. Since it is infeasible to train on all possible non-signals,
we design two kinds of tests:
• Test on well-defined (WD) non-signal actions. In this evaluation, non-signal actions in both training/test
datasets include a few pre-defined common actions such as walking, scratching, natural hand motion, etc.
• Test on undefined (UD) non-signal actions. In this evaluation, non-signal actions in the training set include
the pre-defined common actions in WD above. However, non-signal actions in the testing set are not covered in
the training set (bending, arm waving, arbitrary poses, etc.). This test evaluates the generality of ViSig’s signal
detection when samples in the test dataset follows a different distribution from the training dataset.
In both datasets, the samples of non-signals and signals are balanced to avoid training bias. ViSig trains the

model following the steps in Section. 3.3 and identifies a signal or a non-signal action by feeding the input data
into this model. In our experiment, ViSig employs an LSTM with 128 hidden units followed by a dense layer with
2 units. We set 𝑅𝐼 = 1 and 𝑅𝑂 = 2 (see Fig. 8 from Section 3.3). The thresholds are set to 0.8 for cricket umpire
signals, and flag semaphore, 1.3 for baseball umpire signals and crane signals, and 2.2 for football official signals,
allowing the least body signal deviation of body signals from the training set in cricket and flag semaphore, while
allowing for highest deviation in football.

5.2.2 Baseline. We implement two baselines for comparison with ViSig: softmax classifier and deep SVDD [63].
• Softmax classifier: The softmax classifier employs an LSTM followed by fully-connected layers to propagate the
input data. The output layer is a softmax classification layer which outputs a number between [0, 1] representing
the probability of being a body signal.
• Deep SVDD. Deep SVDD takes only positive samples (i.e., signals) in the training process. It encodes the
data with a deep network and then performs minimum volume estimation in the encoded space by finding a
data-enclosing hypersphere of smallest size. In the evaluation, a sample is identified as a body signal if and only
if it is inside the hypersphere. In our implementation, we employ an LSTM followed by fully-connected layers as
the encoding layer.

5.2.3 Accuracy. We compute the accuracy of softmax classifier, deep-SVDD and ViSig on the two different
datasets (WD and UD) via 3-fold cross-validation. The results of signal detection are shown in Table. 1. In the
WD-dataset, since non-action signals are well defined, softmax classifier and ViSig both achieve high accuracy. In
contrast, the accuracy of deep-SVDD is low as it is a model trained with only positive samples, which generates
many false negatives. In the UD-dataset, ViSig achieves an overall improvement over other two approaches.
Such improvement comes from the soft buffer boundary between signals and non-signal actions in the training
dataset. One can decide whether the model prefers identifying input data as signal or non-signal via customizing
the threshold 𝜌 with application-specific knowledge. For example, body signals in flag semaphore are expected
to be more precise compared to signals in football, hence ViSig uses a small 𝜌 in flag semaphore and a large 𝜌
in football. We also provide the confusion matrix of ViSig signal detection on UD-dataset in Fig. 13. The false
positives and false negatives are overall balanced under the specified detection thresholds. We observe that
mis-classified samples mainly occur at signals/non-signals which have an ambiguous boundary. For instance, in
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the cricket umpire signals, many mis-classified labels happen between “legbye (signal)" and “walking naturally".
In the football official signals, "blocking below waist (signal)" is sometimes confused with “bending (non-signal)".

5.2.4 Ablation Study. We also perform an ablation study on the UD dataset to understand the importance of
fusing UWB and IMU features. We employ the same network architecture for each case, only varying the input
dimension to fit with the raw data dimension after removing UWB/IMU features. Fig. 14 shows that ViSig
outperforms UWB-only and IMU-only approaches in all applications. This demonstrates that UWB-IMU fusion is
capable of solving ambiguity that exists in the single-modality signal detection.

