Topics:

- Data Augmentation
- Recurrent Neural Networks (RNNs)

CS 4644-DL / 7643-A ZSOLT KIRA

- Assignment 2
- Implement convolutional neural networks
- Resources (in addition to lectures):
- DL book: Convolutional Networks
- CNN notes https://www.cc.gatech.edu/classes/AY2022/cs7643 spring/assets/L10 cnns notes.pdf
- Backprop notes
https://www.cc.gatech.edu/classes/AY2023/cs7643 spring/assets/L10 cnns backprop notes.pdf
- HW2 Tutorial (@176), Conv backward (@181)
- Slower OMSCS lectures on dropbox: Module 2 Lessons 5-6 (M2L5/M2L6)
(https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX Uy1TkpF yvizXOnPa?dl=0)
- FB/Meta Office hours TODAY 02/16 3pm EST!
- Pytorch \& scalable training
- Module 2, Lesson 8 (M2L8), on dropbox
- GPU resources: PACE-ICE and Google Cloud announced

10 months ago

$6-7$ second videos

Video Generation

Video Generation
https://openai.com/sora Georgis rech M

Now

Video Generation

https://openai.com/sora Georgia Tech M

Video Generation - Failure Cases

Fully
Connected Layers

Adding a Fully Connected Layer

ResNet Details

- If ReLU is used as non-linearity, does that mean we can't have negative residuals?
- Well....

```
def forward(self, x: Tensor) -> Tensor:
    identity = x
    out = self.conv1(x)
    out = self.bn1(out)
    out = self.relu(out)
    out = self.conv2(out)
    out = self.bn2(out)
    if self.downsample is not None:
        identity = self.downsample(x)
    out += identity
    out = self.relu(out)
    return out
```

Step 3: (Continue to) train on new dataset

- Finetune: Update all parameters
- Freeze feature layer: Update only last layer weights (used when not enough data)

Replace last layer with new fully-connected for output nodes per new category

Interpretation 1: The model should not rely too heavily on particular features

- If it does, it has probability $\mathbf{1 - p}$ of losing that feature in an iteration

Interpretation 2: Training $\mathbf{2}^{\boldsymbol{n}}$
 networks:

- Each configuration is a network
- Most are trained with 1 or 2 minibatches of data

Data
 Augmentation

Data augmentation - Performing a range of transformations to the data

- This essentially "increases" your dataset
- Transformations should not change meaning of the data (or label has to be changed as well)
Simple example: Image Flipping

Data Augmentation: Motivation

Random crop

- Take different crops during training
- Can be used during inference too!

CutMix

Color Jitter

From https://mxnet.apache.org/versions/1.5.0/tutorials/gluon/data_augmentation.html
Color Jitter

We can apply generic affine transformations:TranslationRotationScale

- Shear

We can combine these transformations to add even more variety!

From https://mxnet.apache.org/versions/1.5.0/tutorials/gluon/data_augmentation.html
Combining Transformations

What do CNNs Learn?

VGG Layer-by-Layer Visualization

From: "Visualizing and Understanding Convolutional Networks, Zeiler \& Fergus, 2014.

VGG Layer-by-Layer Visualization

VGG Layer-by-Layer Visualization

From: "Visualizing and Understanding Convolutional Networks, Zeiler \& Fergus, 2014.

Module 3 Introduction

$\underset{\text { Data }}{\text { Input }} \rightarrow \curvearrowleft \sim$ Predictions
Fully Connected Neural Networks

Convolutional Neural
Networks

Recurrent Neural Networks

Attention-Based Networks

Graph-Based Networks

Fully Connected Neural Networks

Recurrent Neural Networks

 rech M

Why model sequences?

Sequences are everywhere...

Sequences in Input or Output?

- It's a spectrum...
one to one

Input: No sequence
Output: No sequence
Example: "standard" classification /
regression problems

Sequences in Input or Output?

- It's a spectrum...

Input: No sequence
Output: No sequence
Example: "standard" classification /
regression problems
Input: No sequence
Output: Sequence
Example: Im2Caption

Sequences in Input or Output?

