Topics:

- Convolutional Neural Networks

CS 4644-DL / 7643-A ZSOLT KIRA

- Assignment 2
- Implement convolutional neural networks
- Resources (in addition to lectures):
- DL book: Convolutional Networks
- CNN notes https://www.cc.gatech.edu/classes/AY2022/cs7643 spring/assets/L10 cnns notes.pdf
- Backprop notes
https://www.cc.gatech.edu/classes/AY2023/cs7643 spring/assets/L10 cnns backprop notes.pdf
- HW2 Tutorial, Conv backward
- Slower OMSCS lectures on dropbox: Module 2 Lessons 5-6 (M2L5/M2L6)
(https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX Uy1TkpF yvizXOnPa?dl=0)
- Meta Office hours Friday 02/16 3pm EST!
- Pytorch \& scalable training
- Module 2, Lesson 8 (M2L8), on dropbox

$$
X(0: 2,0: 2)=\left[\begin{array}{ccc}
200 & 150 & 150 \\
100 & 50 & 100 \\
25 & 25 & 10
\end{array}\right] \quad K^{\prime}=\left[\begin{array}{ccc}
1 & 0 & -1 \\
2 & 0 & -2 \\
1 & 0 & -1
\end{array}\right] \xrightarrow{\square} \mathrm{X}(0: 2,0: 2) \cdot K^{\prime}=65+\text { bias }
$$

Cross-Correlation

Number of parameters with N filters is: $\boldsymbol{N} *\left(\boldsymbol{k}_{\mathbf{1}} * \boldsymbol{k}_{\mathbf{2}} * \mathbf{3 + 1}\right)$

- Example:

$$
k_{1}=3, k_{2}=3, N=4 \text { input channels }=3 \text {, then }(3 * 3 * 3+1) * 4=112
$$

Image

Kernels

Feature Maps

Need to incorporate all upstream gradients:

Chain Rule:

$$
\frac{\partial L}{\partial k(a, b)}=\sum_{r=0}^{H-1} \sum_{c=0}^{W-1} \frac{\partial L}{\partial y(r, c)} \frac{\partial y(r, c)}{\partial k(a, b)}
$$

Sum over	Upstream	We will all output pixels
gradient (known)		

$$
\frac{\partial y(r, c)}{\partial k(a, b)}=x(r+a, c+b)
$$

Does this look familiar?

$$
\frac{\partial L}{\partial k(a, b)}=\sum_{r=0}^{H-1} \sum_{c=0}^{W-1} \frac{\partial L}{\partial y(r, c)} x(r+a, c+b)
$$

Gradients and Cross-Correlation

$$
\frac{\partial L}{\partial x}=\frac{\partial L}{\partial y} \frac{\partial y}{\partial x}
$$

What does this input pixel affect at the output?

Gradient for input (to pass to prior layer)
Calculate one pixel at a time $\frac{\partial L}{\partial x\left(\boldsymbol{r}^{\prime}, \boldsymbol{c}^{\prime}\right)}$

Neighborhood around it (where part of the kernel touches it)
$(0,0)$

What an Input Pixel Affects at Output

Chain rule for affected pixels (sum gradients):

$$
\frac{\partial L}{\partial x\left(r^{\prime}, c^{\prime}\right)}=\sum_{\text {Pixels } p} \frac{\partial L}{\partial y(p)} \frac{\partial y(p)}{\partial x\left(r^{\prime}, c^{\prime}\right)}
$$

Let's derive it analytically this time (as opposed to visually)
$\frac{\partial L}{\partial x\left(r^{\prime}, c^{\prime}\right)}=\sum_{a=0}^{k_{1}-1} \sum_{b=0}^{k_{2}-1} \frac{\partial L}{\partial y\left(r^{\prime}-a, c^{\prime}-b\right)} \frac{\partial y\left(r^{\prime}-a, c^{\prime}-b\right)}{\partial x\left(r^{\prime}, c^{\prime}\right)}$

Summing Gradient Contributions

Plugging in to earlier equation:

$$
\frac{\partial L}{\partial x\left(r^{\prime}, c^{\prime}\right)}=\sum_{a=0}^{k_{1}-1} \sum_{b=0}^{k_{2}-1} \frac{\partial L}{\partial y\left(r^{\prime}-a, c^{\prime}-b\right)} \frac{\partial y\left(r^{\prime}-a, c^{\prime}-b\right)}{\partial x\left(r^{\prime}, c^{\prime}\right)}
$$

Does this look familiar?

$$
=\sum_{a=0}^{k_{1}-1} \sum_{b=0}^{k_{2}-1} \frac{\partial L}{\partial y\left(r^{\prime}-a, c^{\prime}-b\right)} k(a, b)
$$

Again, all operations can be implemented via matrix multiplications (same as FC layer)!

