Topics:

- Recurrent Neural Networks
- Long Short-Term Memory

CS 4644-DL / 7643-A ZSOLT KIRA

- Assignment 3 out
- Due March 9th 11:59pm EST
- Will require some training time, so START EARLY!
- Projects
- Project proposal due March $15^{\text {th }}$
- Meta office hours on bias/fairness Friday 03/23!
- Will NOT be recorded so please show up and ask questions!
$\underset{\text { Data }}{\text { Input }} \rightarrow$ ค \rightarrow Predictions
Fully Connected Neural Networks

Convolutional Neural
Networks

Recurrent Neural Networks

Attention-Based Networks

Graph-Based Networks

(Vanilla) Recurrent Neural Network

The state consists of a single "hidden" vector \mathbf{h} :

$$
\begin{aligned}
& y_{t}=W_{h y} h_{t}+b_{y} \\
& h_{t}=\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}\right) \\
& =\tanh \left(\left(\begin{array}{ll}
W_{h h} & W_{h x}
\end{array}\right)\binom{h_{t-1}}{x_{t}}\right) \\
& =\tanh \left(W\binom{h_{t-1}}{x_{t}}\right)
\end{aligned}
$$

Recurrent Neural Network

We can process a sequence of vectors \mathbf{x} by applying a recurrence formula at every time step:

$$
\begin{gathered}
\qquad \begin{array}{|c}
h_{t} \\
\text { new state }
\end{array}=\frac{f_{W}\left(\sqrt{h_{t-1}},, \boldsymbol{x}_{t}\right)}{\text { old state input vector at }} \begin{array}{l}
\text { some time step }
\end{array} \\
\text { some function } \quad
\end{gathered}
$$

Example:
 Character-level
 Language Model

Vocabulary:
[h,e,l,o]
Example training sequence:
"hello"

Training Time: MLE / "Teacher Forcing"

Example:
 Character-level
 Language Model

Vocabulary:
[h,e,l,o]

Example training sequence:
"hello"

Test Time: Sample / Argmax

Example: Character-level Language Model Sampling
Vocabulary:
[h,e,l,o]
At test-time sample characters one at a time, feed back to model

Test Time: Sample / Argmax

Example: Character-level Language Model Sampling
Vocabulary:
[h,e,l,o]
At test-time sample characters one at a time, feed back to model

Test Time: Sample / Argmax

Example:
Character-level
Language Model Sampling
Vocabulary:
[h,e,l,o]
At test-time sample characters one at a time, feed back to model

Test Time: Sample / Argmax

Example:
Character-level
Language Model Sampling
Vocabulary:
[h,e,l,o]
At test-time sample characters one at a time, feed back to model

Can also feed in predictions during training (student forcing)

Truncated Backpropagation through time

Run forward and backward through chunks of the sequence instead of whole sequence

Truncated Backpropagation through time

Carry hidden states forward in time forever, but only backpropagate for some smaller number of steps

Truncated Backpropagation through time

Multilayer RNNs

$$
\begin{array}{r}
h_{t}^{l}=\tanh W^{l}\binom{h_{t}^{l-1}}{h_{t-1}^{l}} \\
h \in \mathbb{R}^{n} . \quad W^{l}[n \times 2 n]
\end{array}
$$

THE SONNETS

by William Shakespeare
From fairest creatures we desire increase,
That thereby beauty's sose
That thereby beauty's rose might never die
But as the riper should by time decease,
His tender heir might bear his memory:
His tender heir might bear his memory:
But thou, contracted to thine own bright eyes,
But thus, contracted to thine own bright eyes,
Feedst thy light's flame with self-subbstantial fuel, Making a famine where abundance lies, Thyself thy foe, to thy sweet self too cruel:
Thou that art now the world's fresh onament, And only herald to the gaudy spring.
Within thine own bud buriest thy Within thine own bud buriest thy conten
And tender churl mak'st waste in niggar And tender churl mak'st waste in niggard
Pity the world, or else this glutton be Pity the world, or else this glutton be,
To eat the world's due, by the grave and thee.

