Topics:

Convolutional Neural Networks

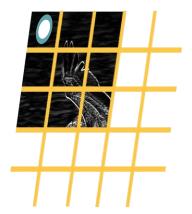
CS 4644-DL / 7643-A ZSOLT KIRA

• Assignment 2

- Implement convolutional neural networks
- Resources (in addition to lectures):
 - DL book: Convolutional Networks
 - CNN notes https://www.cc.gatech.edu/classes/AY2022/cs7643 spring/assets/L10_cnns_notes.pdf
 - Backprop notes
 <u>https://www.cc.gatech.edu/classes/AY2023/cs7643_spring/assets/L10_cnns_backprop_notes.pdf</u>
 - HW2 Tutorial, Conv backward
 - Slower OMSCS lectures on dropbox: Module 2 Lessons 5-6 (M2L5/M2L6) (https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX_Uy1TkpF_yvIzX0nPa?dl=0)
- Meta Office hours Friday 02/16 3pm EST!
 - Pytorch & scalable training
 - Module 2, Lesson 8 (M2L8), on dropbox

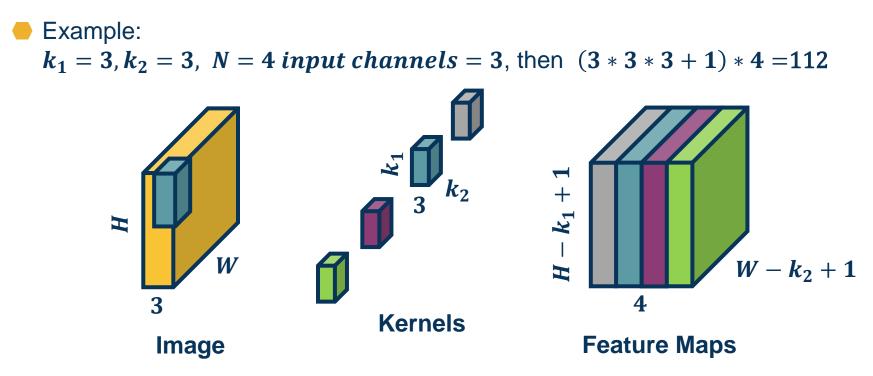
$$X(0:2,0:2) = \begin{bmatrix} 200 & 150 & 150 \\ 100 & 50 & 100 \\ 25 & 25 & 10 \end{bmatrix} \qquad K' = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix} \longrightarrow X(0:2,0:2) \cdot K' = 65 + \text{bias}$$

Dot product (element-wise multiply and sum)



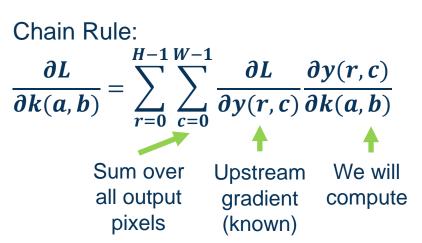
Number of parameters with N filters is: $N * (k_1 * k_2 * 3 + 1)$

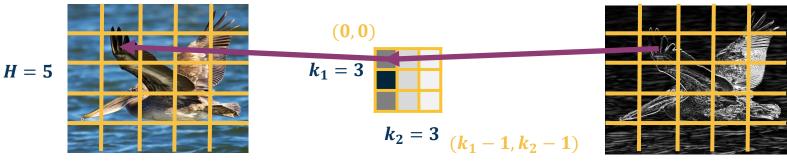
Number of Parameters



Need to incorporate all upstream gradients:

 $\left\{\frac{\partial L}{\partial y(0,0)}, \frac{\partial L}{\partial y(0,1)}, \dots, \frac{\partial L}{\partial y(H,W)}\right\}$





 $W = 5 \qquad (H-1, W-1)$

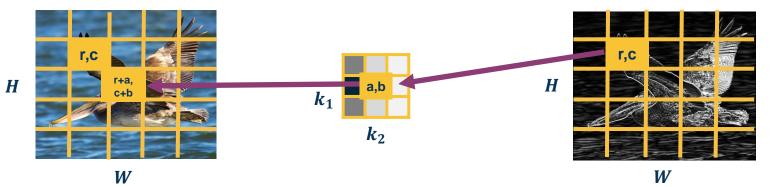
Chain Rule over all Output Pixels

 $\frac{\partial y(r,c)}{\partial k(a,b)} = x(r+a,c+b)$

$$\frac{\partial L}{\partial k(a,b)} = \sum_{r=0}^{H-1} \sum_{c=0}^{W-1} \frac{\partial L}{\partial y(r,c)} x(r+a,c+b)$$

Does this look familiar?

Cross-correlation between upstream gradient and input! (until $k_1 \times k_2$ output)



 $\frac{\partial L}{\partial x} = \frac{\partial L}{\partial y} \quad \frac{\partial y}{\partial x}$

Gradient for input (to pass to prior layer)

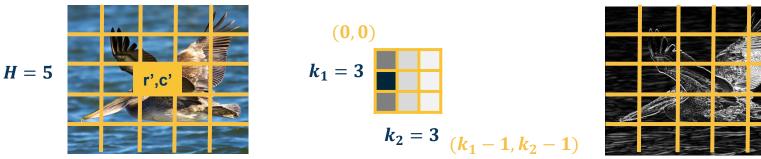
Calculate one pixel at a time

$$\frac{\partial L}{\partial x(r',c')}$$

What does this input pixel affect at the output?

