Topics:

- Reinforcement Learning Part 1
 - Markov Decision Processes
 - Value Iteration

CS 4803-DL / 7643-A ZSOLT KIRA

Admin

• HW4 due April 4th (grace April 6th)

Reinforcement Learning Introduction

Supervised Learning

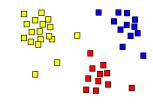
- Train Input: {X, Y}
- Learning output: $f: X \rightarrow Y, P(y|x)$
- e.g. classification

Unsupervised Learning

- Input: {X}
- Learning output: P(x)
- Example: Clustering, density estimation, etc.

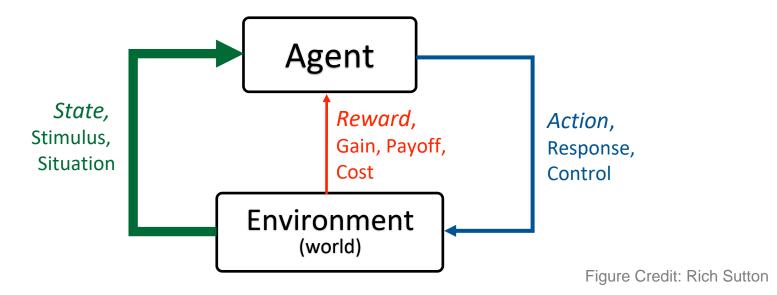
Reinforcement Learning

- Evaluative feedback in the form of reward
- No supervision on the right action



Types of Machine Learning

RL: Sequential decision making in an environment with evaluative feedback.



- **Environment** may be unknown, non-linear, stochastic and complex.
- Agent learns a policy to map states of the environments to actions.
 - Seeking to maximize cumulative reward in the long run.

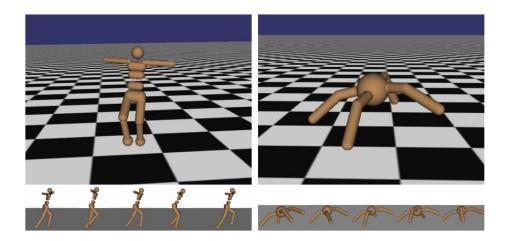
What is Reinforcement Learning?

Signature Challenges in Reinforcement Learning

- Evaluative feedback: Need trial and error to find the right action
- Delayed feedback: Actions may not lead to immediate reward
- Non-stationarity: Data distribution of visited states changes when the policy changes
- Fleeting nature of time and online data

Slide adapted from: Richard Sutton

Robot Locomotion



Figures copyright John Schulman et al., 2016. Reproduced with permission.

- Objective: Make the robot move forward
- State: Angle and position of the joints
- Action: Torques applied on joints
- Reward: +1 at each time step upright and moving forward

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

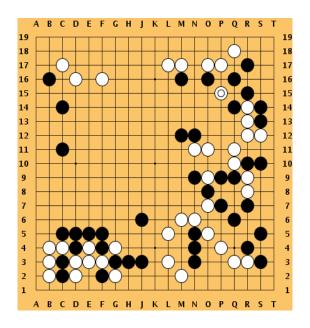
Atari Games

- Objective: Complete the game with the highest score
- **State:** Raw pixel inputs of the game state
- Action: Game controls e.g. Left, Right, Up, Down
- Reward: Score increase/decrease at each time step

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Go



- **Objective**: Defeat opponent
- **State**: Board pieces
- Action: Where to put next piece down
- Reward: +1 if win at the end of game,
 0 otherwise

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Georgia ∐Tech

Markov Decision Processes

MDPs: Theoretical framework underlying RL

- MDPs: Theoretical framework underlying RL
- An MDP is defined as a tuple $(\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathbb{T}, \gamma)$
 - ${\mathcal S}$: Set of possible states
 - ${\cal A}\,$: Set of possible actions
 - $\mathcal{R}(s,a,s')$: Distribution of reward
 - $\mathbb{T}(s, a, s')$: Transition probability distribution, also written as p(s'|s,a)
 - γ : Discount factor

