Topics:

- Image Segmentation and Decoders
- Generative Adversarial Networks

CS 4644-DL / 7643-A ZSOLT KIRA

- Assignment 3
 - Due March 9th 11:59pm EST
 - **Oops.** Diffusion models accidentally included. No need to do it by Mar 9th! @258
- Projects
 - Project proposal due March 15th 17th
 - Proposal description out on canvas @256

• Meta office hours today 3pm ET on language models

Self-Attention Layer

One query per input vector

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_Q (Shape: $D_X \times D_Q$)

Computation:

Query vectors: $\mathbf{Q} = \mathbf{XW}_{\mathbf{Q}}$ Key vectors: $\mathbf{K} = \mathbf{XW}_{\mathbf{K}}$ (Shape: $N_{X} \times D_{Q}$) Value vectors: $\mathbf{V} = \mathbf{XW}_{\mathbf{V}}$ (Shape: $N_{X} \times D_{V}$) Similarities: $\mathbf{E} = \mathbf{QK}^{\mathsf{T}}$ (Shape: $N_{X} \times N_{X}$) $\mathbf{E}_{i,j} = \mathbf{Q}_{i} \cdot \mathbf{K}_{j} / \operatorname{sqrt}(D_{Q})$ Attention weights: $A = \operatorname{softmax}(\mathbf{E}, \operatorname{dim}=1)$ (Shape: $N_{X} \times N_{X}$) Output vectors: $Y = A\mathbf{V}$ (Shape: $N_{X} \times D_{V}$) $Y_{i} = \sum_{j} A_{i,j} \mathbf{V}_{j}$

Patches as input to Self-Attention

Ideas:

16×

16×

16×

- Use smaller patches (4x4x3)
- Project them to lower dimension (4)
- Merge tokens at deeper levels
- Full attention => Window attention
 - => Shifted window attention

Swin Transformer: Hierarchical Vision Transformer using Shifted Windows Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo

Swin Transformers

Georgia tps://paperswithcode.com/sota/instance-segmentation-on-woco

Image Segmentation Networks

Classification (Class distribution per image)

Object Detection

(List of bounding boxes with class distribution per box)

Semantic Segmentation (Class distribution per pixel)

Instance Segmentation (Class distribution per pixel with unique ID)

Given an image, output another image

- Each output contains class distribution per pixel
- More generally an image-to-image problem

Semantic Segmentation (Class distribution per pixel)

Instance Segmentation (Class distribution per pixel with unique ID)

Convolutional Neural Network (CNN)

Idea: "De"Convolution and UnPooling

Example : Max pooling

Stride window across image but perform per-patch max operation

 $X(0:1,0:1) = \begin{bmatrix} 100 & 150 \\ 100 & 200 \end{bmatrix} \longrightarrow max(0:1,0:1) = 200$

Copy value to position chosen as max in encoder, fill reset of this window with zeros

Idea: Remember max elements in encoder! Copy value from equivalent position, rest are zeros

How can we upsample using convolutions and learnable kernel?

Normal Convolution

Transposed Convolution (also known as "deconvolution", fractionally strided conv) Idea: Take each input pixel, multiply by learnable kernel, "stamp" it on output

"De"Convolution (Transposed Convolution)

Transposed Convolution Example

Georgia Tech

Symmetry in Encoder/Decoder

Transfer Learning

We can start with a

pre-trained

trunk/backbone (e.g.

ImageNet)!

U-Net

You can have skip connections to bypass bottleneck!

Ronneberger, et al., "U-Net: Convolutional Networks for Biomedical Image Segmentation", 2015

Summary

- Various ways to get image-like outputs, for example to predict segmentations of input images
- We can have various upsampling layers that actually increase the size
- Encoder/decoder architectures are popular ways to leverage these to perform general image-to-image tasks
- Other methods exist:
 - Fully convolutional neural networks

Generative Models: Introduction

Unsupervised Learning

Traditional unsupervised learning methods:

Similar in deep learning, but from neural network/learning perspective

Discriminative vs. Generative Models

- Discriminative models model P(y|x)
 - Example: Model this via neural network, SVM, etc.
- Generative models model P(x)

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

Discriminative vs. Generative Models

- Discriminative models model P(y|x)
 - Example: Model this via neural network, SVM, etc.
- Generative models model P(x)
- We can parameterize our model as $P(x, \theta)$ and use maximum likelihood to optimize the parameters given an unlabeled dataset: $\theta^* = \arg \max \prod_{m=1}^{m} p_{model}(x^{(i)}; \theta)$

$$P^* = \arg \max_{\boldsymbol{\theta}} \prod_{i=1}^m p_{\text{model}} \left(\boldsymbol{x}^{(i)}; \boldsymbol{\theta} \right)$$
$$= \arg \max_{\boldsymbol{\theta}} \log \prod_{i=1}^m p_{\text{model}} \left(\boldsymbol{x}^{(i)}; \boldsymbol{\theta} \right)$$
$$= \arg \max_{\boldsymbol{\theta}} \sum_{i=1}^m \log p_{\text{model}} \left(\boldsymbol{x}^{(i)}; \boldsymbol{\theta} \right).$$

- They are called generative because they can often generate samples
 - Example: Multivariate Gaussian with estimated parameters μ, σ

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Netvorks

Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

Generative Adversarial Networks (GANs)

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

• Implicit generative models do not actually learn an explicit model for p(x)

- Instead, learn to generate samples from p(x)
 - Learn good feature representations
 - Perform data augmentation
 - Learn world models (a simulator!) for reinforcement learning
- How?
 - Learn to sample from a neural network output
 - Adversarial training that uses one network's predictions to train the other (dynamic loss function!)
 - Lots of tricks to make the optimization more stable

• We would like to sample from p(x) using a neural network

Idea:

- Sample from a simple distribution (Gaussian)
- Transform the sample to p(x)

0

Input can be a vector with (independent) Gaussian random numbers

We can use a CNN to generate images!

