
Machine Learning Applications

CS 4803-DL / 7643-A
ZSOLT KIRA

Topics:

• Variational Autoencoders

• A4 due April 4th (grace until 6th)

• Projects!

• Make sure to contribute equally with your teammates!!!

• We will have optional team peer review, and reduce scores if necessary

• Rest of the semester:

• Open to topic suggestions for 04/17

• Otherwise will cover VLMs

Back to

Generative

Models

Spectrum of Low-Labeled Learning

Supervised

Learning

⬣ Train Input: 𝑋, 𝑌

⬣ Learning output:

𝑓 ∶ 𝑋 → 𝑌, 𝑃(𝑦|𝑥)

⬣ e.g. classification

Sheep
Dog
Cat
Lion
Giraffe

Unsupervised

Learning

⬣ Input: 𝑋

⬣ Learning

output: 𝑃 𝑥

⬣ Example: Clustering,

density estimation, etc.

Less Labels

Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

Factorized Models for Images

𝒑 𝒙 = 𝒑 𝒙𝟏 𝒑 𝒙𝟐 𝒙𝟏 𝒑 𝒙𝟑 𝒙𝟏 ෑ

𝒊=𝟏

𝒏𝟐

𝒑 𝒙𝒊 𝒙𝟏, … , 𝒙𝒊−𝟏)

⬣ Training:

⬣ We can train similar to language models:

Teacher/student forcing

⬣ Maximum likelihood approach

⬣ Downsides:

⬣ Slow sequential generation process

⬣ Only considers few context pixels

Oord et al., Pixel Recurrent Neural Networks

PixelRNN &

PixelCNN

Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

Factorizing P(x)

We can use chain rule to decompose the joint distribution

⬣ Factorizes joint distribution into a product of conditional distributions

⬣ Similar to Bayesian Network (factorizing a joint distribution)

⬣ Similar to language models!

⬣ Requires some ordering of variables (edges in a probabilistic graphical model)

⬣ We can estimate this conditional distribution as a neural network

Oord et al., Pixel Recurrent Neural Networks

𝒑 𝒙 = ෑ

𝒊=𝟏

𝒏𝟐

𝒑 𝒙𝒊 𝒙𝟏, … , 𝒙𝒊−𝟏)

Modeling language as a sequence

next

word

history

Language Models as an RNN

⬣ Language modeling involves estimating a probability distribution over

sequences of words.

next

wor

d

history

⬣ RNNs are a family of neural architectures for modeling sequences.

Factorized Models for Images

𝒑 𝒙 = 𝒑 𝒙𝟏 ෑ

𝒊=𝟐

𝒏𝟐

𝒑 𝒙𝒊 𝒙𝟏, … , 𝒙𝒊−𝟏)

Oord et al., Pixel Recurrent Neural Networks

𝒑 𝒙 = ෑ

𝒊=𝟏

𝒏𝟐

𝒑 𝒙𝒊 𝒙𝟏, … , 𝒙𝒊−𝟏)

Factorized Models for Images

𝒑 𝒙 = 𝒑 𝒙𝟏 𝒑 𝒙𝟐 𝒙𝟏 𝒑 𝒙𝟑 𝒙𝟏 ෑ

𝒊=𝟏

𝒏𝟐

𝒑 𝒙𝒊 𝒙𝟏, … , 𝒙𝒊−𝟏)

⬣ Training:

⬣ We can train similar to language models:

Teacher/student forcing

⬣ Maximum likelihood approach

⬣ Downsides:

⬣ Slow sequential generation process

⬣ Only considers few context pixels

Oord et al., Pixel Recurrent Neural Networks

Pixel CNN

Oord et al., Conditional Image Generation with PixelCNN Decoders

⬣ Idea: Represent conditional distribution

as a convolution layer!

⬣ Considers larger context (receptive field)

⬣ Practically can be implemented by

applying a mask, zeroing out “future”

pixels

⬣ Faster training but still slow generation

⬣ Limited to smaller images

Example Results: Image Completion (PixelRNN)

Oord et al., Conditional Image Generation with PixelCNN Decoders

Example Images (PixelCNN)

Oord et al., Conditional Image Generation with PixelCNN Decoders

Variational

Autoencoders

(VAEs)

Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

Comparison

Autoencoders

Encoder Decoder

Low dimensional embedding

Minimize the difference (with MSE)

Linear layers with reduced

dimension or Conv-2d

layers with stride

Linear layers with increasing

dimension or Conv-2d layers

with bilinear upsampling

Formalizing the Generative Model

What is this?