Neighborhood around it (where part of the kernel touches it)

(0,0)

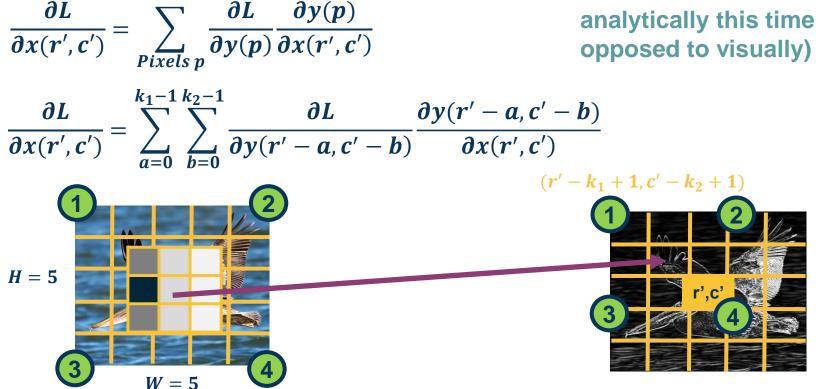


 $W = 5 \qquad (H-1, W-1)$

What an Input Pixel Affects at Output

Chain rule for affected pixels (sum gradients):

Let's derive it analytically this time (as opposed to visually)



Summing Gradient Contributions

Plugging in to earlier equation:

$$\frac{\partial L}{\partial x(r',c')} = \sum_{a=0}^{k_1-1} \sum_{b=0}^{k_2-1} \frac{\partial L}{\partial y(r'-a,c'-b)} \frac{\partial y(r'-a,c'-b)}{\partial x(r',c')}$$

Does this look familiar?

$$=\sum_{a=0}^{k_1-1}\sum_{b=0}^{k_2-1}\frac{\partial L}{\partial y(r'-a,c'-b)}k(a,b)$$

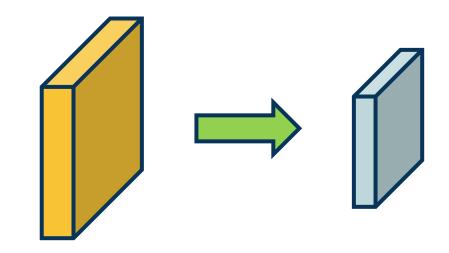
Again, all operations can be implemented via matrix multiplications (same as FC layer)! Convolution between upstream gradient and kernel!

(can implement by flipping kernel and cross- correlation)

- Convolutions are mathematical descriptions of striding linear operation
- In practice, we implement **cross-correlation neural networks!** (still called convolutional neural networks due to history)
 - Can connect to convolutions via duality (flipping kernel)
 - Convolution formulation has mathematical properties explored in ECE
- Duality for forwards and backwards:
 - Forward: Cross-correlation
 - Backwards w.r.t. K: Cross-correlation b/w upstream gradient and input
 - Backwards w.r.t. X: Convolution b/w upstream gradient and kernel
 - In practice implement via cross-correlation and flipped kernel
- All operations still implemented via **efficient linear algebra** (e.g. matrixmatrix multiplication)

Pooling Layers

- Dimensionality reduction is an important aspect of machine learning
- Can we make a layer to explicitly down-sample image or feature maps?



Yes! We call one class of these operations pooling operations

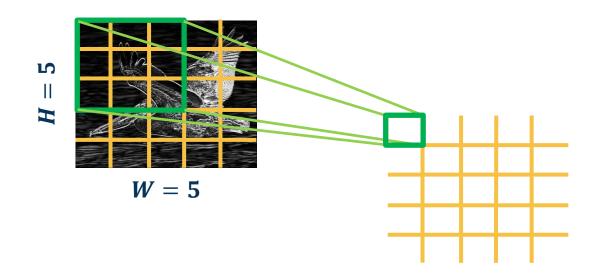
Parameters

- kernel_size the size of the window to take a max over
- stride the stride of the window. Default value is kernel_size
- padding implicit zero padding to be added on both sides

From: https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html#torch.nn.MaxPool2J

Example: Max pooling

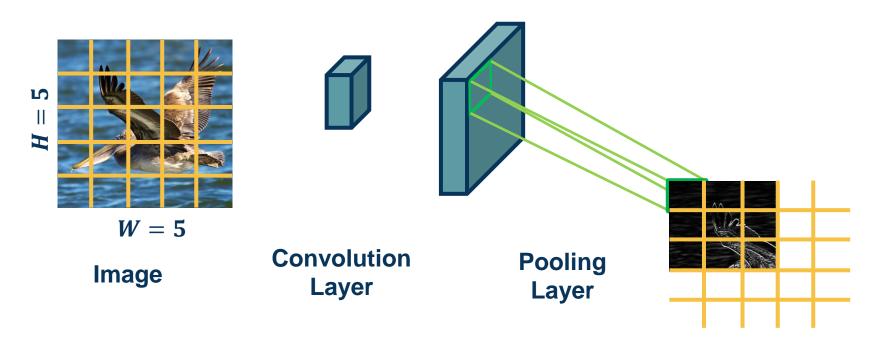
• Stride window across image but perform per-patch max operation $X(0:2, 0:2) = \begin{bmatrix} 200 \ 150 \ 150 \ 100 \ 25 \ 25 \ 10 \end{bmatrix} \longrightarrow max(0:2, 0:2) = 200$



Max Pooling

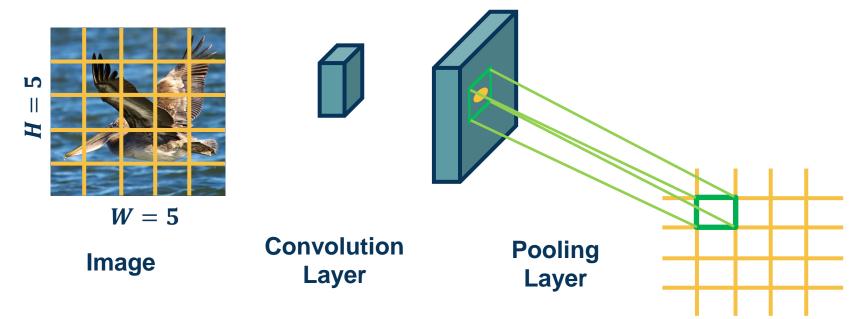
How many learned parameters does this layer have?