When forty winters shall besiege thy brow, And dig deep trenches in thy beaurys field Thy youth's proud livery so gazed on now,
Will be a tatter'd weed of small worth held Then being asked, where all thy beauty lie Where all the treasure of thy lusty days; To say, within thine own deep sunken eyes,
Were an all-eating shame, and thriftless praise How much more praise deserv'd thy beautr's use. If thou couldst answer This fair child of mine
Shall sum my count and make my ld excuse Shall sum my count, and make my old exc
Proving his beauty by succession thine! This were to be new made when thou art old, And see thy blood warm when thou feel'st it cold
at first: tyntd-iafhatawiaoihrdemot lytdws e,tfti, astai fogoh eoase rranbyne 'nhthnee e plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike, aoaenns lng

train more

"Tmont thithey" fomesscerliund
Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

train more

Aftair fall unsuch that the hall for Prince Velzonski's that me of her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort how, and Gogition is so overelical and ofter.

train more

"Why do what that day," replied Natasha, and wishing to himself the fact the princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.

PANDARUS:

Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed, And who is but a chain and subjects of his death, I should not sleep.

Second Senator:
They are away this miseries, produced upon my soul, Breaking and strongly should be buried, when I perish The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:
They would be ruled after this chamber, and my fair nues begun out of the fact, to be conveyed, Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'11 drink it

VIOLA:
Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire,
To show the reining of the raven and the wars
To grace my hand reproach within, and not a fair are hand, That Caesar and my goodly father's world;
When I was heaven of presence and our fleets,
We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there
My power to give thee but so much as hell: Some service in the noble bondman here, Would show him to her wine.

KING LEAR:
O, if you were a feeble sight, the courtesy of your law, Your sight and several breath, will wear the gods With his heads, and my hands are wonder'd at the deeds, So drop upon your lordship's head, and your opinion Shall be against your honour.

The Stacks Project: open source algebraic geometry textbook

For $\bigoplus_{n=1, \ldots, m}$ where $\mathcal{L}_{m_{\bullet}}=0$, hence we can find a closed subset \mathcal{H} in \mathcal{H} and any sets \mathcal{F} on X, U is a closed immersion of S, then $U \rightarrow T$ is a separated algebraic space.
Proof. Proof of (1). It also start we get

$$
S=\operatorname{Spec}(R)=U \times_{X} U \times_{X} U
$$

and the comparicoly in the fibre product covering we have to prove the lemma generated by $\amalg Z \times_{U} U \rightarrow V$. Consider the maps M along the set of points Sch fppf and $U \rightarrow U$ is the fibre category of S in U in Section, ?? and the fact that any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any open subset $W \subset U$ in $\operatorname{Sh}(G)$ such that $\operatorname{Spec}\left(R^{\prime}\right) \rightarrow S$ is smooth or an

$$
U=\bigcup U_{i} \times{ }_{S_{i}} U_{i}
$$

which has a nonzero morphism we may assume that f_{i} is of finite presentation over S. We claim that $\mathcal{O}_{X, x}$ is a scheme where $x, x^{\prime}, s^{\prime \prime} \in S^{\prime}$ such that $\mathcal{O}_{X, x^{\prime}} \rightarrow \mathcal{O}_{X^{\prime}, x^{\prime}}^{\prime}$ is separated. By Algebra, Lemma ?? we can define a map of complexes $\mathrm{GL}_{S^{\prime}}\left(x^{\prime} / S^{\prime \prime}\right)$ and we win.

To prove study we see that $\left.\mathcal{F}\right|_{U}$ is a covering of \mathcal{X}^{\prime}, and \mathcal{T}_{i} is an object of $\mathcal{F}_{X / S}$ for $i>0$ and \mathcal{F}_{p} exists and let \mathcal{F}_{i} be a presheaf of \mathcal{O}_{X}-modules on \mathcal{C} as a \mathcal{F}-module. In particular $\mathcal{F}=U / \mathcal{F}$ we have to show that

$$
\left.\widetilde{M^{\bullet}}=\mathcal{I}^{\bullet} \otimes_{\operatorname{Spec}(k)} \mathcal{O}_{S, s}-i_{X}^{-1} \mathcal{F}\right)
$$

is a unique morphism of algebraic stacks. Note that

$$
\text { Arrows }=(S c h / S)_{f p p f}^{o p p},(S c h / S)_{f p p f}
$$

and

$$
V=\Gamma(S, \mathcal{O}) \longmapsto(U, \operatorname{Spec}(A))
$$

is an open subset of X. Thus U is affine. This is a continuous map of X is the inverse, the groupoid scheme S.