- MDPs: Theoretical framework underlying RL
- An MDP is defined as a tuple $(\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathbb{T}, \gamma)$
 - ${\mathcal S}$: Set of possible states
 - ${\cal A}\,$: Set of possible actions
 - $\mathcal{R}(s,a,s')$: Distribution of reward
 - $\mathbb{T}(s, a, s')$: Transition probability distribution, also written as p(s'|s,a)
 - γ : Discount factor
- Interaction trajectory: $\ldots s_t, a_t, r_{t+1}, s_{t+1}, a_{t+1}, r_{t+2}, s_{t+2}, \ldots$

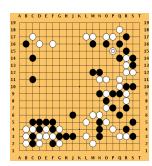
- MDPs: Theoretical framework underlying RL
- An MDP is defined as a tuple $(\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathbb{T}, \gamma)$
 - ${\cal S}$: Set of possible states
 - ${\cal A}\,$: Set of possible actions
 - $\mathcal{R}(s, a, s')$: Distribution of reward
 - $\mathbb{T}(s, a, s')$: Transition probability distribution, also written as p(s'|s,a)
 - γ : Discount factor
- Interaction trajectory: $\ldots s_t, a_t, r_{t+1}, s_{t+1}, a_{t+1}, r_{t+2}, s_{t+2}, \ldots$
- Markov property: Current state completely characterizes state of the environment
- **Assumption**: Most recent observation is a sufficient statistic of history

$$p(S_{t+1} = s'|S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, \dots, S_0 = s_0) = p(S_{t+1} = s'|S_t = s_t, A_t = a_t)$$

Markov Decision Processes (MDPs)

Fully observed MDP

- Agent receives the true state s_t at time t
- Example: Chess, Go



Partially observed MDP

- Agent perceives its own partial observation o_t of the state s_t at time t, using past states e.g. with an RNN
- Example: Poker, Firstperson games (e.g. Doom)

Source: https://github.com/mwydmuch/ViZDoom

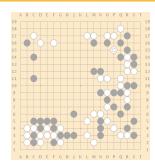
Fully observed MDP

- Agent receives the true state s_t at time t
 - Example: Chess Go

Partially observed MDP

Agent perceives its own partial observation o_t of the state s_t at time t, using past

We will assume fully observed MDPs for this lecture



Source: https://github.com/mwydmuch/ViZDoom

In **Reinforcement Learning**, we assume an underlying **MDP** with unknown:

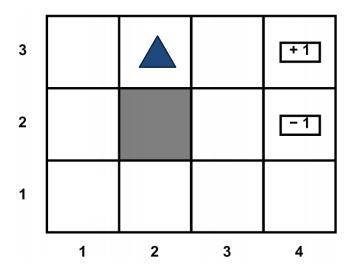
- Transition probability distribution T
- Reward distribution ${\cal R}$

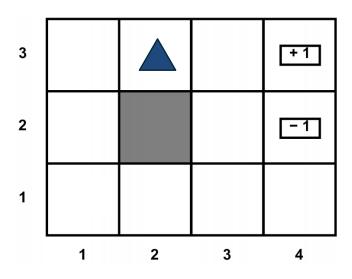
- In **Reinforcement Learning**, we assume an underlying **MDP** with unknown:
 - Transition probability distribution T
 - Reward distribution ${\cal R}$

Evaluative feedback comes into play, trial and error necessary

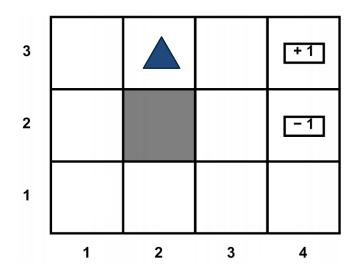
- In Reinforcement Learning, we assume an underlying MDP with unknown:
 - Transition probability distribution T
 - Reward distribution ${\cal R}$

- Evaluative feedback comes into play, trial and error necessary
- For this lecture, assume that we know the true reward and transition distribution and look at algorithms for solving MDPs i.e. finding the best policy
 - Rewards known everywhere, no evaluative feedback
 - Know how the world works i.e. all transitions