5.2.5 Effect of Expanding Dataset. Of course, current non-signal dataset is a subset of the whole non-signal space.
How will the performance change if the training set consists of various types of actions? To understand the effect of
an expanding dataset, we design an experiment where progressively more types of actions from the well-defined
set are used from train the model. Specifically, we prepare three training datasets with increasing diversity in the
non-signal actions:
• Legs-only dataset: Only incorporates standing still and walking as non-signals.
• Legs-and-arms dataset: Additionally incorporates natural actions such as touching face/head, crossing hand,
etc.
• Whole-body-movement dataset: Additionally incorporates strenuous actions like running, jumping, etc.
We use the above three datasets and test on the UD dataset which includes hand-waving, bending, etc. Results
are shown in Fig. 15. We observe a prominent improvement in detection accuracy from the legs-only dataset
to the legs-and-arms dataset whereas the improvement from the legs-and-arms to the whole-body-movement
dataset is marginal. This demonstrates that with more diverse non-signal samples, the model is trained to learn
the true distribution of signals and non-signals which contributes to the performance improvement. However,
seeing more and more non-signal body actions provide diminishing returns. When the dataset is sufficiently
large, significant new data collection effort is needed to achieve higher accuracy.

5.3 ViSig Pipeline Internals: Body Signal Classification Accuracy
5.3.1 Experiment setup. Our evaluation of ViSig’s classification capabilities is divided into two stages: single-user
evaluation, and cross-user evaluation. Note that the application domain of body signals typically requires a
specific designated person to perform the duties of a signaler, who is also trained specifically for the job. Therefore,
ViSig on-body sensor apparatus can be thought of as “owned” by a particular person. The model’s training of
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Table 2. Datasets in single-user (SU) and cross-user (CU) evaluation.

Signal # Finger
signals

SU-test
user #

CU-test
user #

SU-test
sample #

CU-test
sample #

Cricket umpire signal [69] 11 Yes 1 9 5520 4158
Baseball umpire signal [7] 13 Yes 1 11 4485 3276

Crane signal [65] 20 Yes 1 11 8602 5040
Flag semaphore [81] 30 No 1 11 8280 7560

Football official signal [9] 47 Yes 1 3 6072 3243

signal interpretation can therefore be performed on that particular individual. Of course, in many general human
activity recognition applications, a model trained with multiple users and evaluated on a different set of users
is more desirable. Therefore, we also evaluate ViSig across different volunteers to test the generality of our
approach. In the first stage (single-user evaluation), one of the researchers collects data for all the 5 applications
by wearing the sensors. For each application, the researcher performs all the signals multiple times over different
days/scenarios. The purpose of evaluation in this stage is to present the performance of ViSig functioning as a
user-specific system in signal interpretation. In the second stage (cross-user evaluation), we recruit 11 volunteers3
for data collection and model evaluation. The heights of volunteers range from 1.65𝑚 to 1.83𝑚 so that we can
assess the generality of the model.

In both stages, participant(s) wear 6 on-body sensors and perform every application-specific body signal. Then
we segment the streaming samples into multiple 2𝑠−time windows. We arbitrarily extract 𝑘 (20 ≤ 𝑘 ≤ 30) time
window samples per person per signal, adjusting for starting and ending times of the signal. In the single-user
evaluation, more than 10 sets of signals (each application varies) are collected from the same volunteer in each
application. In the cross-user evaluation, we collect one full set of signals from each volunteer in baseball, crane,
flag semaphore, football, and two full sets of signals from each volunteer in cricket. The samples in every time
window will be the raw data fed into the system for training a model. As described in Section 3, we fuse the
distance matrix obtained by UWB and acceleration obtained by IMU to train the model, and then perform FSR
with on-finger photodiodes. Data are collected at different locations including (i) outdoor open area; (ii) laboratory
environment; (iii) indoor atrium; (iv) apartment; and (v) in a corridor, and at different times of the day. We set a
hard range on distances for data sanitation. Only data with distances in [0, 3𝑚] are used. Overall over 30 hours
of body signal data was collected for this evaluation which we plan to share publicly. To avoid model bias, we
manually balance the number of samples for all volunteers in cross-user evaluation. The details of datasets are
described in Table. 2.