Convolution between upstream gradient and kerne!!
(can implement by flipping kernel and cross- correlation)

Backwards is Convolution

- Convolutions are mathematical descriptions of striding linear operation
- In practice, we implement cross-correlation neural networks! (still called convolutional neural networks due to history)
- Can connect to convolutions via duality (flipping kernel)
- Convolution formulation has mathematical properties explored in ECE
- Duality for forwards and backwards:
- Forward: Cross-correlation
- Backwards w.r.t. K: Cross-correlation b/w upstream gradient and input
- Backwards w.r.t. X: Convolution b/w upstream gradient and kernel
- In practice implement via cross-correlation and flipped kernel
- All operations still implemented via efficient linear algebra (e.g. matrixmatrix multiplication)

Summary

Pooling Layers

- Dimensionality reduction is an important aspect of machine learning
- Can we make a layer to explicitly down-sample image or feature maps?

Parameters

- Yes! We call one class of these operations pooling
- kernel_size - the size of the window to take a max over
- stride - the stride of the window. Default value is kernel_size
- padding - implicit zero padding to be added on both sides

Pooling Layers

Example: Max pooling

- Stride window across image but perform per-patch max operation

None!

Max Pooling

Since the output of convolution and pooling layers are (multi-channel) images, we can sequence them just as any other layer

Image

This combination adds some invariance to translation of the features

- If feature (such as beak) translated a little bit, output values still remain the same

Image

Convolution
Layer

Pooling
Layer

Convolution by itself has the property of equivariance

- If feature (such as beak) translated a little bit, output values move by the same translation

Invariance vs. Equivariance

Simple Convolutional Neural Networks

Since the output of convolution and pooling layers are (multi-channel) images, we can sequence them just as any other layer

Image

Convolution Layer

Layer
Pooling

- makes the representations spatially smaller
- saves computation (GPU mem \& speed), allows go deeper
- operates over each activation map independently:

Alternating Convolution and Pooling

Fully
Connected Layers

Adding a Fully Connected Layer

Fully
Connected Layers

Convolutional Neural Networks

These architectures have existed since 1980s

Handwriting Recognition

Translation Equivariance (Conv Layers) \& Invariance (Output)

Image Credit:
Yann LeCun

(Some) Rotation Invariance

Image Credit:
Yann LeCun

(Some) Scale Invariance

Image Credit:
Yann LeCun

A More Modern Canonical CNN

Advanced Convolutional Networks

The ImageNet dataset contains $14,197,122$ annotated images according to the WordNet hierarchy. ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is a benchmark for image classification and object detection based on the dataset.

The Importance of Benchmarks

Case Studies
 - AlexNet
 - VGG
 - GoogLeNet
 - ResNet

Also....

- SENet
- Wide ResNet
- ResNeXT
- DenseNet
- MobileNets
- NASNet
- EfficientNet
- ConvNeXt v1/v2

AlexNet - Architecture

From: Krizhevsky et al., ImageNet Classification with Deep ConvolutionalNeural Networks, 2012.

Case Study: AlexNet

[Krizhevsky et al. 2012]

Architecture:
CONV1
MAX POOL1
NORM1
CONV2
MAX POOL2
NORM2
CONV3
CONV4
CONV5
Max POOL3
FC6
FC7
FC8

AlexNet - Layers and Key Aspects

Input: $227 \times 227 \times 3$ images
First layer (CONV1): 96 11x11 filters applied at stride 4

$$
W^{\prime}=(W-F+2 P) / S+1
$$ =>

Q: what is the output volume size? Hint: $(227-11) / 4+1=55$

AlexNet - Layers and Key Aspects

Input: $227 \times 227 \times 3$ images
First layer (CONV1): 9611×11 filters applied at stride 4

$$
W^{\prime}=(W-F+2 P) / S+1
$$

=>
Output volume [55x55x96]

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231 b ,

AlexNet - Layers and Key Aspects

Input: $227 \times 227 \times 3$ images
First layer (CONV1): 9611×11 filters applied at stride 4
=>
Output volume [55x55x96]
Q: What is the total number of parameters in this layer?

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 2311 .