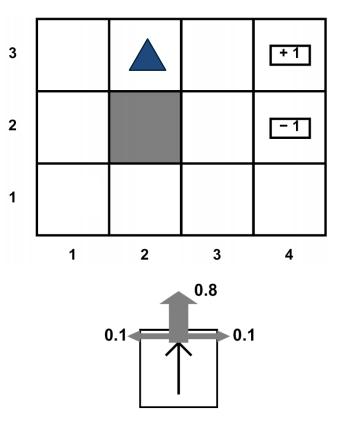




- Agent lives in a 2D grid environment
- State: Agent's 2D coordinates
- Actions: N, E, S, W
- Rewards: +1/-1 at absorbing states



- Agent lives in a 2D grid environment
- State: Agent's 2D coordinates
- Actions: N, E, S, W
- Rewards: +1/-1 at absorbing states
- Walls block agent's path
- Actions to not always go as planned
 - 20% chance that agent drifts one cell left or right of direction of motion (except when blocked by wall).



Solving MDPs by finding the **best/optimal policy**

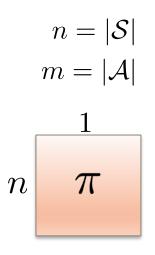
- Solving MDPs by finding the best/optimal policy
- Formally, a **policy** is a mapping from states to actions

- Solving MDPs by finding the best/optimal policy
- Formally, a **policy** is a mapping from states to actions

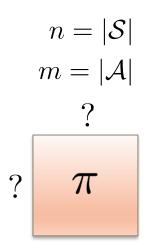
- Deterministic
$$\pi(s) = a$$

 $n = |\mathcal{S}|$ $m = |\mathcal{A}|$? π

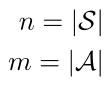
- Solving MDPs by finding the **best/optimal policy**
- Formally, a policy is a mapping from states to actions
 - Deterministic $\pi(s) = a$

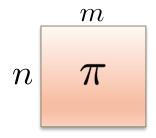


- Solving MDPs by finding the **best/optimal policy**
- Formally, a **policy** is a mapping from states to actions
 - Deterministic $\pi(s) = a$
 - Stochastic $\pi(a|s) = \mathbb{P}(A_t = a|S_t = s)$



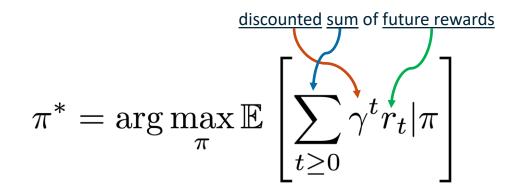
- Solving MDPs by finding the **best/optimal policy**
- Formally, a **policy** is a mapping from states to actions
 - Deterministic $\pi(s) = a$
 - Stochastic $\pi(a|s) = \mathbb{P}(A_t = a|S_t = s)$

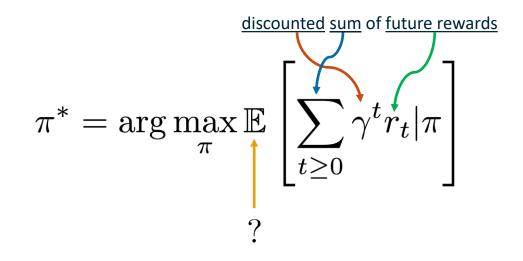




- Solving MDPs by finding the best/optimal policy
- Formally, a **policy** is a mapping from states to actions
 - Deterministic $\pi(s) = a$
 - Stochastic $\pi(a|s) = \mathbb{P}(A_t = a|S_t = s)$
- What is a good policy?
 - Maximize current reward? Sum of all future rewards?
 - Discounted sum of future rewards!
 - Discount factor: γ

$$\pi^* = \arg \max_{\pi} \mathbb{E} \left[\sum_{t \ge 0} \gamma^t r_t | \pi \right]$$





$$\pi^{*} = \arg \max_{\pi} \mathbb{E} \left[\sum_{t \ge 0} \gamma^{t} r_{t} | \pi \right]$$
$$s_{0} \sim p(s_{0}), a_{t} \sim \pi(\cdot | s_{t}), s_{t+1} \sim p(\cdot | s_{t}, a_{t})$$

Expectation over initial state, actions from policy, next states from transition distribution

- Some optimal policies for three different grid world MDPs (gamma=0.99)
 - Varying reward for non-absorbing states (states other than +1/-1)