- It's a spectrum...

Input: No sequence
Output: No sequence
Example: "standard" classification / regression problems
one to many

Input: No sequence Output: Sequence
Example: Im2Caption
many to one

Output: No sequence
Example: sentence classification, multiple-choice question answering

Sequences in Input or Output?

- It's a spectrum...

Input: No sequence
Output: No sequence
Example: "standard" classification /
regression problems
many to one

many to many

Input: Sequence
Output: Sequence
Example: machine translation, video classification, video captioning, open-ended question answering

What's wrong with MLPs?

- Problem 1: Can’t model sequences
- Fixed-sized Inputs \& Outputs
- No temporal structure

What's wrong with MLPs?

- Problem 1: Can’t model sequences
- Fixed-sized Inputs \& Outputs
- No temporal structure
- Problem 2: Pure feed-forward processing
- No "memory", no feedback

3 Key Ideas

- The notion of memory (state)
- We want to propagate information across the sequence
- We will do this with state, represented by a vector (embedding/representation)
- Just as a CNN represents an image with the final hidden vector/bmedding before the final classifier

3 Key Ideas

- The notion of memory (state)
- Parameter Sharing
- in computation graphs = adding gradients

Gradients add at branches

3 Key Ideas

- The notion of memory (state)
- Parameter Sharing
- in computation graphs = adding gradients
- "Unrolling"
- in computation graphs with parameter sharing

New Words

- Recurrent Neural Networks (RNNs)
- Recursive Neural Networks
- General family; think graphs instead of chains
- Types:
- "Vanilla" RNNs (Elman Networks)
- Long Short Term Memory (LSTMs)
- Gated Recurrent Units (GRUs)
- ...
- Algorithms
- BackProp Through Time (BPTT)
- BackProp Through Structure (BPTS)

Recurrent Neural Network

- Idea: Input is a sequence and we will process it sequentially though a neural network module with state
- For each timestep (element of sequence):

Recurrent Neural Network

(Vanilla) Recurrent Neural Network

The state consists of a single "hidden" vector \mathbf{h} :

$$
\begin{gathered}
y_{t}=W_{h y} h_{t}+b_{y} \\
h_{t}=f_{W}\left(h_{t-1}, x_{t}\right) \\
\downarrow \\
h_{t}=\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}+b_{h}\right)
\end{gathered}
$$

(Vanilla) Recurrent Neural Network

The state consists of a single "hidden" vector \mathbf{h} :

$$
\begin{aligned}
& y_{t}=W_{h y} h_{t}+b_{y} \\
h_{t} & =\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}\right) \\
= & \tanh \left(\left(\begin{array}{ll}
W_{h h} & \left.W_{h x}\right)
\end{array}\binom{h_{t-1}}{x_{t}}\right)\right. \\
= & \tanh \left(W\binom{h_{t-1}}{x_{t}}\right)
\end{aligned}
$$

Recurrent Neural Network

We can process a sequence of vectors \mathbf{x} by applying a recurrence formula at every time step:

Recurrent Neural Network

We can process a sequence of vectors \mathbf{x} by applying a recurrence formula at every time step:

$$
h_{t}=f_{W}\left(h_{t-1}, x_{t}\right)
$$

Notice: the same function and the same set of parameters are used at every time step.

RNN: Computational Graph

RNN: Computational Graph

RNN: Computational Graph

RNN: Computational Graph

Re-use the same weight matrix at every time-step

RNN: Computational Graph: Many to Many

RNN: Computational Graph: Many to Many

RNN: Computational Graph: Many to One

RNN: Computational Graph: One to Many

Sequence to Sequence: Many-to-one + one-to-many

Many to one: Encode input sequence in a single vector

Sequence to Sequence: Many-to-one + one-to-many

One to many: Produce output
sequence from single input vector

Example:
 Character-level
 Language Model

Vocabulary:
[h,e,l,o]
Example training
sequence:
"hello"