AlexNet - Layers and Key Aspects

Input: $227 \times 227 \times 3$ images
First layer (CONV1): 96 11x11 filters applied at stride 4 =>
Output volume [55x55x96]
Parameters: $\left(11^{*} 11^{*} 3+1\right)^{*} 96=35 \mathrm{~K}$

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231ro

AlexNet - Layers and Key Aspects

Full (simplified) AlexNet architecture:

[$224 \times 224 \times 3$] INPUT
[$55 \times 55 \times 96$] CONV1: 9611×11 filters at stride 4, pad 0 [$27 \times 27 \times 96$] MAX POOL1: 3×3 filters at stride 2
[27×27×96] NORM1: Normalization layer
[$27 \times 27 \times 256$] CONV2: 2565×5 filters at stride 1 , pad 2 [$13 \times 13 \times 256$] MAX POOL2: 3×3 filters at stride 2
[$13 \times 13 \times 256$] NORM2: Normalization layer
[$13 \times 13 \times 384$] CONV $3: 3843 \times 3$ filters at stride 1, pad 1
[$13 \times 13 \times 384$] CONV4: 3843×3 filters at stride 1, pad 1 [$13 \times 13 \times 256$] CONV5: 2563×3 filters at stride 1, pad 1 [$6 \times 6 \times 256$] MAX POOL3: 3×3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Key aspects:

- ReLU instead of sigmoid or tanh
- Specialized normalization layers
- PCA-based data augmentation
- Dropout
- Ensembling

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231 r.

AlexNet - Layers and Key Aspects

Small filters, Deeper networks
8 layers (AlexNet)
-> 16-19 layers (VGG16Net)
Only 3×3 CONV stride 1 , pad 1 and 2×2 MAX POOL stride 2
11.7\% top 5 error in ILSVRC'13 (ZFNet)
-> 7.3% top 5 error in ILSVRC' 14

AlexNet

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231 ro
VGGNet

Q: Why use smaller filters? (3×3 conv)

Stack of three 3×3 conv (stride 1) layers has same effective receptive field as one 7×7 conv layer

Q: What is the effective receptive field of three 3×3 conv (stride 1) layers?

AlexNet

VGG16

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 2311 .
VGGNet

Q: What is the effective receptive field of three 3×3 conv (stride 1) layers?

But deeper, more non-linearities

And fewer parameters: 3 * $\left(3^{2} \mathrm{C}^{2}\right)$ vs. $7^{2} \mathrm{C}^{2}$ for C channels per layer

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231 r,
VGGNet

```
INPUT: [224*224\times3] memory: 224*224*3=150K params: 0 (not counting biases)
```

CONV3-64: [224×224×64] memory: $224^{*} 224^{*} 64=3.2 \mathrm{M}$ params: $\left(3^{*} 3^{*} 3\right)^{*} 64=1,728$
CONV3-64: [224×224×64] memory: $224^{*} 224^{*} 64=3.2 \mathrm{M}$ params: $\left(3^{*} 3^{*} 64\right)^{*} 64=36,864$
POOL2: [112×112×64] memory: $112^{*} 112^{*} 64=800 \mathrm{~K}$ params: 0
CONV3-128: [112×112×128] memory: $112^{*} 112^{*} 128=1.6 \mathrm{M}$ params: $\left(3^{*} 3^{*} 64\right)^{*} 128=73,728$
CONV3-128: [112×112×128] memory: $112^{*} 112^{*} 128=1.6 \mathrm{M}$ params: $\left(3^{*} 3^{*} 128\right)^{*} 128=147,456$
POOL2: [$56 \times 56 \times 128$] memory: $56^{*} 56^{*} 128=400 \mathrm{~K}$ params: 0
CONV3-256: [56x56 256] memory: $56^{*} 56^{*} 256=800 \mathrm{~K}$ params: $(3 * 3 * 128)^{*} 256=294,912$
CONV3-256: [56x56x256] memory: $56^{*} 56^{*} 256=800 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 256\right)^{*} 256=589,824$
CONV3-256: [$56 \times 56 \times 256$] memory: $56^{*} 56^{*} 256=800 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 256\right)^{*} 256=589,824$
POOL2: [$28 \times 28 \times 256$] memory: $28^{*} 28^{*} 256=200 \mathrm{~K}$ params: 0
CONV3-512: [$28 \times 28 \times 512$] memory: $28^{*} 28^{*} 512=400 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 256\right)^{*} 512=1,179,648$
CONV3-512: [$28 \times 28 \times 512]$ memory: $28^{*} 28^{*} 512=400 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$
CONV3-512: [$28 \times 28 \times 512$] memory: $28^{*} 28^{*} 512=400 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$
POOL2: [14×14×512] memory: $14^{*} 14^{*} 512=100 \mathrm{~K}$ params: 0
CONV3-512: [14×14×512] memory: $14^{*} 14^{*} 512=100 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$
CONV3-512: [14×14×512] memory: $14^{*} 14^{*} 512=100 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$
CONV3-512: [14×14×512] memory: $14^{*} 14^{*} 512=100 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$
POOL2: [7×7×512] memory: $7 * 7 * 512=25 \mathrm{~K}$ params: 0
FC: [1×1×4096] memory: 4096 params: $7^{*} 7^{*} 512^{*} 4096=102,760,448$
FC: [$1 \times 1 \times 4096$] memory: 4096 params: $4096^{*} 4096=16,777,216$
FC: [1×1×1000] memory: 1000 params: $4096^{*} 1000=4,096,000$

