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Topics:

• Reinforcement Learning Part 2

• Q-Learning

• Deep Q-Learning

• Policy Gradient



Machine Learning Applications

Admin

• HW4 – into the grace period!



RL: Sequential decision making in an environment with evaluative feedback.

What is Reinforcement Learning?

⬣ Environment may be unknown, non-linear, stochastic and complex.

⬣ Agent learns a policy to map states of the environments to actions.

⬣ Seeking to maximize cumulative reward in the long run.

Agent

Action, 
Response, 
Control

State, 
Stimulus, 
Situation

Reward, 
Gain, Payoff, 
Cost

Environment
(world)

Figure Credit: Rich Sutton



Markov Decision Processes (MDPs)

⬣ MDPs: Theoretical framework underlying RL

⬣ An MDP is defined as a tuple 

   : Set of possible states

   : Set of possible actions

        : Distribution of reward

        : Transition probability distribution, also written as p(s’|s,a)

   : Discount factor

⬣ Interaction trajectory:  

⬣ Markov property: Current state completely characterizes state of the 

environment

⬣ Assumption: Most recent observation is a sufficient statistic of history
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Summary of Last Time

Definition of optimal policy 

What we want

A policy 

Some intermediate concepts and terms

A Value function (how good is a state?)

A Q-Value function (how good is a state-action pair?)

We can then derive the Bellman Equation

(Math in previous 
lecture)

This must hold true for an optimal Q-Value!
   -> Leads to dynamic programming algorithm to find it

Equalities relating optimal quantities



⬣ Equations relating optimal quantities

⬣ Recursive Bellman optimality equation

Bellman Optimality Equations

NOTE: In the 
lecture video for 

these slides, there 
was a typo having 

V(s) instead of 
V(s’)



Based on the bellman optimality equation

Algorithm

Initialize values of all states

While not converged:

For each state:

Repeat until convergence (no change in values)

Value Iteration

Time complexity per iteration



Value Iteration Update:

Q-Iteration Update:

Q-Iteration

The algorithm is same as value iteration, but it loops over 

actions as well as states



For Value Iteration:

 Theorem: will converge to unique optimal values
Basic idea: approximations get refined towards optimal values
Policy may converge long before values do

Feasible for:

⬣ 3x4 Grid world?

⬣ Chess/Go?

⬣ Atari Games with integer image pixel values [0, 255] of size 

16x16 as state?

State Spaces & Time Complexity

Time complexity per iteration



Value Iteration

⬣ Bellman update to state value 

estimates

Q-Value Iteration

⬣ Bellman update to (state, 

action) value estimates

Summary: MDP Algorithms



Reinforcement 

Learning, 

Deep RL



⬣ Recall RL assumptions:

⬣        unknown, how actions affect the environment.

⬣         unknown, what/when are the good actions?

⬣ But, we can learn by trial and error.

⬣ Gather experience (data) by performing actions.

⬣ Approximate unknown quantities from data.

Learning Based Methods: RL

Reinforcement Learning



⬣ Old Dynamic Programming Demo

⬣ https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

⬣ RL Demo

⬣ https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

Learning Based Methods: RL

Slide credit: Dhruv Batra 

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html
https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html


Sample-Based Policy Evaluation?

• We want to improve our estimate of V by computing these averages:

• Idea: Take samples of outcomes s’ (by doing the action!) and average

(s)

s

s, (s)

s1

'
s2

'
s3

'

s, (s),s’

s
'

Almost!  But we can’t 
rewind time to get 

sample after sample from 
state s.

What’s the difficulty of this algorithm?



Temporal Difference Learning

• Big idea: learn from every experience!
– Update V(s) each time we experience a transition (s, a, s’, r)

– Likely outcomes s’ will contribute updates more often

• Temporal difference learning of values
– Policy still fixed, still doing evaluation!

– Move values toward value of whatever successor occurs: running average

(s)

s

s, 
(s)

s’

Sample of V(s):

Update to V(s):

Same update:



Q-Learning

• We’d like to do Q-value updates to each Q-state:

– But can’t compute this update without knowing T, R

• Instead, compute average as we go
– Receive a sample transition (s,a,r,s’)

– This sample suggests

– But we want to average over results from (s,a) 

– So keep a running average

Slide Credit: http://ai.berkeley.edu



Q-Learning Properties

• Amazing result: Q-learning converges to optimal policy -- even if you’re acting suboptimally!

• This is called off-policy learning

• Caveats:

– You have to explore enough

– You have to eventually make the learning rate

 small enough

– … but not decrease it too quickly

– Basically, in the limit, it doesn’t matter how you select actions (!)