Example:
 Character-level $h_{t}=\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}+b_{h}\right)$ Language Model
 Vocabulary:
 [h,e,l,o]
 Example training sequence: "hello"

Example:
 Character-level
 Language Model

Vocabulary:
[h,e,l,o]
Example training sequence:
"hello"

Training Time: MLE / "Teacher Forcing"

Example:
 Character-level
 Language Model

Vocabulary:
[h,e,l,o]
Example training sequence:
"hello"

Test Time: Sample / Argmax / Beam Search

Example:
Character-level Language Model Sampling
Vocabulary:
[h,e,l,o]
At test-time sample characters one at a time, feed back to model

Test Time: Sample / Argmax / Beam Search

Example:
Character-level
Language Model Sampling
Vocabulary:
[h,e,l,o]
At test-time sample characters one at a time, feed back to model

Test Time: Sample / Argmax / Beam Search

Example:
Character-level
Language Model Sampling
Vocabulary:
[h,e,l,o]
At test-time sample characters one at a time, feed back to model

Test Time: Sample / Argmax / Beam Search

Example:
Character-level
Language Model
Sampling
Vocabulary:
[h,e,l,o]
At test-time sample characters one at a time, feed back to model

Can also feed in predictions during training (student forcing)

Truncated Backpropagation through time

Run forward and backward through chunks of the sequence instead of whole sequence

Truncated Backpropagation through time

Carry hidden states forward in time forever, but only backpropagate for some smaller number of steps

Truncated Backpropagation through time

THE SONNETS

by William Shakespeare
From fairest creatures we desire increase,
That thereby beauty's sose
That thereby beauty's rose might never die
But as the riper should by time decease,
His tender heir might bear his memory:
His tender heir might bear his memory:
But thou, contracted to thine own bright eyes,
But thus, contracted to thine own bright eyes,
Feedst thy light's flame with self-subbstantial fuel, Making g famine where abundance lies, Thyself thy foe, to thy sweet self too cruel:
Thou that art now the world's fresh ornament, And only herald to the gaudy spring.
Within thine own bud buriest thy Within thine own bud buriest thy conten
And tender churl mak'st waste in niggar And tender churl mak'st waste in niggard
Pity the world, or else this glutton be Pity the world, or else this glutton be,
To eat the world's due, by the grave and thee.

When forty winters shall besiege thy brow, And dig deep trenches in thy beautys field Thy youth's proud livery so gazed on now,
Will be a tatter'd weed of small worth held Then being asked, where all thy beauty lie Where all the treasure of thy lusty days; To say, within thine own deep sunken eyes,
Were an all-eating shame, and thriftless praise How much more praise deserv'd thy beautr's use. If thou couldst answer This fair child of mine
Shall sum my count and make my ld excuse Shall sum my count, and make my old exc
Proving his beauty by succession thine! This were to be new made when thou art old, And see thy blood warm when thou feel'st it cold
at first: tyntd-iafhatawiaoihrdemot lytdws e,tfti, astai fogoh eoase rranbyne 'nhthnee e plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike, aoaenns lng

train more

"Tmont thithey" fomesscerliund
Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

train more

Aftair fall unsuch that the hall for Prince Velzonski's that me of her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort how, and Gogition is so overelical and ofter.

train more

"Why do what that day," replied Natasha, and wishing to himself the fact the princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.

PANDARUS:

Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed, And who is but a chain and subjects of his death, I should not sleep.

Second Senator:
They are away this miseries, produced upon my soul, Breaking and strongly should be buried, when I perish The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:
They would be ruled after this chamber, and my fair nues begun out of the fact, to be conveyed, Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'11 drink it

VIOLA:
Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire,
To show the reining of the raven and the wars
To grace my hand reproach within, and not a fair are hand, That Caesar and my goodly father's world;
When I was heaven of presence and our fleets,
We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there
My power to give thee but so much as hell: Some service in the noble bondman here, Would show him to her wine.

KING LEAR:
O, if you were a feeble sight, the courtesy of your law, Your sight and several breath, will wear the gods With his heads, and my hands are wonder'd at the deeds, So drop upon your lordship's head, and your opinion Shall be against your honour.