For the evaluation, in the first stage, we average the classification accuracy of 𝑛-fold cross-dataset validation,
where 𝑛 is the number of datasets collected at different days/locations. In the second stage, we perform 𝑛-fold
cross-user validation, where data of 𝑛−1 volunteers forms the training set and test the model on the last volunteer,
for all 𝑛 volunteers.

5.3.2 Single User Performance with Ablation Study. In this experiment, we evaluate the basic classification
accuracy of ViSig on five different applications. Each specific body signal is a class in classification. Mathematically,
for every class 𝑖 ∈ all classes 𝐶 , (|𝐶 | = 𝑐), the accuracy is computed from the proportion of correctly predicted
labels to all predicted labels (P, T are the predicted and true label):∑𝑐

𝑖 𝑁𝑢𝑚𝑏𝑒𝑟 (𝑃 == 𝑖,𝑇 == 𝑖)
𝑁𝑢𝑚𝑏𝑒𝑟𝑎𝑙𝑙

(2)

3The user study has been approved by the IRB at Georgia Tech. Protocol Number: H21210 and Amendment #1, Title: TeamTrack: Wireless
Tracking of a Team’s Topology and Individual Poses.
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Table 3. ViSig classification accuracy on different applica-
tions in the single-user test.

IMU-
only

UWB-
only

ViSig

Cricket 93.9% 91.4% 98.5%
Baseball 92.4% 85.8% 98.0%
Crane 97.4% 82.9% 98.7%

Flag semaphore 89.6% 64.2% 95.7%
Football 93.9% 78.9% 94.7%

Table 4. ViSig classification accuracy on different applica-
tions in the cross-user test.

IMU-
only

UWB-
only

ViSig

Cricket 88.0% 90.9% 97.6%
Baseball 87.9% 83.7% 97.1%
Crane 92.2% 80.9% 97.7%

Flag semaphore 80.8% 64.5% 92.2%
Football 84.7% 61.5% 90.7%

1.Ball Ready 2.Clipping 3. Delay 4.Illegal Pass
5. Illegal Shift  6. Incomplete  7. Personal Foul
8. Roughing Passer  9. Start Clock

Football – Error Matrix

1.Extend Boom (one hand) 2. Hoist
3. Raise Boom  4.Stop  5. Travel
6. Use Main Hoist

Crane – Error Matrix 

Flag Semaphore – Error Matrix 

1.Letter ‘D’
2.Letter ‘F’
3.Letter ‘M’
4.Letter ‘V’

Baseball  – Error Matrix 

1.Fair ball
2.Play ball

Delay

P. Foul

Cricket – Error Matrix

1.No ball
2.Short run

1 2

1

2

Tr
ue

 C
la

ss 4.3%95.7%

100.0%

Fig. 16. Confusion matrices for five different applications. Only error confusions plotted for each application. Confusion
occurs between very similar actions, as illustrated in the football case.

Since ViSig uses a UWB-IMU sensor fusion approach, we test the value of this fusion by comparing against a
UWB-only and an IMU-only system. As shown in Table. 3, in the single-user test, ViSig achieves above 95%
accuracy in four of five applications, and 94.7% accuracy in football which contains 47 different signals. Of
course, certain body signals are more susceptible to being confused with other signals. Fig. 16 shows some
example confusion matrices for different applications in the test. We observe that there are three leading causes
of mis-classification: (1) proximity of different signals in the feature space, (2) intra-class data variance, and (3)
raw data precision limits. For example, “Delay” and “Personal Foul” in football differ only in how far the crossing
arms are from the chest (proximity in feature space). Such difference is blurred further after taking intra-class
variance (for the same signal, put the hand at slightly different places but still recognizable), and inherent UWB
distance measurement precision (±10 𝑐𝑚).
Table. 3 also gives the result of ablation study in the single-user scenario. For cricket, baseball, and flag

semaphore signals. ViSig outperforms UWB-only models by 7.1%, 12.2%, 31.5% , and outperforms IMU-only
models by 4.6%, 5.6%, 6.1% in the given signal examples. For crane signal and football signals, the improvements
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Fig. 17. 8 tested finger signs and the performance of FSR
in indoor and outdoor scenarios.
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Fig. 18. Optimal threshold range in FSR (left); The mea-
sured reference light intensity (right).