Since the **output** of convolution and pooling layers are **(multi-channel) images**, we can sequence them just as any other layer



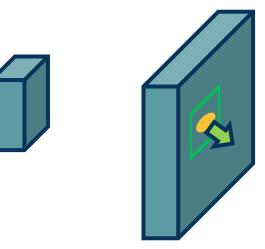
This combination adds some invariance to translation of the features

If feature (such as beak) translated a little bit, output values still remain the same



Convolution by itself has the property of equivariance

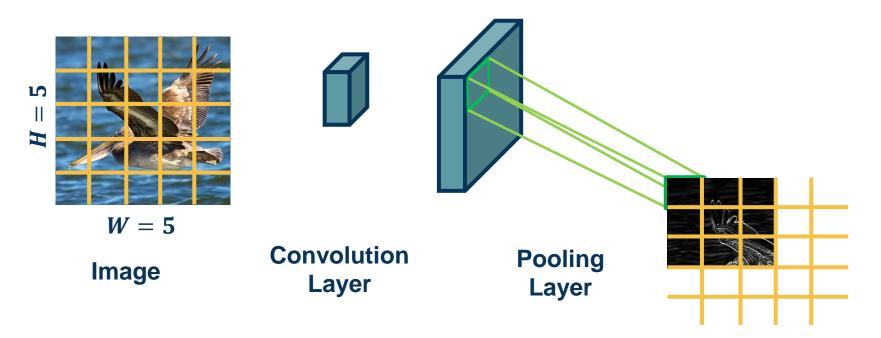
If feature (such as beak) translated a little bit, output values move by the same translation



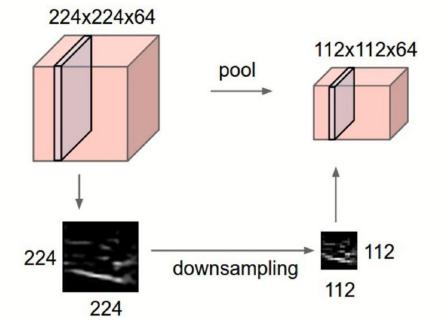
W = 5

Simple Convolutional Neural Networks

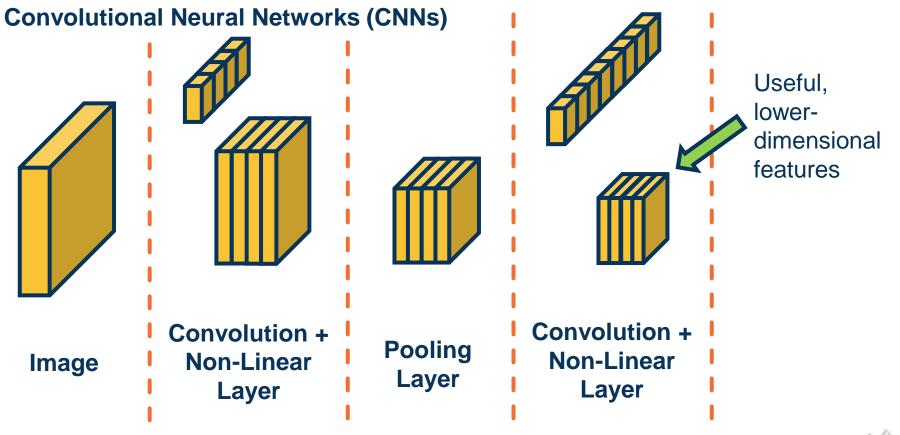
Since the **output** of convolution and pooling layers are **(multi-channel) images**, we can sequence them just as any other layer



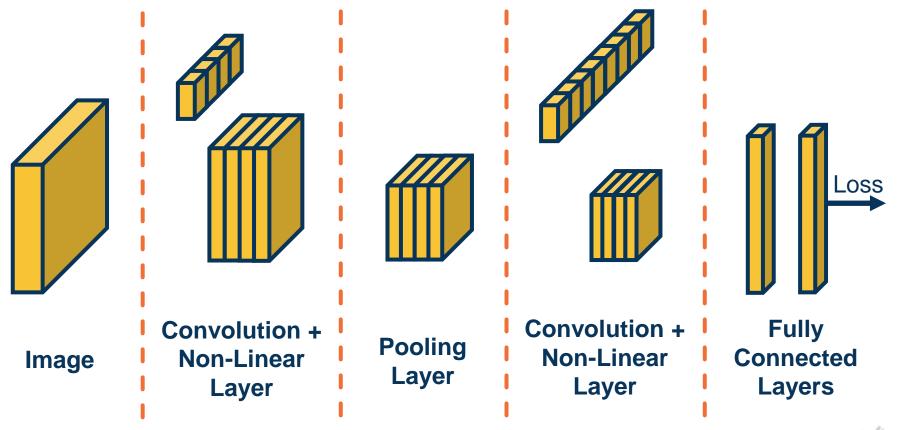
- makes the representations spatially smaller
- saves computation (GPU mem & speed), allows go deeper
- operates over each activation map independently:

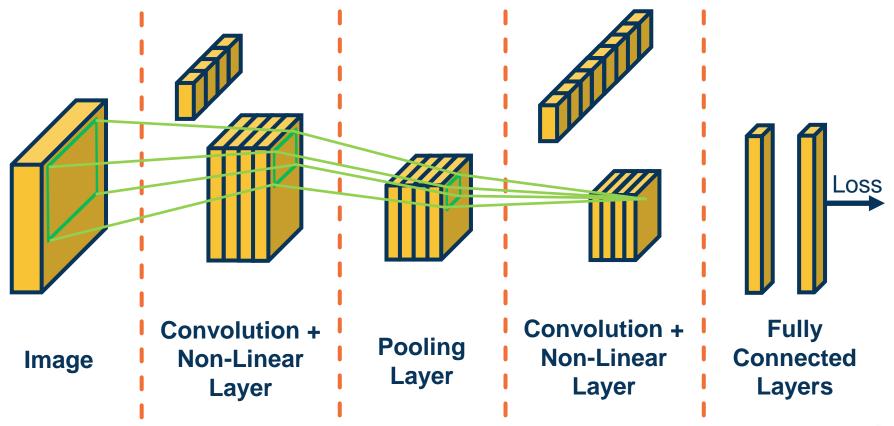


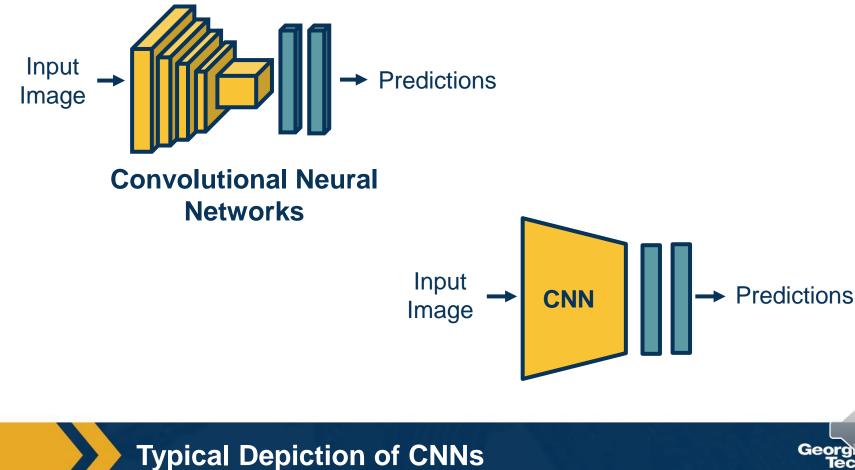
From: Slides by CS 231n, Danfei Xu



Alternating Convolution and Pooling







These architectures have existed since 1980s

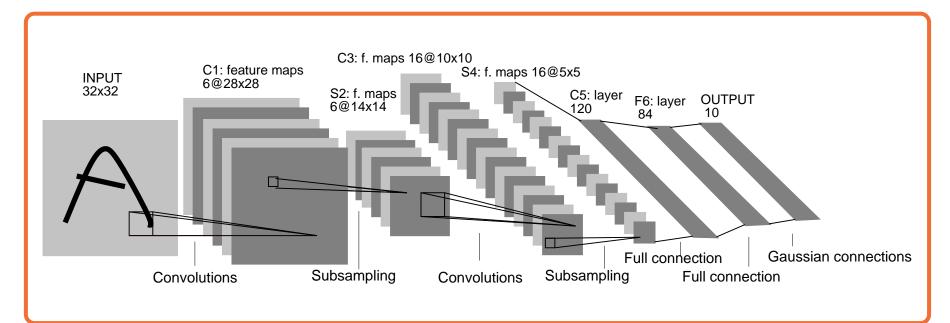


Image Credit: Yann LeCun, Kevin Murphy

Georg a Tech

Handwriting Recognition

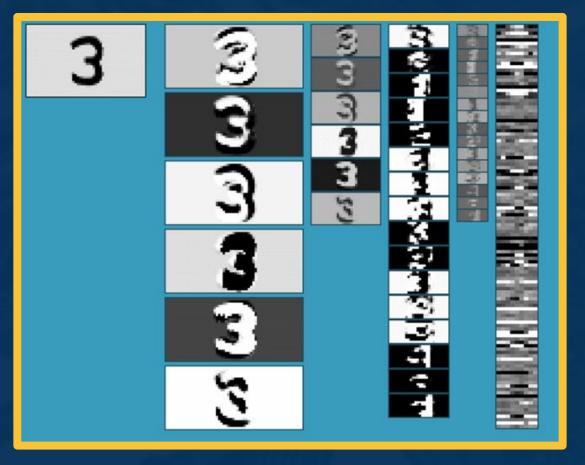


Image Credit: Yann LeCun Georg a

Translation Equivariance (Conv Layers) & Invariance (Output)

Image Credit: Yann LeCun Georgia

(Some) Rotation Invariance

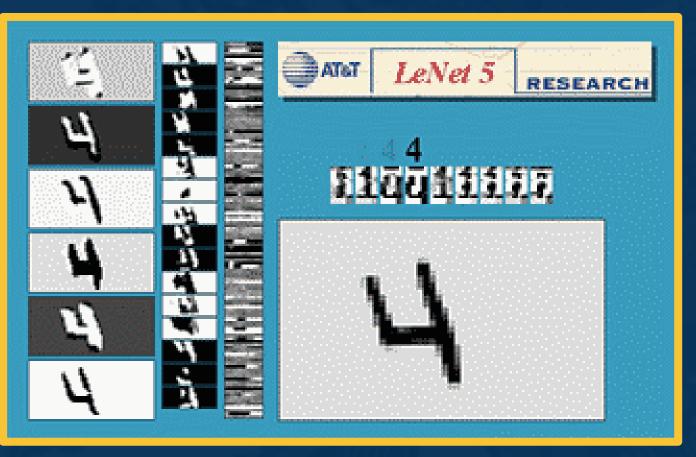
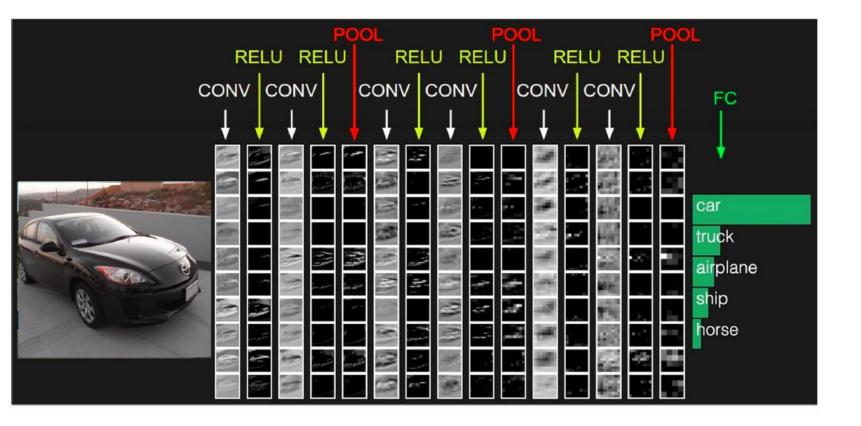


Image Credit: Yann LeCun Georga

(Some) Scale Invariance

Image Credit: Yann LeCun Georgaa



Advanced Convolutional Networks

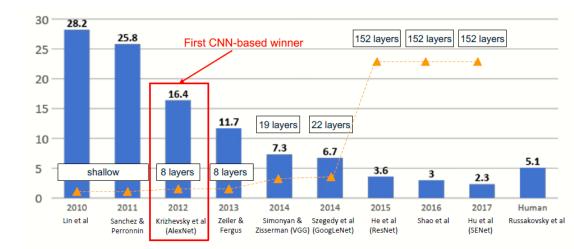
The **ImageNet** dataset contains 14,197,122 annotated images according to the WordNet hierarchy. ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is a benchmark for image classification and object detection based on the dataset.