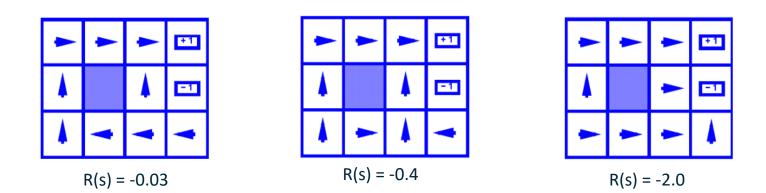


Image Credit: Byron Boots, CS 7641

• A value function is a prediction of discounted sum of future reward

- A value function is a prediction of discounted sum of future reward
- State value function / V-function / $V : S \rightarrow \mathbb{R}$

- A value function is a prediction of discounted sum of future reward
- State value function / V-function / $V : S \rightarrow \mathbb{R}$
 - How good is this state?
 - Am I likely to win/lose the game from this state?

- A value function is a prediction of discounted sum of future reward
- State value function / V-function / $V : S \rightarrow \mathbb{R}$
 - How good is this state?
 - Am I likely to win/lose the game from this state?
- **State-Action** value function / **Q**-function / $Q : S \times A \rightarrow \mathbb{R}$

- A value function is a prediction of discounted sum of future reward
- State value function / V-function / $V : S \rightarrow \mathbb{R}$
 - How good is this state?
 - Am I likely to win/lose the game from this state?
- **State-Action** value function / **Q**-function / $Q : S \times A \rightarrow \mathbb{R}$
 - How good is this state-action pair?
 - In this state, what is the impact of this action on my future?

• For a policy that produces a trajectory sample $(s_0, a_0, s_1, a_1, s_2 \cdots)$

- For a policy that produces a trajectory sample $(s_0, a_0, s_1, a_1, s_2 \cdots)$
- The V-function of the policy at state s, is the expected cumulative reward from state s:

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t \ge 0} \gamma^t r_t | s_0 = s, \pi\right]$$

- For a policy that produces a trajectory sample $(s_0, a_0, s_1, a_1, s_2 \cdots)$
- The V-function of the policy at state s, is the expected cumulative reward from state s:

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t\geq 0} \gamma^{t} r_{t} | s_{0} = s, \pi\right]$$

?

- For a policy that produces a trajectory sample $(s_0, a_0, s_1, a_1, s_2 \cdots)$
- The V-function of the policy at state s, is the expected cumulative reward from state s:

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t \ge 0} \gamma^{t} r_{t} | s_{0} = s, \pi\right]$$
$$\boldsymbol{s}_{0} \sim p(\boldsymbol{s}_{0}), a_{t} \sim \pi(\cdot | \boldsymbol{s}_{t}), \boldsymbol{s}_{t+1} \sim p(\cdot | \boldsymbol{s}_{t}, a_{t})$$

- For a policy that produces a trajectory sample $(s_0, a_0, s_1, a_1, s_2 \cdots)$
- The Q-function of the policy at state s and action a, is the expected cumulative reward upon taking action a in state s (and following policy thereafter):

- For a policy that produces a trajectory sample $(s_0, a_0, s_1, a_1, s_2 \cdots)$
- The Q-function of the policy at state s and action a, is the expected cumulative reward upon taking action a in state s (and following policy thereafter):

$$Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{t \ge 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi\right]$$

$$\boldsymbol{s}_{0} \sim p\left(\boldsymbol{s}_{0}\right), a_{t} \sim \pi\left(\cdot | \boldsymbol{s}_{t}\right), \boldsymbol{s}_{t+1} \sim p\left(\cdot | \boldsymbol{s}_{t}, a_{t}\right)$$

- The V and Q functions corresponding to the optimal policy π^{\star}

$$V^*(s) = \mathbb{E}\left[\sum_{t \ge 0} \gamma^t r_t | s_0 = s, \pi^*\right]$$

$$Q^*(s,a) = \mathbb{E}\left[\sum_{t\geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi^*\right]$$

Recursive Bellman expansion (from definition of Q)

(Expected) return from t = 0

$$Q^{*}(s,a) = \mathbb{E}_{\substack{a_{t} \sim \pi^{*}(\cdot | s_{t}) \\ s_{t+1} \sim p(\cdot | s_{t}, a_{t})}} \left[\sum_{t \ge 0} \gamma^{t} r(s_{t}, a_{t}) \mid s_{0} = s, a_{0} = a \right]$$