of ViSig over IMU-only solutions are marginal, at 1.3% and 0.8% respectively. One of the reasons for the marginal
improvement in these two applications is that crane signals and football signals involve many dynamic action
where IMU can infer the signal from the motion pattern itself, without necessarily requiring UWB at all. The
fusion allows ViSig to achieve 95% accuracy in all cases, which would not be feasible using any one technology
alone. The gains come from inherently different properties of the two sensors; even if one modality incurs
errors or cannot resolve ambiguity, the other one can still extract key features from raw data to perform signal
interpretation.

5.3.3 Cross User Performance with Ablation Study. In the single user study, we computed the accuracy when the
classification model was trained on that particular user’s data. It is natural to wonder can a single general model
be created that would apply to any individual so that we would not need any per-individual training? We evaluate
ViSig’s cross-user performance as specified in the experimental setup. An 𝑛-fold cross-user validation is applied
to acquire average accuracy numbers.
The results are shown in Table. 4. In the cross-user scenario, we observe a slight decrease in the accuracy

compared to the single-user scenario, which is caused by variance when different volunteers are performing
signals. Overall, ViSig still achieves an over 90% accuracy in all applications. As for the ablation study, ViSig
outperforms IMU-only models by 9.6%, 9.2%, 5.5%, 11.4%, 6% for each application, and outperforms UWB-only
models by 6.7%, 13.4%, 16.8%, 27.7%, 29.2%. We observe a non-trivial increase in the improvement of ViSig over
IMU-only models in the cross-user scenario. This indicates that in the cross-user scenario, there is a significant
increase in IMU variance when performing the same signal, while fusing with UWB measurements provides the
required robustness, further validating our reasoning of using both IMU and UWB modalities.

5.4 Finger Signal Recognition Accuracy
5.4.1 Overall Accuracy. As finger signs are frequently used in body signals to indicate counts, we conduct an
experiment focusing on finger signal recognition accuracy. Fig. 17 shows 8 common finger signs used in this
experiment. We collect data in both indoor and outdoor environment. The reference ambient light intensities
( 𝐼𝑓 𝑖𝑛
𝐼𝑟𝑒𝑓

) in the two environments are 400 𝑙𝑢𝑥 and 18000 𝑙𝑢𝑥 . Whether the finger is stretched or closed is determined
by a threshold set to 0.2 in the indoor environment and 0.7 in the outdoor environment (we will empirically
determine this threshold in the next section). Fig. 17 presents the FSR accuracy, showing that ViSig achieves
higher than 99% accuracy for all signs, demonstrating the effectiveness of ViSig in FSR. The cause of 1% error is
that sometimes light can leak to the photodiode on a closed finger. For example, when indicating "OK", light can
leak to the photodiode on thumb and index finger at certain hand posture positions, leading to confusion with
"four" or "five". Further improvements are possible by exploring better diode placements, but we leave those to
future work.

5.4.2 Optimal FSR Threshold. Since the threshold on relative light intensity is important for accurate finger state
detection, we now explore how such a threshold can be determined. Recall that we place a reference photodiode
on the head which allows us to estimate the ambient light, 𝐼𝑟𝑒 𝑓 at any given time. The light intensity measured by
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Fig. 20. Packet reception ratio at different distances in
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Table 5. ViSig accuracy in different environments.