Benchmarking Models

The Importance of Benchmarks

Case Studies

- AlexNet
- VGG
- GoogLeNet
- ResNet



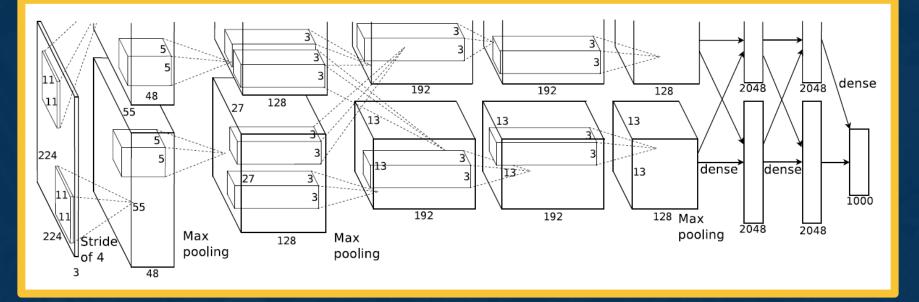
Also....

- SENet
- Wide ResNet
- ResNeXT

- DenseNet
- MobileNets
- NASNet
- EfficientNet
- ConvNeXt v1/v2

The Space of CNN Architectures

AlexNet - Architecture



From: Krizhevsky et al., ImageNet Classification with Deep ConvolutionalNeural Networks, 2012.

Case Study: AlexNet

[Krizhevsky et al. 2012]

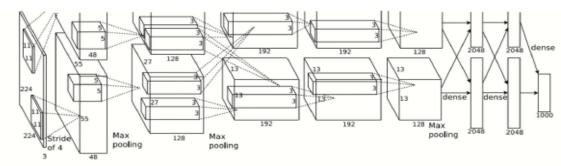
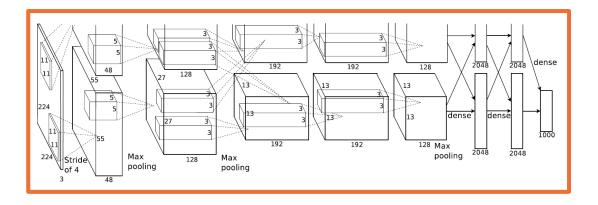


Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

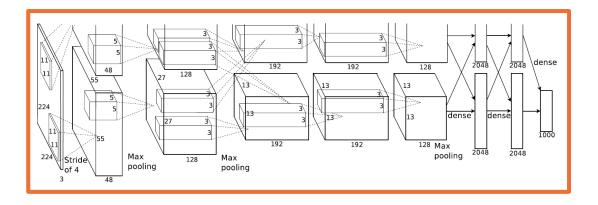


Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4 => Q: what is the output volume size? Hint: (227-11)/4+1 = 55 W' = (W - F + 2P) / S + 1

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r

AlexNet – Layers and Key Aspects



Input: 227x227x3 images

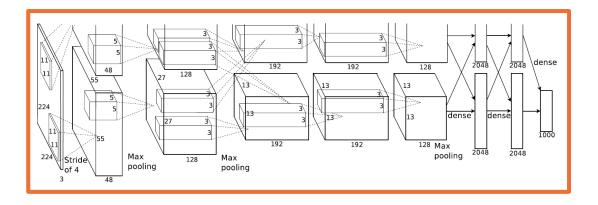
Output volume [55x55x96]

First layer (CONV1): 96 11x11 filters applied at stride 4

W' = (W - F + 2P) / S + 1

227 227 3 55×55 96

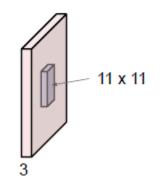
From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r



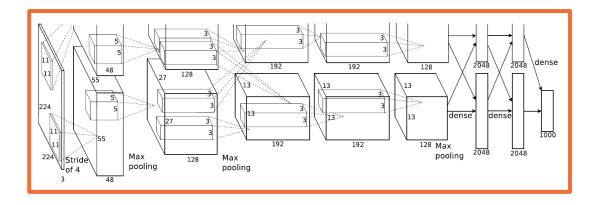
Input: 227x227x3 images

```
First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Output volume [55x55x96]
```

Q: What is the total number of parameters in this layer?



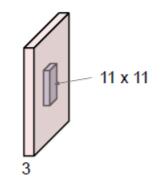
From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r



Input: 227x227x3 images

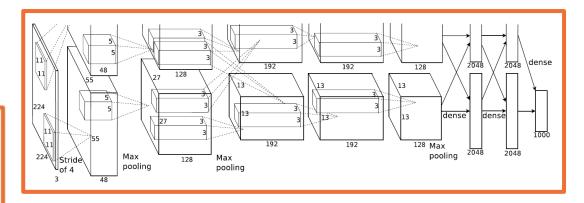
```
First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Output volume [55x55x96]
```