Proof. See discussion of sheaves of sets.
The result for prove any open covering follows from the less of Example ??. It may replace S by $X_{\text {spaces,étale }}$ which gives an open subspace of X and T equal to $S_{Z a r}$, see Descent, Lemma ??. Namely, by Lemma ?? we see that R is geometrically regular over S.

Lemma 0.1. Assume (3) and (3) by the construction in the description.
Suppose $X=\lim |X|$ (by the formal open covering X and a single map $\underline{P r o j}_{X}(\mathcal{A})=$ $\operatorname{Spec}(B)$ over U compatible with the complex

$$
\operatorname{Set}(\mathcal{A})=\Gamma\left(X, \mathcal{O}_{X, \mathcal{O}_{X}}\right) .
$$

When in this case of to show that $\mathcal{Q} \rightarrow \mathcal{C}_{Z / X}$ is stable under the following result in the second conditions of (1), and (3). This finishes the proof. By Definition ?? without element is when the closed subschemes are catenary. If T is surjective we may assume that T is connected with residue fields of S. Moreover there exists closed subspace $Z \subset X$ of X where U in X^{\prime} is proper (some defining as a closed subset of the uniqueness it suffices to check the fact that the following theorem
(1) f is locally of finite type. Since $S=\operatorname{Spec}(R)$ and $Y=\operatorname{Spec}(R)$.

Proof. This is form all sheaves of sheaves on X. But given a scheme U and a surjective étale morphism $U \rightarrow X$. Let $U \cap U=\coprod_{i=1, \ldots, n} U_{i}$ be the scheme X over S at the schemes $X_{i} \rightarrow X$ and $U=\lim _{i} X_{i}$.

The following lemma surjective restrocomposes of this implies that $\mathcal{F}_{x_{0}}=\mathcal{F}_{x_{0}}=$ $\mathcal{F}_{\mathcal{X}, \ldots, 0 \text {. }}$

Lemma 0.2. Let X be a locally Noetherian scheme over $S, E=\mathcal{F}_{X / S}$. Set $\mathcal{I}=$ $\mathcal{J}_{1} \subset \mathcal{I}_{n}^{\prime}$. Since $\mathcal{I}^{n} \subset \mathcal{I}^{n}$ are nonzero over $i_{0} \leq \mathfrak{p}$ is a subset of $\mathcal{J}_{n, 0} \circ \bar{A}_{2}$ works.

Lemma 0.3. In Situation ??. Hence we may assume $\mathfrak{q}^{\prime}=0$.
Proof. We will use the property we see that p is the mext functor (??). On the other hand, by Lemma ?? we see that

$$
D\left(\mathcal{O}_{X^{\prime}}\right)=\mathcal{O}_{X}(D)
$$

where K is an F-algebra where δ_{n+1} is a scheme over S.

Proof. Omitted.

Lemma 0.1. Let \mathcal{C} be a set of the construction.
Let \mathcal{C} be a gerber covering. Let \mathcal{F} be a quasi-coherent sheaves of \mathcal{O}-modules. We have to show that

$$
\mathcal{O}_{\mathcal{O}_{X}}=\mathcal{O}_{X}(\mathcal{L})
$$

Proof. This is an algebraic space with the composition of sheaves \mathcal{F} on $X_{\text {étale }}$ we have

$$
\mathcal{O}_{X}(\mathcal{F})=\left\{\operatorname{morph}_{1} \times_{\mathcal{O}_{X}}(\mathcal{G}, \mathcal{F})\right\}
$$

where \mathcal{G} defines an isomorphism $\mathcal{F} \rightarrow \mathcal{F}$ of \mathcal{O}-modules.
Lemma 0.2. This is an integer \mathcal{Z} is injective.
Proof. See Spaces, Lemma ??.
Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open covering. Let $\mathcal{U} \subset \mathcal{X}$ be a canonical and locally of finite type. Let X be a scheme. Let X be a scheme which is equal to the formal complex.
The following to the construction of the lemma follows.
Let X be a scheme. Let X be a scheme covering. Let

$$
b: X \rightarrow Y^{\prime} \rightarrow Y \rightarrow Y \rightarrow Y^{\prime} \times_{X} Y \rightarrow X .
$$

be a morphism of algebraic spaces over S and Y.
Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let \mathcal{F} be a quasi-coherent sheaf of \mathcal{O}_{X}-modules. The following are equivalent
(1) \mathcal{F} is an algebraic space over S.
(2) If X is an affine open covering.

Consider a common structure on X and X the functor $\mathcal{O}_{X}(U)$ which is locally of finite type.