Location Outdoor Hall Corridor Room Lab
Accuracy 100% 100% 100% 100% 100% Time(ns)

C
IR

Outdoor

Room

Fig. 21. Example CIR in the outdoor and room
environment.

the photodiodes on the hand is typically a fraction of the current reference intensity 𝐼𝑟𝑒 𝑓 ; a larger fraction when
the finger is stretched, and a smaller fraction when the finger is closed. However, in different lighting conditions,
the amount of light that leaks between fingers is different. We need to select a threshold between the minimum
observed intensity when the finger is stretched and the maximum intensity when the finger is closed.
To understand intensity variations better, we collect data at 6 positions with different light conditions (100,

400, 650, 1600, 4500, 18000𝑙𝑢𝑥 respectively). Among them, positions with light intensity from 100 to 650 are
indoor locations under artificial light. The positions with 1600 and 4500𝑙𝑢𝑥 light intensity are indoor positions
illuminated with sunshine (through glass panels). The position with 18000-lux intensity is an outdoor location.
Fig. 18 shows the relative light intensity range of stretched fingers and closed fingers, and the intervening
threshold selection margin. We observe that while a single threshold can be used for all indoor locations (≤
4500𝑙𝑢𝑥 ), a different threshold would be required for outdoor environment (18000 𝑙𝑢𝑥 ). In the indoor environments,
under both artificial or through-glass sunshine, a threshold between [0.1, 0.3] is needed. However, in outdoor
environments, as light leaking between fingers can still be substantial, the threshold shifts to [0.48, 0.83] range.
Thus, our threshold selection algorithm must depend on the absolute measured light intensity level of the
reference, selecting between an indoor-threshold or an outdoor-threshold. Note that sunshine intensity can vary
significantly based on time of day, day of the year, and latitude. Therefore, a single threshold is unlikely to work;
some fine-tuning will always be necessary, and the photodiode on the cap provides a good reference.

5.5 Microbenchmarks

5.5.1 Learning Models. Since the fusion of IMU and UWB features informatively describes a body signal, ViSig
employs a simple network architecture to train the model. Furthermore, a model with a simpler network also has
the advantage of implementation simplicity and resource efficiency. However, it is still essential to examine if
ViSig suffers performance loss as a result of this choice of simplicity, irrespective of computational costs. Recently,
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a variety of new models have found application in the wearable human action recognition space. We compare
our performance with two other promising approaches:
• LSTM ensembles [29]: LSTM ensembles trains multiple LSTM learners to output scores for each signal. These
scores are then fed into a meta-classifier for signal interpretation.
• AttendDiscriminator [14]: Self-attention mechanism [77] relates different positions of a single sequence to
compute a feature representation. In human action recognition, AttendDiscriminator employs a self-attention
layer to encode cross-channel feature interactions which aids accurate recognition of activities.

We implement LSTM ensembles and AttendDiscriminator network and test the performance on the cross-user
datasets. For LSTM ensembles, we train 10 LSTM learners. Fig. 19 shows that the accuracy differences on all
5 applications are quite minor (±2%). In crane, flag and football application, LSTM ensembles outperform our
current model by 1 ∼ 2%, but it needs a much larger model (10× memory size) as well as longer time (10.5×) to
converge in the training. Preferring resource efficiency, ViSig chooses a simple LSTM followed by fully-connected
layers as the neural network architecture.

5.5.2 Effect of Different Environments. ViSig makes a conscious effort to reduce the impact of different environ-
ments on performance. We completely shun the magnetometer which is known to be influenced near heavy
machinery and even in indoor environments. Our choice of UWB for distance measurements provides robustness
due to its ability to separate out wireless multipath caused by nearby objects, and its wireless frequency range
(3.5𝐺𝐻𝑧-4.5𝐺𝐻𝑧) does not interfere with existing WiFi devices. Furthermore, since the on-body sensors are
proximal to each other, we expect minimal influence from multipath. To validate our expectations, we additionally
collect two sets of cricket umpire signal data from the same user at a total of 5 locations: outdoor, indoor atrium,
corridor, fully-furnished room, and a lab. The observed channel impulse response (CIR) for outdoor space and the
fully-furnished room is shown in Fig. 21, to provide a visual guide contrasting two of the extreme environments
in this experiment. Table 5 shows that ViSig is able to achieve 100% accuracy in all the tested environments, thus
providing substantial confidence in the robustness of our approach.