The Stacks Project: open source algebraic geometry textbook

For $\bigoplus_{n=1, \ldots, m}$ where $\mathcal{L}_{m_{\bullet}}=0$, hence we can find a closed subset \mathcal{H} in \mathcal{H} and any sets \mathcal{F} on X, U is a closed immersion of S, then $U \rightarrow T$ is a separated algebraic space.
Proof. Proof of (1). It also start we get

$$
S=\operatorname{Spec}(R)=U \times_{X} U \times_{X} U
$$

and the comparicoly in the fibre product covering we have to prove the lemma generated by $\amalg Z \times_{U} U \rightarrow V$. Consider the maps M along the set of points Sch fppf and $U \rightarrow U$ is the fibre category of S in U in Section, ?? and the fact that any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any open subset $W \subset U$ in $\operatorname{Sh}(G)$ such that $\operatorname{Spec}\left(R^{\prime}\right) \rightarrow S$ is smooth or an

$$
U=\bigcup U_{i} \times{ }_{S_{i}} U_{i}
$$

which has a nonzero morphism we may assume that f_{i} is of finite presentation over S. We claim that $\mathcal{O}_{X, x}$ is a scheme where $x, x^{\prime}, s^{\prime \prime} \in S^{\prime}$ such that $\mathcal{O}_{X, x^{\prime}} \rightarrow \mathcal{O}_{X^{\prime}, x^{\prime}}^{\prime}$ is separated. By Algebra, Lemma ?? we can define a map of complexes $\mathrm{GL}_{S^{\prime}}\left(x^{\prime} / S^{\prime \prime}\right)$ and we win.

To prove study we see that $\left.\mathcal{F}\right|_{U}$ is a covering of \mathcal{X}^{\prime}, and \mathcal{T}_{i} is an object of $\mathcal{F}_{X / S}$ for $i>0$ and \mathcal{F}_{p} exists and let \mathcal{F}_{i} be a presheaf of \mathcal{O}_{X}-modules on \mathcal{C} as a \mathcal{F}-module. In particular $\mathcal{F}=U / \mathcal{F}$ we have to show that

$$
\left.\widetilde{M^{\bullet}}=\mathcal{I}^{\bullet} \otimes_{\operatorname{Spec}(k)} \mathcal{O}_{S, s}-i_{X}^{-1} \mathcal{F}\right)
$$

is a unique morphism of algebraic stacks. Note that

$$
\text { Arrows }=(S c h / S)_{f p p f}^{o p p},(S c h / S)_{f p p f}
$$

and

$$
V=\Gamma(S, \mathcal{O}) \longmapsto(U, \operatorname{Spec}(A))
$$

is an open subset of X. Thus U is affine. This is a continuous map of X is the inverse, the groupoid scheme S.

Proof. See discussion of sheaves of sets.
The result for prove any open covering follows from the less of Example ??. It may replace S by $X_{\text {spaces,étale }}$ which gives an open subspace of X and T equal to $S_{Z a r}$, see Descent, Lemma ??. Namely, by Lemma ?? we see that R is geometrically regular over S.

Lemma 0.1. Assume (3) and (3) by the construction in the description.
Suppose $X=\lim |X|$ (by the formal open covering X and a single map $\underline{P r o j}_{X}(\mathcal{A})=$ $\operatorname{Spec}(B)$ over U compatible with the complex

$$
\operatorname{Set}(\mathcal{A})=\Gamma\left(X, \mathcal{O}_{X, \mathcal{O}_{X}}\right) .
$$

When in this case of to show that $\mathcal{Q} \rightarrow \mathcal{C}_{Z / X}$ is stable under the following result in the second conditions of (1), and (3). This finishes the proof. By Definition ?? without element is when the closed subschemes are catenary. If T is surjective we may assume that T is connected with residue fields of S. Moreover there exists closed subspace $Z \subset X$ of X where U in X^{\prime} is proper (some defining as a closed subset of the uniqueness it suffices to check the fact that the following theorem
(1) f is locally of finite type. Since $S=\operatorname{Spec}(R)$ and $Y=\operatorname{Spec}(R)$.