This since $\mathcal{F} \in \mathcal{F}$ and $x \in \mathcal{G}$ the diagram

$\operatorname{Spec}\left(K_{\psi}\right)$
Mor $_{\text {Sets }} \quad \mathrm{d}\left(\mathcal{O}_{X_{X / k}}, \mathcal{G}\right)$
is a limit. Then \mathcal{G} is a finite type and assume S is a flat and \mathcal{F} and \mathcal{G} is a finite type f_{*}. This is of finite type diagrams, and
the composition of \mathcal{G} is a regular sequence
$\mathcal{O}_{X^{\prime}}$ is a sheaf of rings.

Proof. We have see that $X=\operatorname{Spec}(R)$ and \mathcal{F} is a finite type representable by algebraic space. The property \mathcal{F} is a finite morphism of algebraic stacks. Then the cohomology of X is an open neighbourhood of U.
Proof. This is clear that \mathcal{G} is a finite presentation, see Lemmas ??
A reduced above we conclude that U is an open covering of \mathcal{C}. The functor \mathcal{F} is a "field

$$
\mathcal{O}_{X, x} \longrightarrow \mathcal{F}_{\bar{x}}-1\left(\mathcal{O}_{\left.X_{\text {teate }}\right)} \longrightarrow \mathcal{O}_{X_{t}}^{-1} \mathcal{O}_{X_{\lambda}}\left(\mathcal{O}_{X_{\eta}}^{\bar{\sigma}}\right)\right.
$$

is an isomorphism of covering of $\mathcal{O}_{X_{i}}$. If \mathcal{F} is the unique element of \mathcal{F} such that X is an isomorphism.
The property \mathcal{F} is a disjoint union of Proposition ?? and we can filtered set of presentations of a scheme \mathcal{O}_{x}-algebra with \mathcal{F} are opens of finite type over S. If \mathcal{F} is a scheme theoretic image points.
If \mathcal{F} is a finite direct sum $\mathcal{O}_{X_{\lambda}}$ is a closed immersion, see Lemma ??. This is a sequence of \mathcal{F} is a similar morphism.


```
static void do_command(struct seq_file *m, void *v)
{
    int column = 32 << (cmd[2] & 0x80);
    if (state)
        cmd = (int)(int_state ^ (in_8(&ch->ch_flags) & cmd) ? 2 : 1); C COO
    else
        seq = 1;
    for (i = 0; i < 16; i++) {
        if (k& (1 << 1))
            pipe = (in_use & UMXTHREAD_UNCCA) +
                ((count & 0x00000000fffffff8) & 0x000000f) << 8;
        if (count == 0)
            sub(pid, ppc_md.kexec_handle, 0x20000000);
        pipe_set_bytes(i, 0);
    }
    /* Free our user pages pointer to place camera if all dash */
    subsystem_info = &Of_changes[PAGE_SIZE];
    rek_controls(offset, idx, &soffset);
    /* Now we want to deliberately put it to device */
    control_check_polarity(&context, val, 0);
    for (i = 0; i < COUNTER; i++)
        seq_puts(s, "policy ");
```

```
/*
    Copyright (c) 2006-2010, Intel Mobile Communications. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
*
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., }675\mathrm{ Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/kexec.h>
#include <linux/errno.h>
#include <linux/io.h>
#include <linux/platform_device.h>
|include <linux/multi.h>
#include <linux/ckevent.h>
#include <asm/io.h>
#include <asm/prom.h>
|include <asm/e820.h>
#include <asm/system_info.h>
|include <asm/setew.h>
#include <asm/pgproto.h>
```

```
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/e820.h>
#include <asm/system_info.h>
#include <asm/setew.h>
#include <asm/pgproto.h>
#define REG_PG vesa_slot_addr_pack
#define PFM_NOCOMP AFSR(0, load)
#define STACk_DDR(type) (func)
#define SWAP_ALLOCATE(nr) (e)
#define emulate_sigs() arch_get_unaligned_child()
#define access_rw(TST) asm volatile("movd %夂8.sp, s0, s3" : : "r" (0)); \
    if (__type & DO_READ)
static void stat_PC_SEC __read_mostly offsetof(struct seq_argsqueue, \
        pC>[1]);
```


static void

```
os_prefix(unsigned long sys)
{
#ifdef CONFIG_PREEMPT
    PUT_PARAM_RAID(2, sel) = get_state_state();
    set_pid_sum((unsigned long)state, current_state_str(),
        (unsigned long)-1->lr_full; low;
}
```