5.5.3 Overhearing Ranging Test. In our implementation, we have placed the UWB eavesdropper about 2 meters
away from the user for data collection. However, an alternative is placing the eavesdropper on body, and then
the eavesdropper forwards the received message to an edge device via a different wireless link (like Wi-Fi or
LTE) with longer range. While such wireless transport modalities are beyond the scope of this paper, we perform
a UWB ranging test to understand the maximum UWB range between the eavesdropper and the user in a pure
UWB system. The test is conducted in the outdoor environment. We measure the packet reception ratio (PRR)
when the eavesdropper is placed at different distances from the user. Results are shown in Fig. 20. In the outdoor
environment, PRR rapidly drops from 91.8% to 31.9% when moving from 20𝑚 to 25𝑚, indicating the maximum
available range in the outdoor environment is approximately 20𝑚. Again, this range is not the maximum range
of ViSig. For instance, collecting data via Wi-Fi (2.4/5 𝐺𝐻𝑧) can extend the range to 100𝑚 [2].

5.5.4 Power Consumption. As signal interpretation is done externally on a laptop, the main power consumption
of ViSig lies in the UWB ranging, IMU, and photodiode data collection. Each device has a power consumption
of about 391mW. On a small 3.7V/1200mAh Lipo battery (4× 3cm2, 24g), ViSig can work for 11.5 hours before
requiring a recharge, satisfying the requirements of most applications.

5.6 Comparison with Computer Vision State-of-the-Art
Prevalent body signal interpretation solutions are mainly computer vision based. The state-of-the-art CV-based
approaches propose using graph convolutional network (GCN) for body signal interpretation, showing an
improvement over traditional network architecture. However, the performance of CV-based approaches is
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No ball Short run No ball Short run

Front view Side view

Fig. 22. The front view and side view of “No ball” and
“short run” in cricket.

Table 6. Qualitative comparison with ST-GCN.

ViSig ST-GCN
System Deployment On-body External
Processing Rate 16Hz 1-60Hz

Dataset requirement Small Large
Memory/Bandwidth Small Large

Environment Influence Small Large
Multi-user Tracking No Yes

strongly influenced by camera perspective, self occlusion, subject’s distance from camera, etc. In contrast, ViSig
presents a different dimension of solution which performs body signal interpretation via wearable computing. In
this section, we compare the performance of ViSig with state-of-the-art visual systems both from the perspective
of classification accuracy (quantitative), as well as other practical metrics (qualitative).

5.6.1 Classification Accuracy. To compare the classification accuracy, we choose ST-GCN [84], one of the state-
of-the-art CV solutions, as our baseline. ST-GCN is a skeleton-based action recognition approach. It first extracts
human skeleton joints from the image with OpenPose [21]. Then the joints are fed into a graph convolutional
network for signal classification. We use cricket umpire signals as test application. A Google Pixel 4a is used to
capture videos as volunteers are performing body signals. To evaluate ST-GCN’s performance, we start from
the case when all the samples in the training/test dataset have clear front view (Fig. 22 left). Then we gradually
incorporate in the training/testing dataset some self-blocking samples, where key skeleton joints are blocked
by other parts of the body (Fig. 22 right). We observe significant performance degradation from 99.9% to 61.4%
as we increase the proportion of self-blocking samples to 50%. This demonstrates that visual-based systems
require high-quality, front-facing pictures for accurate signal interpretation, which is often impractical in many
real-world applications. Many signals, because of self-blocking, become ambiguous at certain angles, such as “no
ball" and “short run" in Fig. 22 when viewed from the side. In contrast, ViSig does not suffer from such obscuring
of the input data, even in the cross-user scenario, and retains high accuracy over 90%.