- Goal: We would like to generate *realistic* images. How can we drive the network to learn how to do this?
- Idea: Have another network try to distinguish a real image from a generated (fake) image
 - Why? Signal can be used to determine how well it's doing at generation

 $N(\mu, \sigma)$

Neural Network

Adversarial Networks

Discriminator

Question: What loss functions can we use (for each network)?

Since we have two networks competing, this is a mini-max two player game

- Ties to game theory
- Not clear what (even local) Nash equilibria are for this game

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

Since we have two networks competing, this is a mini-max two player game

- Ties to game theory
- Not clear what (even local) Nash equilibria are for this game
- The full mini-max objective is:

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log(1 - D(G(\boldsymbol{z})))]$$

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log(1 - D(G(\boldsymbol{z})))]$$

where D(x) is the discriminator outputs probability ([0,1]) of real image
x is a real image and G(z) is a generated image

The discriminator wants to maximize this:

- D(x) is pushed up (to 1) because x is a real image
- 1 D(G(z)) is also pushed up to 1 (so that D(G(z)) is pushed down to 0)
- In other words, discriminator wants to classify real images as real (1) and fake images as fake (0)

Discriminator Perspective

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log(1 - D(G(\boldsymbol{z})))]$$

where D(x) is the discriminator outputs probability ([0,1]) of real image
x is a real image and G(z) is a generated image

The generator wants to minimize this:

- 1 D(G(z)) is pushed down to 0 (so that D(G(z)) is pushed up to 1)
- This means that the generator is fooling the discriminator, i.e. succeeding at generating images that the discriminator can't discriminate from real

Generator Perspective

Since we have two networks competing, this is a mini-max two player game

- Ties to game theory
- Not clear what (even local) Nash equilibria are for this game
- The full mini-max objective is:

Sample from fake

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\mathsf{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log(1 - D(G(\boldsymbol{z})))]$$

Generator *minimizes*

How well discriminator does (0 for fake)

• where D(x) is the discriminator outputs probability ([0,1]) of real image

• x is a real image and G(z) is a generated image

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

Mini-max Two Player Game

Since we have two networks competing, this is a mini-max two player game

Ties to game theory

Not clear what (even local) Nash equilibria are for this game

The full mini-max objective is: Sample from real Sample from fake $\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\mathsf{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log(1 - D(G(\boldsymbol{z})))]$ **Discriminator** *maximizes* How well discriminator How well discriminator does (1 for real) does (0 for fake) where D(x) is the discriminator outputs probability ([0,1]) of real image • x is a real image and G(z) is a generated image Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

Mini-max Two Player Game

Generative Adversarial Networks (GANs)

The generator part of the objective does not have good gradient properties

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log(1 - D(G(\boldsymbol{z})))]$$

- High gradient when D(G(z)) is high (that is, discriminator is wrong)
- We want it to improve when samples are bad (discriminator is right)

• Alternative objective, **maximize**: $\max_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(D_{\theta_d}(G_{\theta_g}(z)))$

Plot from CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung

Converting to Max-Max Game

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Goodfellow, NeurIPS 2016 Generative Adversarial Nets

Generative Adversarial Networks (GANs)

- Low-resolution images but look decent!
- Last column are nearest neighbor matches in dataset

Early Results

d)

GANs are very difficult to train due to the mini-max objective

Advancements include:

- More stable architectures
- Regularization methods to improve optimization
- Progressive growing/training and scaling

Goodfellow, NeurIPS 2016 Generative Adversarial Nets

Architecture guidelines for stable Deep Convolutional GANs

DCGAN

- Replace any pooling layers with strided convolutions (discriminator) and fractional-strided convolutions (generator).
- Use batchnorm in both the generator and the discriminator.
- Remove fully connected hidden layers for deeper architectures.
- Use ReLU activation in generator for all layers except for the output, which uses Tanh.
- Use LeakyReLU activation in the discriminator for all layers.

Radford et al., Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

- Training GANs is difficult due to:
 - Minimax objective For example, what if generator learns to memorize training data (no variety) or only generates part of the distribution?
 - Mode collapse Capturing only some modes of distribution
- Several theoretically-motivated regularization methods
 - Simple example: Add noise to real samples!

$$\lambda \cdot \mathbb{E}_{x \sim P_{real}, \delta \sim N_d(0, cI)} \left[\left\| \nabla_{\mathbf{x}} D_{\theta}(x + \delta) \right\| - k \right]^2$$

Kodali et al., On Convergence and Stability of GANs (also known as How to Train your DRAGAN)

Generative Adversarial Nets: Convolutional Architectures

DI9

Samples from the model look much better!

Radford et al, ICLR 2016

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Generative Adversarial Nets: Convolutional Architectures

Interpolating between random points in latent space

Radford et al, ICLR 2016

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r

Brock et al., Large Scale GAN Training for High Fidelity Natural Image Synthesis

Example Generated Images - BigGAN

(a) 128×128

(b) 256×256

(c) 512×512

(d)

Figure 4: Samples from our model with truncation threshold 0.5 (a-c) and an example of class leakage in a partially trained model (d).

Brock et al., Large Scale GAN Training for High Fidelity Natural Image Synthesis

https://www.youtube.com/watch?v=PCBTZh41Ris

 Generative Adversarial Networks (GANs) can produce amazing images!

Several drawbacks

- High-fidelity generation heavy to train
- Training can be unstable
- No explicit model for distribution
- Larger number of extensions:
 - GANs conditioned on labels or other information
 - Adversarial losses for other applications

Comparison of Methods

Gradually add Gaussian noise and then reverse