Parameters: (11*11*3 + 1)*96 = 35K



From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r

Full (simplified) AlexNet architecture: [224x224x3] INPUT [55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 [27x27x96] MAX POOL1: 3x3 filters at stride 2 [27x27x96] NORM1: Normalization layer [27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 [13x13x256] MAX POOL2: 3x3 filters at stride 2 [13x13x256] NORM2: Normalization layer [13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 [13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 [13x13x256] MAX POOL3: 3x3 filters at stride 1, pad 1 [13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 [6x6x256] MAX POOL3: 3x3 filters at stride 2 [4096] FC6: 4096 neurons [4096] FC7: 4096 neurons [1000] FC8: 1000 neurons (class scores)



Key aspects:

- ReLU instead of sigmoid or tanh
- Specialized normalization layers
- PCA-based data augmentation
- Dropout
- Ensembling

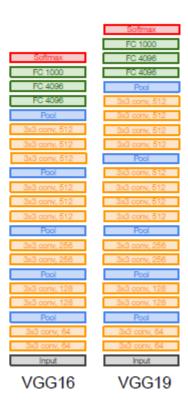
From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r

Small filters, Deeper networks

8 layers (AlexNet) -> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC'13 (ZFNet) -> 7.3% top 5 error in ILSVRC'14

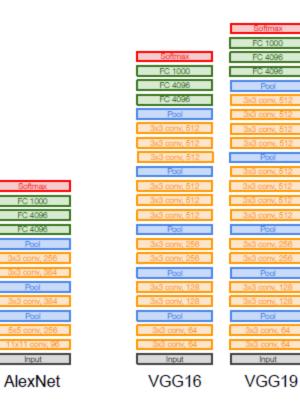


From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r

Q: Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers has same effective receptive field as one 7x7 conv layer

Q: What is the effective receptive field of three 3x3 conv (stride 1) layers?

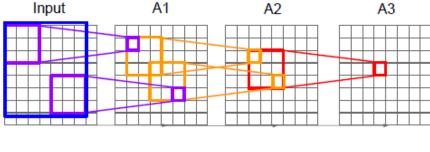


FC 4096

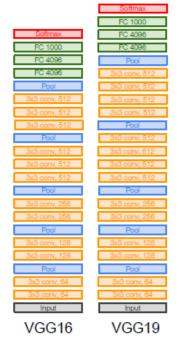
C 4096

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r

Q: What is the effective receptive field of three 3x3 conv (stride 1) layers?



Conv1 (3x3) Conv2 (3x3) Conv3 (3x3)



But deeper, more non-linearities

And fewer parameters: $3 * (3^2C^2)$ vs. 7^2C^2 for C channels per layer

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r

INPUT: [224x224x3] memory: 224*224*3=150K params: 0 (not counting biases)	Г	ConvNet Configuration					
		Α	A-LRN	В	С	D	Е
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728		11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864		layers	layers	layers	layers	layers	layers
POOL2: [112x112x64] memory: 112*112*64=800K params: 0		input (224×224 RGB image)					
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728		conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
			LRN	conv3-64	conv3-64	conv3-64	conv3-64
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456		conv3-128	conv3-128	max conv3-128	conv3-128	conv3-128	conv3-128
POOL2: [56x56x128] memory: 56*56*128=400K params: 0		conv3-128	011/3-128	conv3-128	conv3-128	conv3-128	conv3-128
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912				max		conv5 120	conv5 120
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824		conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824		conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
POOL2: [28x28x256] memory: 28*28*256=200K params: 0					conv1-256	conv3-256	conv3-256
							conv3-256
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648		2.512	2 610	max		2 610	2.512
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296		conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296		conv5-512	011/3-512	conv5-512	conv1-512	conv3-512	conv3-512
POOL2: [14x14x512] memory: 14*14*512=100K params: 0					convi 012	00000012	conv3-512
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296	maxpool						
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296		conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296		conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
					conv1-512	conv3-512	conv3-512 conv3-512
POOL2: [7x7x512] memory: 7*7*512=25K params: 0							conv5-512
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448		maxpool FC-4096					
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216		FC-4096					
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000	FC-1000						
			soft-max				

VGG

Table 2: Number of parameters (in millions).									
Network	A,A-LRN	В	С	D	E				

 Number of parameters
 133
 133
 134
 138
 144

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r

Most memory usage in convolution layers

Most parameters in FC layers

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231m

Parameters and Memory

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Details:

- ILSVRC'14 2nd in classification, 1st in localization
- Similar training procedure as Krizhevsky 2012
- No Local Response Normalisation (LRN)
- Use VGG16 or VGG19 (VGG19 only slightly better, more memory)
- Use ensembles for best results
- FC7 features generalize well to other tasks

Still very expensive!

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd) TOTAL params: 138M parameters

			Softmax
			FC 1000
		Softmax	FC 4096
	fc8	FC 1000	FC 4098
	fc7	FC 4098	Pool
	fc6	FC 4098	8x8 conv, 512
		Pool	3x3 conv. 512
	conv5-3	3x3 conv, 512	3x3 conv. 512
	conv5-2	3x3 conv, 512	3x3 conv. 512
	conv5-1	3x3 conv. 512	Pool
		Pool	3x3 conv. 512
Softmax	conv4-3	3x3 conv. 512	3x3 conv, 512
FC 1000	conv4-2	3x3 conv, 512	3x3 conv, 512
FC 4096	conv4-1	3x3 conv, 512	3x3 conv. 512
FC 4096		Pool	Pool
Pool	conv3-2	3x3 conv, 258	3x3 conv, 258
3x3 conv. 258	conv3-1	3x3 conv. 258	3x3 conv. 258
3x3 conv. 384		Pool	Pool
Pool	conv2-2	3x3 conv. 128	3x3 conv. 128
3x3 conv. 384	conv2-1	3x3 conv. 128	3x3 conv. 128
Pool	l	Pool	Pool
5x5 conv, 258	conv1-2	3x3 conv, 64	3x3 conv, 64
11x11 conv, 96	conv1-1	3x3 conv, 64	3x3 conv, 64
Input		Input	Input
AlexNet		VGG16	VGG19