5.6.2 Qualitative Comparison. Apart from accuracy, we also qualitatively summarize the main differences
between ViSig and modern visual systems in Table. 6.
• System deployment: ViSig is a system with 6 wearable devices without the need for any external device (the
overhearing device is only used for message communication). Such ego-sensing approach brings in movement
flexibility without worrying about losing track. On the contrary, visual systems need multiple cameras to keep
track of the user, which increases deployment cost and the difficulty in camera coordinating.
• Processing rate: Both ViSig and visual systems are capable of processing data in real-time. The major time
overhead of ViSig lies in the message exchanging of UWB devices. For visual systems, the processing rate mainly
depends on the data processing and model architecture, which varies from 1 to 60Hz.
• Training dataset requirement: As ViSig feeds raw physical data (distance and IMU data) which are informative
in describing human skeletal poses, ViSig needs only a small dataset to train a model. On the contrary, visual
systems use images as input data. Because of the projection and scaling transformation, visual systems need to
incorporate images at different angles and distances to find non-biased distribution of different body signals,
which significantly increases the demand for training data samples.
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• Memory and Bandwidth: In addition to large number of data samples, computer vision systems also significantly
increase the memory and bandwidth demands on the system. As an example, in our implementation, one time
window sample of ViSig consumes about 3.52KB, while visual systems consumed 1.15MB in the classification
comparisons, a 500× increase.
• Environment influence: As evaluated in Section 5.5, ViSig is hardly influenced by multipath in the environment.
Moreover, UWB devices, which can work at 3.5-4.5 𝐺𝐻𝑧, co-exists well with 2.4/5 𝐺𝐻𝑧 Wi-Fi due to UWB’s low-
power transmissions andmuch larger bandwidth. Given short-distance between the various on-body UWB sensors,
the environment has very little influence on ViSig’s performance. On the contrary, body signal interpretation
with visual systems are influenced by many environment factors, such as ambient light, obstacles, etc.
• Multi-user tracking: As a wearable system, a set of ViSig sensors collect data from a single user for body
signal interpretation. In this aspect, visual-based systems could support simultaneous multi-user body signal
interpretation as long as human-skeleton data can be inferred from the image. Of course, signal interpretation on
multiple users, each of which is wearing a separate ViSig system, is possible in a multi-user scenario, but we
leave that for future work.

6 RELATED WORK

6.1 Body Signal Detection
The fundamental task of body signal detection is to identify whether a valid signal is contained in the current data
stream. Because of the infinite space of non-signals, lots of research effort focuses on self-supervised solutions:
they train with only positive samples (signals) and minimize the signal space [49, 63, 66, 72]. A drawback of such
one-class models is that they fail to leverage prior knowledge of the application (e.g., a subset of non-signals).
To improve, recent work like [55, 64, 73] propose semi-supervised learning training with both signals and a
small portion of non-signals. However, in some applications, as signal space is also very large (football), self-
supervised/semi-supervised solutions can incur many false negatives. In contrast, ViSig adopts the supervised
learning for body signal detection. To tackle the issue of infinite non-signals, ViSig creates a soft boundary
between signals and non-signals in the feature space, and applies a domain-specific threshold for signal detection.

6.2 Body Signal Interpretation
Technological interventions to interpret body signals have been mostly proposed from a viewer’s perspective
using cameras. Vision-based signal interpretation [18, 57, 60, 87, 88] captures images or videos, extract features
and feed them into a machine learning model for interpretation. However, such methods require external
infrastructure support, have limited viewing distance and field-view, and are sensitive to lighting conditions.
On-body identification is therefore desirable, and initial attempts have been made in limited settings [17, 38],
using IMU sensors alone. ViSig provides a robust framework with UWB and IMUs complementing each other.
Since body signal identification can be seen as a subset of the general human activity recognition problem (HAR),
we will discuss related work in this space as well.

6.3 Motion Capture Systems
Commercially, fine-grained HAR is achieved though a motion capture system such as Vicon [13] or OptiTrack [12].
In a motion capture system, a user mounts reflective markers or active LEDs on body. The position of each
marker is captured by multiple synchronized high-speed cameras in a room. It provides precise𝑚𝑚−level motion
tracking [48]. However, such systems are extremely expensive (starting at $10, 000) and only cover a large room.
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Our requirements in ViSig which include outdoors and large coverage areas cannot be satisfied by motion capture
systems.