Georgia

rech

Searching for interpretable cells

Searching for interpretable cells

```
    unjpack a.filter ifileid's string"representation from user-space
char vaudit_unlpack_string(volid MObufp, size_t *remainn, size_t len)
\delta
    char istr;
    if (1-bufp II (1en }===0)||(1en> remain))
    return ERR_PTR(-EINVAL); ;
    T: of the currently implemented string filelds, PATH_MAX
    defines the longest vallid length.
```


Searching for interpretable cells

```
"You mean to imply that i have nothinggto eat out of.....jon thel
contrary, i can supply you with everythingg even if you want to giveege
dinner parties," warmly replied chichagov, who tried by every word he
spoke to prove his own rectitude and therefore imagined kutuzov
animated by the same desire.
kutuzov, shrugging his shoulders, replied with his subtie penetrating
```

quote detection cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Searching for interpretable cells

```
Cell sensitive to position in line:
The sole importance of the crossing of the Berezina lies in the fact
that it plainly and indubitably proved the fallacy of all the plans for
cutting offfthe enemy's retreat and the soundness of the only possible
line of action\ldotsthe one kutuzov, and the general mass of the thermy
demanded - namely, simply to follow the enemy up. The french crowd fled
at a continually increasing speed and all its energy was directed tome
reaching its goal. It fled like a wounded animal and it was impossible
to block its path. This was shown not sommuch by the arrangements it m
made for crossing as by what took place at the bridges. When the bridges 
broke down, unarmed soldiers, people from moscow and women with chilldren
who were with the French transport, allo.carried on by viss inertiae-. corg
pressed forward into boats and into the ice=covered water and did not,
surrender.
```


line length tracking cell

Searching for interpretable cells

```
Staticint F-dequeue-signal(struct sigpending * pending. sigset_t *mask, 
( Siginfo_\overline{t}\mathrm{ (info)}
R
    int sig, = next-signal(pending, mask):
    if (sig) {(current->notifier) {|
```



```
        if(sigissmember(current->notifier-mask, (current->notifier)(current->notifier)) {ata)) {\
            clear_thread_flag(TIF_SIGPENDING);
            return 0;
    3
    collect signal(sig, pending, info):
    3
    return sig;
}
                    if statement cell
```

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

[^0]
Searching for interpretable cells

```
Cell that turns on inside comments and quotes:
: Duplicate lsM field information. The lsm-rule is opaque, so
static inline int audit_dupe_lsm-field(struct audit field, *f,
struct audit_field**sf)
f
int ret=0; lsm-str:
/:our owñcopy of lsm-str, //
1sm-str = kstrdup(sf->1sm-str, GFP_KERNEL):
if (unlikely(!1sm-str))
return -ENOMEM;
df ->1sm_str_=1sm_str;
1.our own (refreshed) copy of lsm_rule*/
ret = security_audit_rule_init(df->type, df->op, df=>1sm_str,
(void|*)&df.>1sm_rule)
    * Keep currently invalid fields around in case they
    * become valid after a policy reload.
```



```
    Mr_warn(%audit
    ret = 0;
return ret:
quote/comment cell
Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
```

[^1]
Searching for interpretable cells

```
#ifdef CONFIG_AUDITSYSCALL
static inline int audit_match_class_bits(int class, u32. *mask)
f
    if (cilasses[class]) [
    for (i=0; i< AUDIT_BITMASK_SIZE; i++)
        if (mask[i] & classes[class][i])
}return 1;
```


code depth cell

Vanilla RNN Gradient Flow

$$
\begin{aligned}
h_{t} & =\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}\right) \\
& =\tanh \left(\left(\begin{array}{ll}
W_{h h} & W_{h x}
\end{array}\right)\binom{h_{t-1}}{x_{t}}\right) \\
& =\tanh \left(W\binom{h_{t-1}}{x_{t}}\right)
\end{aligned}
$$

Vanilla RNN Gradient Flow

Backpropagation from h_{t} to h_{t-1} multiplies by W
(actually $\mathrm{W}_{\text {hh }}$)

$$
\begin{aligned}
h_{t} & =\tanh \left(W_{h h} h_{t-1}+W_{x h} x_{t}\right) \\
& =\tanh \left(\left(\begin{array}{ll}
W_{h h} & \left.\left.W_{h x}\right)\binom{h_{t-1}}{x_{t}}\right) \\
& =\tanh \left(W\binom{h_{t-1}}{x_{t}}\right)
\end{array} \$.\left\{\begin{array}{l}
\end{array}\right) .\right.\right.
\end{aligned}
$$