51

fc7

fc6

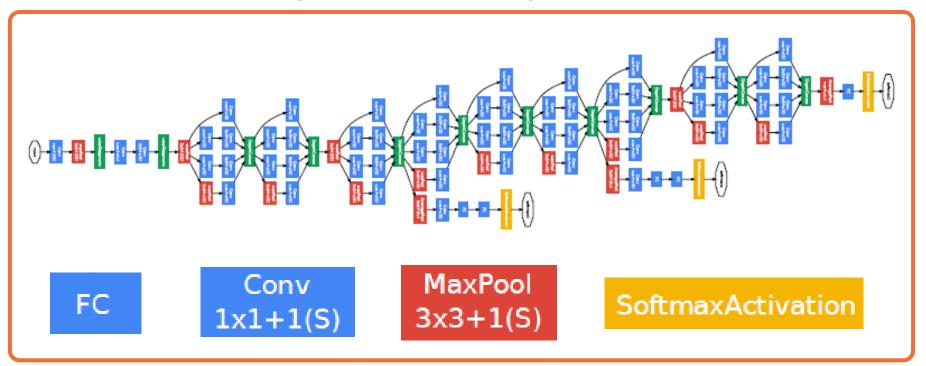
conv5

conv4

conv3

conv2 conv1

But have become deeper and more complex

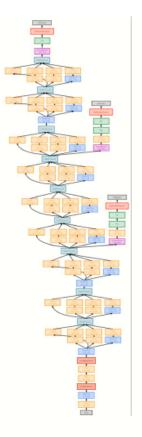


From: Szegedy et al. Going deeper with convolutions

[Szegedy et al., 2014]

Deeper networks, focus on computational efficiency

- ILSVRC'14 classification winner (6.7% top 5 error)
- 22 layers
- Only 5 million parameters!
 12x less than AlexNet
 27x less than VGG-16
- Efficient "Inception" module
- No FC layers



From: Szegedy et al. Going deeper with convolutions

[Szegedy et al., 2014]

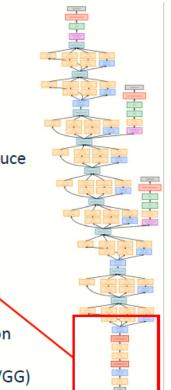
Deeper networks, focus on computational efficiency

- ILSVRC'14 classification winner (6.7% top 5 error)
- 22 layers
- Only 5 million parameters!
 12x less than AlexNet
 27x less than VGG-16
- Efficient "Inception" module
- No FC layers

Stem Network: aggressively reduce

- the input feature volume
- Conv 7 x 7 x 64 with stride 2
- MaxPool
- Conv 1 x 1 x 64
- Conv 3 x 3 x 192
- MaxPool

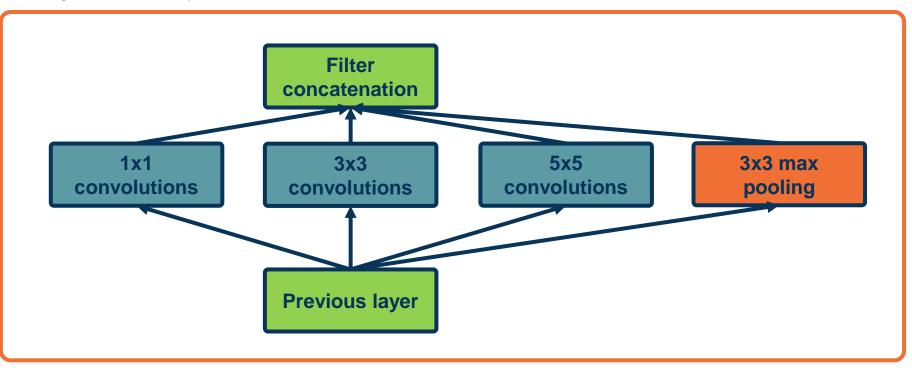
Reduce 224 x 224 spatial solution to 28 x 28 with just 418 MFLOP! (Comparing to 7485 MFLOP of VGG)



From: Szegedy et al. Going deeper with convolutions

Inception Architecture

Key idea: Repeated blocks and multi-scale features

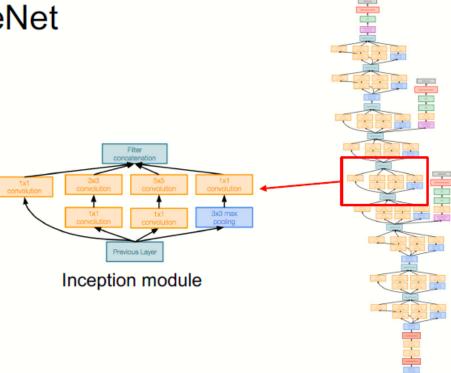


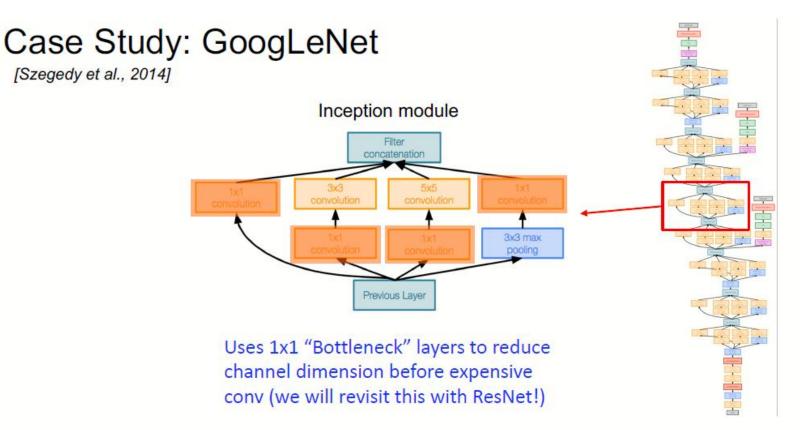
From: Szegedy et al. Going deeper with convolutions