6.4 HAR with External Cameras
Vision-based HAR is a well-studied research focus in the field of computer vision. Traditionally, vision-based
approaches extract local spatio-temporal features such as HOG [24, 37], HOF [40], SIFT [67], etc., and feed them
into classical machine learning classifiers. In recent years, driven by the advances in deep learning and the open
source availability of large amount of video data, vision-based HAR approaches have shifted to complicated deep
architectures to extract hidden features for recognition [19, 26, 27, 44, 68, 75, 84]. We have dedicated a part of
our evaluation to comparison with computer vision based systems. However, vision-based approaches need the
deployment of external cameras. Moreover, it fails in camera-denied scenarios, e.g., umpire tracking in crowded
sport fields with frequent blocking, or performing flag semaphore operations in foggy marine situations. ViSig,
in comparison, does not depend on such external deployments, or environment light condition, and through a
careful selection of sensors alleviates the need for complex deep neural network models.

6.5 HAR with Wearable Sensors
Our approach in ViSig can be classified as a wearable-based HAR, which are also called egocentric tracking
since all the sensors are on one’s body. Inertial sensors are popular in this space [79]. Features are extracted
from obtained IMU sensor data which are then classified using classical machine learning approaches in [16,
20, 41, 46, 59, 70, 74, 90]. However, hand-crafted features require expert domain knowledge and can be blind to
non-intuitive hidden features.
Recently, the adoption of deep learning has improved the performance of action recognition significantly

through automatic feature learning [35, 51, 76, 89]. CNN-based approaches [85, 89] build deep architectures
with multiple convolutional and feed-forward layers to extract deep features automatically. Recurrent neural
networks (RNNs) with long-short-term-memory layers (LSTM) encode time-series information effectively [51].
These techniques outperform CNNs in challenging datasets like OPPORTUNITY [62] and Skoda [86]. [29]
improves model robustness by combining multiple LSTM learners. [50] employs an attention model to rescale
the importance of historical samples, while [14] proposes a framework which extracts inter-modality relation as
features by an attentional GRU encoder.
However, the success of these rather complex model architectures has slowed the search for new modalities.

Electrocardiogram (ECG) [58, 91], electroencephalogram [22] (EEG), and electromyography (EMG) [43] are
explored in healthcare and accessibility oriented human action recognition. However, ECG, EEG, and EMG signals
do not directly reflect the human action, which makes it difficult to perform a general human action recognition
task. [71] is perhaps the first to explore distance based metrics for HAR. However, they generate distance data
through simulation, instead of from real-world systems. [15] uses UWB to measure step size for gait analysis,
which indicates the practicability of leveraging distance information for HAR applications. Compared to existing
works, ViSig is capable of extracting descriptive features, and has created an end-to-end solution to measure and
embed inter-joint distance fused with information from IMU and photodiodes, though for a specific set of body
signals. Our choice of sensors is unique and hopefully will pique interest of other researchers as well.

7 CONCLUDING REMARKS
ViSig makes unique contributions in exploring a solution to the problem of automatic interpretation of body
signals using on-body sensors. We have shown that by fusing UWB based distance measurements with IMU
based orientation, and light sensor based finger configuration detection, a rich and relatable feature set can be
created, which provides intuitive understanding of body signals. Doing so improves accuracy of body signal
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identification in a variety of applications. ViSig also demonstrates that new modalities at the data end matter
along with well-built data processing models, broadening the road towards a wider range of human activity
recognition (HAR) applications. We expect that ViSig will infuse new energy into the general HAR problem by
introducing inter-appendage distances as a new modality for future exploration.
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[87] Julius Žemgulys, Vidas Raudonis, Rytis Maskeliūnas, and Robertas Damaševičius. 2018. Recognition of basketball referee signals from
videos using Histogram of Oriented Gradients (HOG) and Support Vector Machine (SVM). Procedia computer science 130 (2018), 953–960.
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