ConvNet Configuration								
A	A-LRN		B		C		D	E
11 weight layers	11 weight layers		weight ayers		weight yers		weight layers	$\begin{gathered} 19 \text { weight } \\ \text { layers } \end{gathered}$
input (224×224 RGB image)								
conv3-64	$\begin{aligned} & \text { conv3-64 } \\ & \text { LRN } \end{aligned}$		$\begin{aligned} & \text { nv3-64 } \\ & \text { nv3-64 } \end{aligned}$		$\begin{aligned} & \text { 1v3-64 } \\ & \text { Iv3-64 } \end{aligned}$		$\begin{aligned} & \text { onv3-64 } \\ & \text { onv3-64 } \end{aligned}$	$\begin{aligned} & \text { conv3-64 } \\ & \text { conv3-64 } \end{aligned}$
maxpool								
conv3-128	conv3-128	conv conv	$\begin{aligned} & \text { viv3-128 } \\ & \text { iv3-128 } \end{aligned}$		$\begin{aligned} & \text { v3-128 } \\ & \text { v3-128 } \end{aligned}$		$\begin{aligned} & \text { nv3-128 } \\ & \text { nv3-128 } \end{aligned}$	$\begin{aligned} & \text { conv3-128 } \\ & \text { conv3-128 } \end{aligned}$
maxpool								
$\begin{aligned} & \text { conv3-256 } \\ & \text { conv3-256 } \end{aligned}$	$\begin{aligned} & \text { conv3-256 } \\ & \text { conv3-256 } \end{aligned}$		$\begin{aligned} & \text { 1v3-256 } \\ & \text { iv3-256 } \end{aligned}$		$\begin{aligned} & \text { v3-256 } \\ & \text { v3-256 } \\ & \text { v1-256 } \end{aligned}$		$\begin{aligned} & \text { nv3-256 } \\ & \text { nv3-256 } \\ & \text { nv3-256 } \end{aligned}$	conv3-256 conv3-256 conv3-256 conv3-256
maxpool								
$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$		$\begin{aligned} & \text { 1v3-512 } \\ & \text { 1v3-512 } \end{aligned}$		$\begin{aligned} & \text { v3-512 } \\ & \text { v3-512 } \\ & \text { v1-512 } \end{aligned}$		$\begin{aligned} & \text { nv3-512 } \\ & \text { nv3-512 } \\ & \text { nv3-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$
maxpool								
$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$		$\begin{aligned} & \text { iv3-512 } \\ & \text { iv3-512 } \end{aligned}$	conv conv conv	$\begin{aligned} & \text { v3-512 } \\ & \text { v3-512 } \\ & \text { v1-512 } \end{aligned}$		$\begin{aligned} & \text { nv3-512 } \\ & \text { nv3-512 } \\ & \text { nv3-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$
maxpool								
FC-4096								
FC-4096								
FC-1000								
soft-max								
Table 2: Number of parameters (in millions).								
Network			A,A-L	RN	B	C	D	E
Number of parameters			133		133	134	138	144