Vanilla RNN Gradient Flow

Computing gradient of h_{0} involves many factors of W
(and repeated tanh)

Vanilla RNN Gradient Flow

Computing gradient of h_{0} involves many factors of W (and repeated tanh)

Largest singular value >1 :
Exploding gradients
Largest singular value <1 :
Vanishing gradients

Vanilla RNN Gradient Flow

$$
\frac{\partial h_{t}}{\partial h_{t-1}}=\tanh ^{\prime}\left(W_{h h} h_{t-1}+W_{x h} x_{t}\right) W_{h h}
$$

Vanilla RNN Gradient Flow

$$
\frac{\partial L}{\partial W}=\sum_{t=1}^{T} \frac{\partial L_{t}}{\partial W}
$$

$$
\frac{\partial h_{t}}{\partial h_{t-1}}=\tanh ^{\prime}\left(W_{h h} h_{t-1}+W_{x h} x_{t}\right) W_{h h}
$$

$$
\frac{\partial L_{T}}{\partial W}=\frac{\partial L_{T}}{\partial h_{T}} \frac{\partial h_{t}}{\partial h_{t-1}} \ldots \frac{\partial h_{1}}{\partial W}=\frac{\partial L_{T}}{\partial h_{T}}\left(\prod_{t=2}^{T} \frac{\partial h_{t}}{\partial h_{t-1}}\right) \frac{\partial h_{1}}{\partial W}
$$

Vanilla RNN Gradient Flow

$$
\frac{\partial L}{\partial W}=\sum_{t=1}^{T} \frac{\partial L_{t}}{\partial W}
$$

Always < 1 Vanishing gradients

$$
\frac{\partial L_{T}}{\partial W}=\frac{\partial L_{T}}{\partial h_{T}} \frac{\partial h_{t}}{\partial h_{t-1}} \ldots \frac{\partial h_{1}}{\partial W}=\frac{\partial L_{T}}{\partial h_{T}}\left(\prod_{t=2}^{T} \frac{\partial h_{t}}{\partial h_{t-1}}\right) \frac{\partial h_{1}}{\partial W}
$$

Vanilla RNN Gradient Flow

Computing gradient of h_{0} involves many factors of W (and repeated tanh)

Gradient clipping: Scale gradient if its norm is too big

```
grad_norm = np.sum(grad * grad)
if grad_norm > threshold:
    grad *= (threshold / grad_norm)
```


Vanilla RNN Gradient Flow

Computing gradient of h_{0} involves many factors of W (and repeated tanh)

Largest singular value > 1 :
Exploding gradients

Long Short Term Memory (LSTM)

Vanilla RNN

$$
h_{t}=\tanh \left(W\binom{h_{t-1}}{x_{t}}\right)
$$

LSTM

$$
\begin{aligned}
\left(\begin{array}{c}
i \\
f \\
o \\
g
\end{array}\right) & =\left(\begin{array}{c}
\sigma \\
\sigma \\
\sigma \\
\tanh
\end{array}\right) W\binom{h_{t-1}}{x_{t}} \\
c_{t} & =f \odot c_{t-1}+i \odot g \\
h_{t} & =o \odot \tanh \left(c_{t}\right)
\end{aligned}
$$

Hochreiter and Schmidhuber, "Long Short Term Memory", Neural Computation 1997

Meet LSTMs

LSTMs Intuition: Memory

- Cell State / Memory

LSTMs Intuition: Forget Gate

- Should we continue to remember this "bit" of information or not?

$$
f_{t}=\sigma\left(W_{f} \cdot\left[h_{t-1}, x_{t}\right]+b_{f}\right)
$$

LSTMs Intuition: Input Gate

- Should we update this "bit" of information or not?
- If so, with what?

$$
\begin{aligned}
i_{t} & =\sigma\left(W_{i} \cdot\left[h_{t-1}, x_{t}\right]+b_{i}\right) \\
\tilde{C}_{t} & =\tanh \left(W_{C} \cdot\left[h_{t-1}, x_{t}\right]+b_{C}\right)
\end{aligned}
$$