Hidden/Latent variables

Factors of variation that

produce an image:

(digit, orientation, scale, etc.)

𝑃 𝑋 = න 𝑃 𝑋 𝑍; 𝜃 𝑃 𝑍 𝑑𝑍

⬣ We cannot maximize this likelihood due to the integral

⬣ Instead we maximize a variational lower bound (VLB) that we can compute

Kingma & Welling, Auto-Encoding Variational Bayes

𝑍

Variational Autoencoder: Decoder

⬣ We can combine the probabilistic view, sampling, autoencoders, and

approximate optimization

⬣ Just as before, sample 𝑍 from simpler distribution

⬣ We can also output parameters of a probability
distribution!

⬣ Example: 𝜇, 𝜎 of Gaussian distribution

⬣ For multi-dimensional version output

diagonal covariance

⬣ How can we maximize

𝑃 𝑋 = 𝑃 𝑋 𝑍; 𝜃 𝑃 𝑍 𝑑𝑍

𝑍

𝜇𝑥 𝜎𝑥

Decoder
𝑃 𝑋|𝑍; 𝜃

Variational Autoencoder: Encoder

⬣ We can combine the probabilistic view, sampling, autoencoders, and

approximate optimization

⬣ Given an image, estimate 𝑍

⬣ Again, output parameters of a

distribution

𝜇𝑧 𝜎𝑧

X

Encoder
Q 𝑍|𝑋; 𝜙

Putting Them Together

⬣ We can tie the encoder and decoder together into a probabilistic autoencoder

⬣ Given data (X), estimate 𝜇𝑧 , 𝜎𝑧 and sample from 𝑁(𝜇𝑧 , 𝜎𝑧)

⬣ Given 𝑍, estimate 𝜇𝑥, 𝜎𝑥 and sample from 𝑁(𝜇𝑥, 𝜎𝑥)

Encoder
Q 𝑍|𝑋; 𝜙

𝜇𝑧 𝜎𝑧

X

Decoder
𝑃 𝑋|𝑍; 𝜃

𝑍

𝜇𝑥 𝜎𝑥

Maximizing Likelihood

⬣ How can we optimize the parameters of the two networks?

Now equipped with our encoder and decoder networks, let’s work out the (log)

data likelihood:

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung

Maximizing Likelihood

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung

Maximizing Likelihood

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung

Maximizing Likelihood

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung

Maximizing Likelihood

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung

Forward and Backward Passes

Encoder
Q 𝑍|𝑋; 𝜙

𝜇𝑧 𝜎𝑧

X

Putting it all together: maximizing the

likelihood lower bound

Make approximate

posterior distribution

close to prior

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung

Forward and Backward Passes

Encoder
Q 𝑍|𝑋; 𝜙

𝜇𝑧 𝜎𝑧

X

Decoder
𝑃 𝑋|𝑍; 𝜃

𝑍

𝜇𝑥 𝜎𝑥

Putting it all together: maximizing the

likelihood lower bound

Sample from 𝑸(𝒁|𝑿)~𝑵(𝝁𝒛, 𝝈𝒛)

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung

Forward and Backward Passes

Encoder
Q 𝑍|𝑋; 𝜙

𝜇𝑧 𝜎𝑧

X

Decoder
𝑃 𝑋|𝑍; 𝜃

𝑍

𝜇𝑥 𝜎𝑥

Putting it all together: maximizing the

likelihood lower bound

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung

𝑋

Sample from 𝑷(𝑿|𝒁; 𝜽)~𝑵(𝝁𝒙, 𝝈𝒙)

Maximize likelihood of

original input being

reconstructed

Problem

From: Tutorial on Variational Autoencoders

https://arxiv.org/abs/1606.05908

From: http://gokererdogan.github.io/2016/07/01/reparameterization-trick/

⬣ Problem with respect to the

VLB: updating 𝜙

⬣ 𝑍~𝑄(𝑍|𝑋; 𝜙) : need to

differentiate through the

sampling process w.r.t 𝜙

(encoder is probabilistic)

https://arxiv.org/abs/1606.05908
http://gokererdogan.github.io/2016/07/01/reparameterization-trick/