From: Simonyan \& Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231ro

```
INPUT: [224*224\times3] memory: 224*224*3=150K params: 0 (not counting biases)
CONV3-64: [224\times224\times64] memory: 224*224*64=3.2M params: (3*3*3)*64=1,728
CONV3-64: [224\times224\times64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112\times112\times64] memory: 112*112*64=800K params: 0
CONV3-128: [112\times112\times128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112\times112\times128] memory: 112*112*128=1.6M params: (3*3*128)*128=147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56\times256] memory: 56*56*256=800K params: (3*3*128)*256=294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256=589,824
CONV3-256: [56\times56\times256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28\times28\times256] memory: 28*28*256=200K params: 0
CONV3-512: [28\times28\times512] memory: 28*28*512=400K params: ( }\mp@subsup{3}{}{*}\mp@subsup{3}{}{*}256)*512=1,179,64
CONV3-512: [28\times28\times512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28\times28\times512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14\times14\times512] memory: 14*14*512=100K params: 0
CONV3-512: [14\times14\times512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14\times14\times512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14\times14\times512] memory: 14*14*512=100K params: (3* 3*512)*512 = 2,359,296
POOL2:[7\times7\times512] memory: 7* 7*512=25K params: 0
FC: [1\times1\times4096] memory: 4096 params: 7* **512*4096 = 102,760,448
FC: [1\times1\times4096] memory: }4096\mathrm{ params: 4096*4096 = 16,777,216
FC: [1\times1\times1000] memory: 1000 params: 4096*1000 =4,096,000
```


Most memory usage in convolution layers

Most parameters in FC layers

Case Study: VGGNet

[Simonyan and Zisserman, 2014]
Details:

- ILSVRC'14 2nd in classification, 1st in localization
- Similar training procedure as Krizhevsky 2012
- No Local Response Normalisation (LRN)
- Use VGG16 or VGG19 (VGG19 only slightly better, more memory)
- Use ensembles for best results
- FC7 features generalize well to other tasks

Still very expensive!
TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters

But have become deeper and more complex

From: Szegedy et al. Going deeper with convolution.s.

Case Study: GoogLeNet

[Szegedy et al., 2014]

Deeper networks, focus on computational efficiency

- ILSVRC'14 classification winner (6.7\% top 5 error)
- 22 layers
- Only 5 million parameters! $12 x$ less than AlexNet $27 x$ less than VGG-16
- Efficient "Inception" module
- No FC layers

Case Study: GoogLeNet

[Szegedy et al., 2014]

Deeper networks, focus on computational efficiency

Stem Network: aggressively reduce

- ILSVRC'14 classification winner (6.7\% top 5 error)
- 22 layers
- Only 5 million parameters! 12x less than AlexNet $27 x$ less than VGG-16
- Efficient "Inception" module
- No FC layers
the input feature volume
- Conv $7 \times 7 \times 64$ with stride 2
- MaxPool
- Conv $1 \times 1 \times 64$
- Conv $3 \times 3 \times 192$
- MaxPool

Reduce 224×224 spatial solution to 28×28 with just 418 MFLOP!
(Comparing to 7485 MFLOP of VGG)

Key idea: Repeated blocks and multi-scale features

From: Szegedy et al. Going deeper with convolution.s.
Inception Module

Case Study: GoogLeNet

[Szegedy et al., 2014]
"Inception module": design a good local network topology (network within a network) and then stack these modules on top of each other

Multiple conv filter size diversifies learned features

Inception Module

Case Study: GoogLeNet

[Szegedy et al., 2014]
Inception module

Uses 1×1 "Bottleneck" layers to reduce channel dimension before expensive conv (we will revisit this with ResNet!)

Alternatively, interpret it as applying the same FC layer on each input pixel

1×1 CONV
with 32 filters
(each filter has size
$1 \times 1 \times 64$, and performs a
64-dimensional dot
product)

$1 \times 1 \times 64$

Case Study: GoogLeNet

[Szegedy et al., 2014]
Full GoogLeNet

Stem Network:
Conv-Pool-
2x Conv-Pool

Case Study: GoogLeNet

[Szegedy et al., 2014]

Full GoogLeNet
 average pooling layer is used that spatially averages across each feature map, before final FC layer. No longer multiple expensive FC layers!
(Also used in ResNet)

Case Study: GoogLeNet

[Szegedy et al., 2014]
Full GoogLeNet architecture

Auxiliary classification outputs to inject additional gradient at lower layers (AvgPool-1x1Conv-FC-FC-Softmax)

Why?
1x1 Convolutions

Case Study: GoogLeNet

[Szegedy et al., 2014]
Deeper networks, with computational efficiency

- 22 layers
- Efficient "Inception" module
- Avoids expensive FC layers
- 12x less params than AlexNet
- 27x less params than VGG-16
- ILSVRC'14 classification winner (6.7\% top 5 error)

Inception module

- Convolutional neural networks (CNNs) stack pooling, convolution, nonlinearities, and fully connected (FC) layers
- Feature engineering => architecture engineering!
- Tons of small details and tips/tricks
- Considerations: Memory, compute/FLO, dimensionality reduction, diversity of features, number of parameters/capacity, etc.