(Reward at t = 0) + gamma * (Return from expected state at t=1)

$$= \gamma^{0} r(s, a) + \underset{s' \sim p(\cdot|s, a)}{\mathbb{E}} \left[\gamma \underset{a_{t} \sim \pi^{*}(\cdot|s_{t}) \\ s_{t+1} \sim p(\cdot|s_{t}, a_{t})}{\mathbb{E}} \left[\sum_{t \geq 1} \gamma^{t-1} r(s_{t}, a_{t}) \mid s_{1} = s' \right] \right]$$
$$= r(s, a) + \gamma \underset{s' \sim p(s'|s, a)}{\mathbb{E}} \left[V^{*}(s') \right]$$
$$= \underset{s' \sim p(s'|s, a)}{\mathbb{E}} \left[r(s, a) + \gamma V^{*}(s') \right]$$

Equations relating optimal quantities

$$V^*(s) = \max_a Q^*(s, a)$$

$$\pi^*(s) = \arg\max_a Q^*(s, a)$$

Recursive Bellman optimality equation

$$Q^*(s, a) = \underset{s' \sim p(s'|s, a)}{\mathbb{E}} [r(s, a) + \gamma V^*(s')]$$
$$= \sum_{s'} p(s'|s, a) [r(s, a) + \gamma V^*(s')]$$
$$= \sum_{s'} p(s'|s, a) \left[r(s, a) + \gamma \underset{a}{\max} Q^*(s', a')\right]$$

Equations relating optimal quantities

$$V^*(s) = \max_a Q^*(s,a)$$

$$\pi^*(s) = \arg\max_a Q^*(s, a)$$

Recursive Bellman optimality equation

$$Q^{*}(s, a) = \underset{s' \sim p(s'|s, a)}{\mathbb{E}} [r(s, a) + \gamma V^{*}(s')]$$

= $\sum_{s'} p(s'|s, a) [r(s, a) + \gamma V^{*}(s')]$
= $\sum_{s'} p(s'|s, a) \left[r(s, a) + \gamma \max_{a} Q^{*}(s', a')\right]$

$$V^{*}(s) = \max_{a} \sum_{s'} p(s'|s, a) [r(s, a) + \gamma V^{*}(s')]$$

Based on the bellman optimality equation

$$V^*(s) = \max_{a} \sum_{s'} p\left(s'|s,a\right) \left[r(s,a) + \gamma V^*\left(s'\right)\right]$$

Algorithm

- Initialize values of all states
- While not converged:

For each state:
$$V^{i+1}(s) \leftarrow \max_{a} \sum_{s'} p(s'|s, a) \left[r(s, a) + \gamma V^i(s') \right]$$

Repeat until convergence (no change in values)

Value Iteration

$$V^0 \to V^1 \to V^2 \to \cdots \to V^i \to \cdots \to V^*$$

Time Complexity?

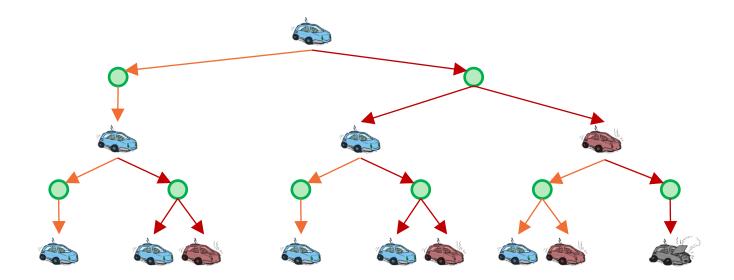
Time complexity per iteration
$$\,O(|\mathcal{S}|^2|_{\star})$$

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: *Slow*, *Fast*

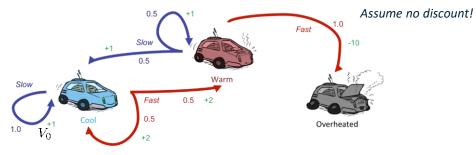
٠

+1 0.5 1.0 Going faster gets double reward Fast +1 Slow -10 0.5 Warm Slow 0.5 Fast +2 Cool **Overheated** +1 1.0 0.5 +2