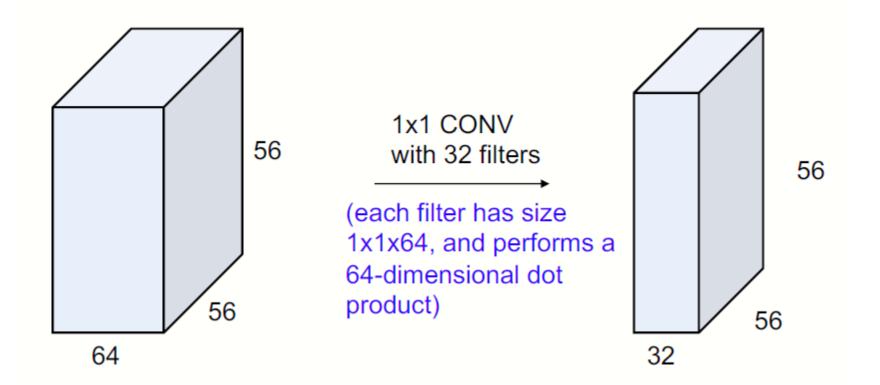
[Szegedy et al., 2014]

"Inception module": design a good local network topology (network within a network) and then stack these modules on top of each other

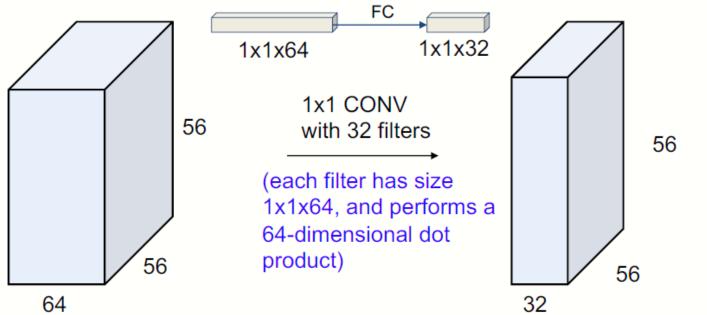
Multiple conv filter size diversifies learned features



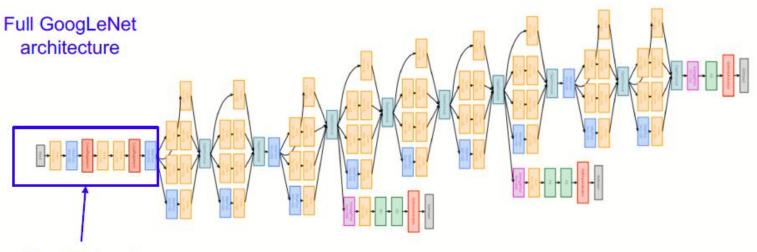




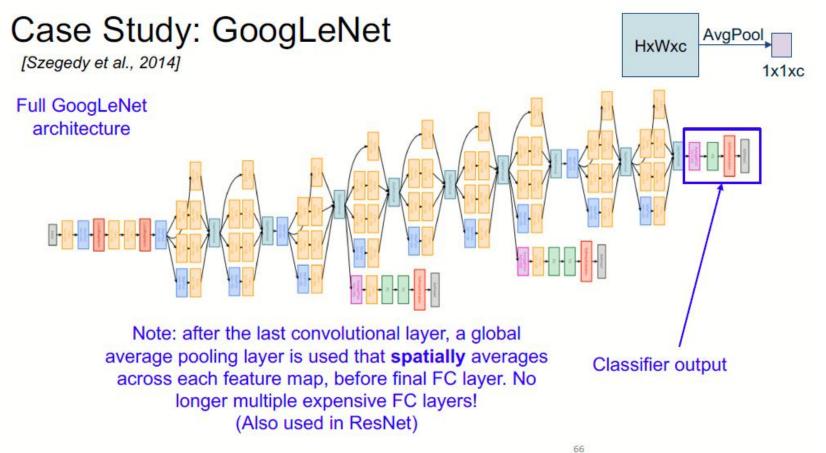
Alternatively, interpret it as applying the same FC layer on each input pixel



[Szegedy et al., 2014]

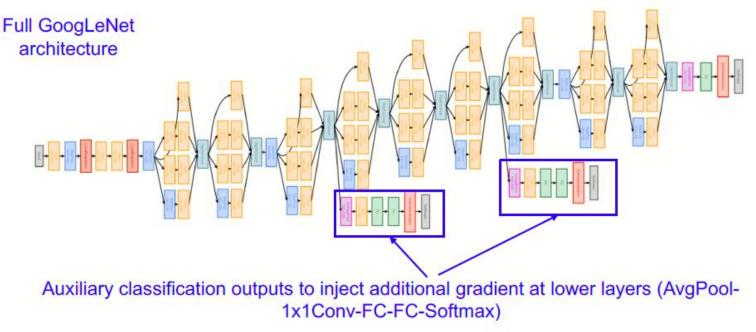


Stem Network: Conv-Pool-2x Conv-Pool



Georg a Tech

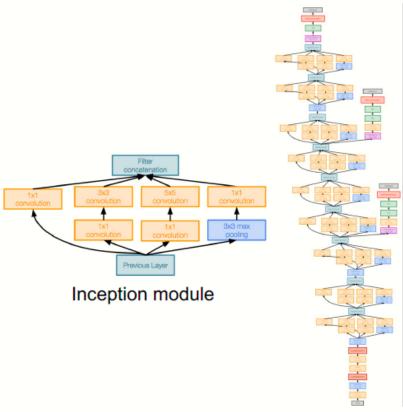
[Szegedy et al., 2014]



[Szegedy et al., 2014]

Deeper networks, with computational efficiency

- 22 layers
- Efficient "Inception" module
- Avoids expensive FC layers
- 12x less params than AlexNet
- 27x less params than VGG-16
- ILSVRC'14 classification winner (6.7% top 5 error)



69

 Convolutional neural networks (CNNs) stack pooling, convolution, nonlinearities, and fully connected (FC) layers

Feature engineering => architecture engineering!

- Tons of small details and tips/tricks
- Considerations: Memory, compute/FLO, dimensionality reduction, diversity of features, number of parameters/capacity, etc.