Proof. This is form all sheaves of sheaves on X. But given a scheme U and a surjective étale morphism $U \rightarrow X$. Let $U \cap U=\coprod_{i=1, \ldots, n} U_{i}$ be the scheme X over S at the schemes $X_{i} \rightarrow X$ and $U=\lim _{i} X_{i}$.

The following lemma surjective restrocomposes of this implies that $\mathcal{F}_{x_{0}}=\mathcal{F}_{x_{0}}=$ $\mathcal{F}_{\mathcal{X}, \ldots, 0 \text {. }}$

Lemma 0.2. Let X be a locally Noetherian scheme over $S, E=\mathcal{F}_{X / S}$. Set $\mathcal{I}=$ $\mathcal{J}_{1} \subset \mathcal{I}_{n}^{\prime}$. Since $\mathcal{I}^{n} \subset \mathcal{I}^{n}$ are nonzero over $i_{0} \leq \mathfrak{p}$ is a subset of $\mathcal{J}_{n, 0} \circ \bar{A}_{2}$ works.

Lemma 0.3. In Situation ??. Hence we may assume $\mathfrak{q}^{\prime}=0$.
Proof. We will use the property we see that p is the mext functor (??). On the other hand, by Lemma ?? we see that

$$
D\left(\mathcal{O}_{X^{\prime}}\right)=\mathcal{O}_{X}(D)
$$

where K is an F-algebra where δ_{n+1} is a scheme over S.

Proof. Omitted.

Lemma 0.1. Let \mathcal{C} be a set of the construction.
Let \mathcal{C} be a gerber covering. Let \mathcal{F} be a quasi-coherent sheaves of \mathcal{O}-modules. We have to show that

$$
\mathcal{O}_{\mathcal{O}_{X}}=\mathcal{O}_{X}(\mathcal{L})
$$

Proof. This is an algebraic space with the composition of sheaves \mathcal{F} on $X_{\text {étale }}$ we have

$$
\mathcal{O}_{X}(\mathcal{F})=\left\{\operatorname{morph}_{1} \times_{\mathcal{O}_{X}}(\mathcal{G}, \mathcal{F})\right\}
$$

where \mathcal{G} defines an isomorphism $\mathcal{F} \rightarrow \mathcal{F}$ of \mathcal{O}-modules.
Lemma 0.2. This is an integer \mathcal{Z} is injective.
Proof. See Spaces, Lemma ??.
Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open covering. Let $\mathcal{U} \subset \mathcal{X}$ be a canonical and locally of finite type. Let X be a scheme. Let X be a scheme which is equal to the formal complex.
The following to the construction of the lemma follows.
Let X be a scheme. Let X be a scheme covering. Let

$$
b: X \rightarrow Y^{\prime} \rightarrow Y \rightarrow Y \rightarrow Y^{\prime} \times_{X} Y \rightarrow X .
$$

be a morphism of algebraic spaces over S and Y.
Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let \mathcal{F} be a quasi-coherent sheaf of \mathcal{O}_{X}-modules. The following are equivalent
(1) \mathcal{F} is an algebraic space over S.
(2) If X is an affine open covering.

Consider a common structure on X and X the functor $\mathcal{O}_{X}(U)$ which is locally of finite type.

This since $\mathcal{F} \in \mathcal{F}$ and $x \in \mathcal{G}$ the diagram

$\operatorname{Spec}\left(K_{\psi}\right)$
Mor $_{\text {Sets }} \mathrm{d}\left(\mathcal{O}_{X_{X / k}}, \mathcal{G}\right)$
is a limit. Then \mathcal{G} is a finite type and assume S is a flat and \mathcal{F} and \mathcal{G} is a finite type f_{*}. This is of finite type diagrams, and
the composition of \mathcal{G} is a regular sequence
$\mathcal{O}_{X^{\prime}}$ is a sheaf of rings.