LSTMs Intuition: Memory Update

- Forget that + memorize this

LSTMs Intuition: Output Gate

- Should we output this "bit" of information to "deeper" layers?

$$
\begin{aligned}
o_{t} & =\sigma\left(W_{o}\left[h_{t-1}, x_{t}\right]+b_{o}\right) \\
h_{t} & =o_{t} * \tanh \left(C_{t}\right)
\end{aligned}
$$

LSTMs Intuition: Additive Updates

LSTMs Intuition: Additive Updates

LSTMs Intuition: Additive Updates

LSTMs

- A pretty sophisticated cell

LSTM Variants: Gated Recurrent Units

- Changes:
- No explicit memory; memory = hidden output
- Z = memorize new and forget old

$$
\begin{aligned}
z_{t} & =\sigma\left(W_{z} \cdot\left[h_{t-1}, x_{t}\right]\right) \\
r_{t} & =\sigma\left(W_{r} \cdot\left[h_{t-1}, x_{t}\right]\right) \\
\tilde{h}_{t} & =\tanh \left(W \cdot\left[r_{t} * h_{t-1}, x_{t}\right]\right) \\
h_{t} & =\left(1-z_{t}\right) * h_{t-1}+z_{t} * \tilde{h}_{t}
\end{aligned}
$$

Other RNN Variants

[An Empirical Exploration of Recurrent Network Architectures,

 Jozefowicz et al., 2015]```
MUT1:
 z=\operatorname{sigm}(\mp@subsup{W}{\textrm{xz}}{}\mp@subsup{x}{t}{}+\mp@subsup{b}{z}{})
 r= sigm(W Wrx }\mp@subsup{x}{t}{}+\mp@subsup{W}{\textrm{hr}}{}\mp@subsup{h}{t}{}+\mp@subsup{b}{\textrm{r}}{}
 \mp@subsup{h}{t+1}{}=\operatorname{tanh}(\mp@subsup{W}{\textrm{hh}}{}(r\odot\mp@subsup{h}{t}{})+\operatorname{tanh}(\mp@subsup{x}{t}{})+\mp@subsup{b}{\textrm{h}}{})\odotz
 + ht\odot(1-z)
MUT2:
 z=\operatorname{sigm}(\mp@subsup{W}{\textrm{xz}}{}\mp@subsup{x}{t}{}+\mp@subsup{W}{\textrm{hz}}{}\mp@subsup{h}{t}{}+\mp@subsup{b}{\textrm{z}}{})
 r=sigm}(\mp@subsup{x}{t}{}+\mp@subsup{W}{\textrm{hr}}{}\mp@subsup{h}{t}{}+\mp@subsup{b}{\textrm{r}}{}
 \mp@subsup{h}{t+1}{}}=\operatorname{tanh}(\mp@subsup{W}{\textrm{hh}}{}(r\odot\mp@subsup{h}{t}{})+\mp@subsup{W}{xh}{}\mp@subsup{x}{t}{}+\mp@subsup{b}{h}{})\odot
 + ht\odot (1-z)
MUT3:
 z=\operatorname{sigm}(\mp@subsup{W}{\textrm{xz}}{}\mp@subsup{x}{t}{}+\mp@subsup{W}{\textrm{hz}}{}\operatorname{tanh}(\mp@subsup{h}{t}{})+\mp@subsup{b}{\textrm{z}}{})
 r=sigm(W wrr }\mp@subsup{x}{t}{}+\mp@subsup{W}{\textrm{hr}}{}\mp@subsup{h}{t}{}+\mp@subsup{b}{\textrm{r}}{}
 ht+1}=\operatorname{tanh}(\mp@subsup{W}{\textrm{hh}}{}(r\odot\mp@subsup{h}{t}{})+\mp@subsup{W}{xh}{}\mp@subsup{x}{t}{}+\mp@subsup{b}{\textrm{h}}{})\odot
 + ht\odot(1-z)
```


## Neural Image Captioning



## Neural Image Captioning

Image Embedding (VGGNet)


## Neural Image Captioning



## Neural Image Captioning



- RNNs work on sequences of data, propagating hidden state/memory across the sequence
- LSTMs improve gradient flow through gating
- Next time: Transformers
- Remove the notion of bottlenecks
- Generally deal with arbitrary unordered set of inputs
- Leverage transformations with attention to "mix" all input elements


[^0]:    Foures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permissiin

[^1]:    rures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