Reparameterization Trick: Solution

From: Tutorial on Variational Autoencoders

https://arxiv.org/abs/1606.05908

From: http://gokererdogan.github.io/2016/07/01/reparameterization-trick/

⬣ Solution: make the randomness

independent of encoder output,

making the encoder deterministic

⬣ Gaussian distribution example:

⬣ Previously: encoder output =

random variable 𝑧~𝑁(𝜇, 𝜎)

⬣ Now encoder output =

distribution parameter [𝜇, 𝜎]

⬣ 𝑧 = 𝜇 + 𝜖 ∗ 𝜎, 𝜖~𝑁(0,1)

https://arxiv.org/abs/1606.05908
http://gokererdogan.github.io/2016/07/01/reparameterization-trick/

Interpretability of Latent Vector

Kingma & Welling, Auto-Encoding Variational Bayes

𝑧1

𝑧2

Summary

⬣ Variational Autoencoders (VAEs) provide a principled way to perform

approximate maximum likelihood optimization

⬣ Requires some assumptions (e.g. Gaussian distributions)

⬣ Samples are often not as competitive as diffusion models or GANs

⬣ Latent features (learned in an unsupervised way!) often good for

downstream tasks:

⬣ Example: World models for reinforcement learning (Ha et al., 2018)

Ha & Schmidhuber, World Models, 2018

De-noising Auto-encoder

As close as possible

NN
Encoder

NN
Decoder

vecto
r

Vincent, Pascal, et al. "Extracting and composing robust features
with denoising autoencoders." ICML, 2008.

Add noises

Slide by Hung-yi Lee

Discrete Representation

• Vector Quantized Variational Auto-encoder (VQVAE)

NN
Encoder

NN
Decoder

vecto
r

vecto
r 1

Codebook
(a set of vectors)

vecto
r 2

vecto
r 3

vecto
r 4

vecto
r 5

vecto
r 3

https://arxiv.org/abs/1711.00937

Compute similarity

Learn from data
The most similar one
is the input of decoder.

(c.f. attention)

Slide by Hung-yi Lee

VQVAE – Vector Quantized VAE

VQ-VAE + Transformers:
• VQ-VAE to build a codebook (dictionary) of features.
• Transformer to predict those codebook vectors

(features) autoregressively, starting from Layer 0.
• VQVAE sees whole set of features. Decodes it

into 64* tokens.
• Transformer sees previous tokens, outputs

probabilities over the next one.

Results used for latent space diffusion!

17 March 2023 Renato Cardoso | Foundation Model 39

Summary

⬣ Variational Autoencoders (VAEs) provide a principled way to perform

approximate maximum likelihood optimization

⬣ Requires some assumptions (e.g. Gaussian distributions)

⬣ Samples are often not as competitive as GANs

⬣ Latent features (learned in an unsupervised way!) often good for

downstream tasks:

⬣ Example: World models for reinforcement learning (Ha et al., 2018)

Ha & Schmidhuber, World Models, 2018

Overall Summary

⬣ Several ways to learn generative models via deep learning

⬣ PixelRNN/CNN:

⬣ Simple tractable densities we can model via a NN and optimize

⬣ Slow generation – limited scaling to large complex images

⬣ Generative Adversarial Networks (GANs):

⬣ Pro: Amazing results across many image modalities

⬣ Con: Unstable/difficult training process, computationally heavy for good results

⬣ Con: Limited success for discrete distributions (language)

⬣ Con: Hard to evaluate (implicit model)

⬣ Variational Autoencoders:

⬣ Pro: Principled mathematical formulation

⬣ Pro: Results in disentangled latent representations

⬣ Con: Approximation inference, results in somewhat lower quality reconstructions

Ha & Schmidhuber, World Models, 2018

Comparison

	Slide 1: CS 4803-DL / 7643-A Zsolt Kira
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Comparison
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: Discrete Representation
	Slide 39: VQVAE – Vector Quantized VAE
	Slide 40
	Slide 41
	Slide 42: Comparison