Slide Credit: http://ai.berkeley.ed



Slide Credit: http://ai.berkeley.edu



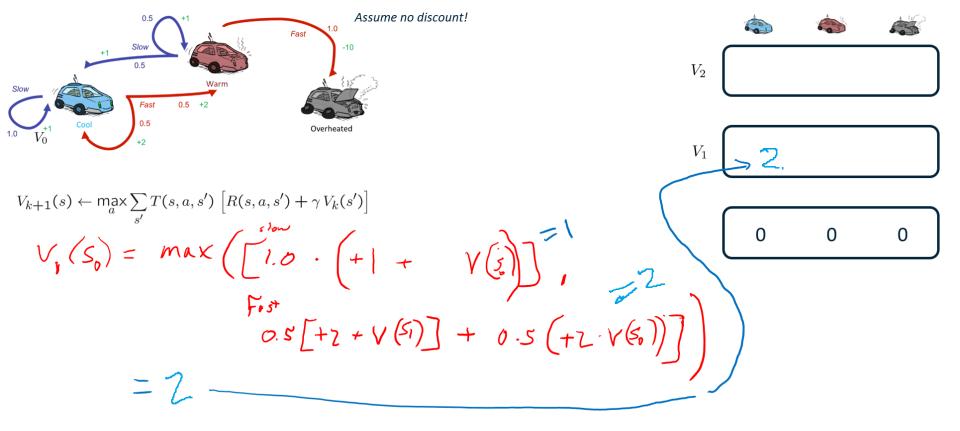
$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

V_2		
V_1		

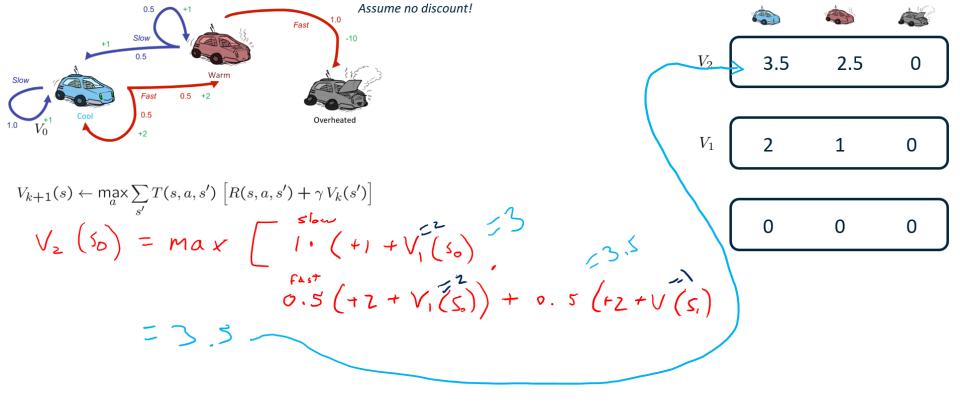
0 0	0
-----	---

Slide Credit: http://ai.berkeley.edu

Georg



Slide Credit: http://ai.berkeley.edu



Slide Credit: http://ai.berkeley.edu

Value Iteration Update:

$$V^{i+1}(s) \leftarrow \max_{a} \sum_{s'} p(s'|s,a) \left[r(s,a) + \gamma V^i(s') \right]$$

Q-Iteration Update:

Q-Iteration

$$Q^{i+1}(s,a) \leftarrow \sum_{s'} p\left(s'|s,a\right) \left[r\left(s,a\right) + \gamma \max_{a'} Q^{i}(s',a') \right]$$

The algorithm is same as value iteration, but it loops over actions as well as states

For Value Iteration:

Theorem: will converge to unique optimal values Basic idea: approximations get refined towards optimal values Policy may converge long before values do

Time complexity per iteration $O(|\mathcal{S}|^2|\mathcal{A}|)$

- Feasible for:
- 3x4 Grid world?
- Chess/Go?
- Atari Games with integer image pixel values [0, 255] of size 16x16 as state?

Summary: MDP Algorithms

Value Iteration

 Bellman update to state value estimates

Q-Value Iteration

Bellman update to (state, action) value estimates