Proof. We have see that $X=\operatorname{Spec}(R)$ and \mathcal{F} is a finite type representable by algebraic space. The property \mathcal{F} is a finite morphism of algebraic stacks. Then the cohomology of X is an open neighbourhood of U.
Proof. This is clear that \mathcal{G} is a finite presentation, see Lemmas ??
A reduced above we conclude that U is an open covering of \mathcal{C}. The functor \mathcal{F} is a "field

$$
\mathcal{O}_{X, x} \longrightarrow \mathcal{F}_{\bar{x}}-1\left(\mathcal{O}_{\left.X_{\text {teate }}\right)} \longrightarrow \mathcal{O}_{X_{t}}^{-1} \mathcal{O}_{X_{\lambda}}\left(\mathcal{O}_{X_{\eta}}^{\bar{\sigma}}\right)\right.
$$

is an isomorphism of covering of $\mathcal{O}_{X_{i}}$. If \mathcal{F} is the unique element of \mathcal{F} such that X is an isomorphism.
The property \mathcal{F} is a disjoint union of Proposition ?? and we can filtered set of presentations of a scheme \mathcal{O}_{x}-algebra with \mathcal{F} are opens of finite type over S. If \mathcal{F} is a scheme theoretic image points.

If \mathcal{F} is a finite direct sum $\mathcal{O}_{X_{\lambda}}$ is a closed immersion, see Lemma ??. This is a sequence of \mathcal{F} is a similar morphism.

Man

```
static void do_command(struct seq_file *m, void *v)
{
    int column = 32 << (cmd[2] & 0x80);
    if (state)
        cmd = (int)(int_state ^ (in_8(&ch->ch_flags) & cmd) ? 2 : 1); C COO
    else
        seq = 1;
    for (i = 0; i < 16; i++) {
        if (k& (1 << 1))
            pipe = (in_use & UMXTHREAD_UNCCA) +
                ((count & 0x00000000fffffff8) & 0x000000f) << 8;
        if (count == 0)
            sub(pid, ppc_md.kexec_handle, 0x20000000);
        pipe_set_bytes(i, 0);
    }
    /* Free our user pages pointer to place camera if all dash */
    subsystem_info = &Of_changes[PAGE_SIZE];
    rek_controls(offset, idx, &soffset);
    /* Now we want to deliberately put it to device */
    control_check_polarity(&context, val, 0);
    for (i = 0; i < COUNTER; i++)
        seq_puts(s, "policy ");
```


Georgia

Tech y

```
/*
    Copyright (c) 2006-2010, Intel Mobile Communications. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
*
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/kexec.h>
#include <linux/errno.h>
|include <linux/io.h>
#include <linux/platform_device.h>
#include <linux/multi.h>
#include <linux/ckevent.h>
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/e820.h>
#include <asm/system_info.h>
|include <asm/setew.h>
#include <asm/pgproto.h>
```

```
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/e820.h>
#include <asm/system_info.h>
#include <asm/setew.h>
#include <asm/pgproto.h>
#define REG_PG vesa_slot_addr_pack
#define PFM_NOCOMP AFSR(0, load)
#define STACk_DDR(type) (func)
#define SWAP_ALLOCATE(nr) (e)
#define emulate_sigs() arch_get_unaligned_child()
#define access_rw(TST) asm volatile("movd %夂8.sp, s0, s3" : : "r" (0)); \
    if (__type & DO_READ)
static void stat_PC_SEC __read_mostly offsetof(struct seq_argsqueue, \
        pC>[1]);
```


static void

```
os_prefix(unsigned long sys)
{
#ifdef CONFIG_PREEMPT
    PUT_PARAM_RAID(2, sel) = get_state_state();
    set_pid_sum((unsigned long)state, current_state_str(),
        (unsigned long)-1->lr_full; low;
}
```


Georgia

rech

- RNNs process an ordered sequence of items
- Maintain hidden state
- Transformations are weight-shared across sequence
- Unroll
- Next time:
- Better RNN modules to improve gradient flow
- Just view everything as unordered sequence of items and mix together

Summary