Slide Credit: http://ai.berkeley.edu



Deep 

Q-Learning



Generalizing Across States

• Basic Q-Learning keeps a table of all q-values

• In realistic situations, we cannot possibly learn about every single state!
– Too many states to visit them all in training

– Too many states to hold the q-tables in memory

• Instead, we want to generalize:
– Learn about some small number of training states from experience

– Generalize that experience to new, similar situations

– This is the fundamental idea in machine learning!

[demo – RL pacman]

Slide Credit: http://ai.berkeley.edu



Example: Pacman

Let’s say we 
discover through 

experience that this 
state is bad:

In naïve q-learning, 
we know nothing 
about this state:

Or even this one!

Slide Credit: http://ai.berkeley.edu



Feature-Based Representations

• Solution: describe a state using a vector of features (properties)
– Features are functions from states to real numbers (often 0/1) that capture important properties of the state
– Example features:

• Distance to closest ghost
• Distance to closest dot
• Number of ghosts
• 1 / (dist to dot)2

• Is Pacman in a tunnel? (0/1)
• …… etc.
• Is it the exact state on this slide?

– Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Slide Credit: http://ai.berkeley.edu



Linear Value Functions

• Using a feature representation, we can write a q function (or value function) for any state using a few weights:

• Advantage: our experience is summed up in a few powerful numbers

• Disadvantage: states may share features but can actually be very different in value!

Slide Credit: http://ai.berkeley.edu



⬣ State space is too large and complicated for feature engineering though!

⬣ Recall: Value iteration not scalable (chess, RGB images as state space, etc)

⬣ Solution: Deep Learning!     … more precisely, function approximation.

⬣ Use deep neural networks to learn state representations

⬣ Useful for continuous action spaces as well

Learning Based Methods: Deep RL

Deep Reinforcement Learning



⬣ Value-based RL

⬣ (Deep) Q-Learning, approximating          with a deep Q-network

⬣ Policy-based RL

⬣ Directly approximate optimal policy        with a parametrized policy 

⬣ Model-based RL

⬣ Approximate transition function       and reward function  

⬣ Plan by looking ahead in the (approx.) future!

Deep RL: Algorithm Categories



⬣ Q-Learning with linear function approximators

⬣ Has some theoretical guarantees

⬣ Deep Q-Learning: Fit a deep Q-Network

⬣ Works well in practice

⬣ Q-Network can take RGB images

Deep Q-Learning

Image Credits: Fei-Fei Li, Justin Johnson, 

Serena Yeung, CS 231n



⬣ Assume we have collected a dataset:

⬣ We want a Q-function that satisfies bellman optimality (Q-value)

⬣ Loss for a single data point:

Deep Q-Learning

Target Q-ValuePredicted Q-Value



⬣ Minibatch of 

⬣ Forward pass:

⬣ Compute loss:

⬣ Backward pass:

Deep Q-Learning

State Q-Network Q-Values per action

State

Q-Network



⬣ In practice, for stability:

⬣ Freeze              and update                parameters   

⬣ Set                    at regular intervals

Deep Q-Learning



Deep Q-Learning

How to gather experience?

This is why RL is hard



How to gather experience?

Environment Data

Update

Train

Challenge 1: Exploration vs Exploitation

Challenge 2: Non iid, highly correlated data



⬣ What should           be? 

⬣ Greedy? -> Local minimas, no exploration

⬣ An exploration strategy:

⬣  

Exploration Problem



⬣ Samples are correlated => high variance gradients => inefficient learning 

⬣ Current Q-network parameters determines next training samples => can lead 

to bad feedback loops

⬣ e.g. if maximizing action is to move right, training samples will be 

dominated by samples going right, may fall into local minima

Correlated Data Problem

R=10 R=1



⬣ Correlated data: addressed by using experience replay

➢ A replay buffer stores transitions 

➢ Continually update replay buffer as game (experience) episodes are 

played, older samples discarded

➢ Train Q-network on random minibatches of transitions from the replay 

memory, instead of consecutive samples

⬣ Larger the buffer, lower the correlation

Experience Replay



Deep Q-Learning Algorithm

Epsilon-greedy

Q Update

Experience Replay



Case study: Playing Atari Games

Atari Games

⬣ Objective: Complete the game with the highest score

⬣ State: Raw pixel inputs of the game state

⬣ Action: Game controls e.g. Left, Right, Up, Down

⬣ Reward: Score increase/decrease at each time step

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission. 



Case study: Playing Atari Games

Atari Games

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://www.youtube.com/watch?v=V1eYniJ0Rnk

https://www.youtube.com/watch?v=V1eYniJ0Rnk


In today’s class, we looked at

⬣ Dynamic Programming

⬣ Value, Q-Value Iteration

⬣ Reinforcement Learning (RL)

⬣ The challenges of (deep) learning based methods

⬣ Value-based RL algorithms

⬣ Deep Q-Learning

Now:

⬣ Policy-based RL algorithms (policy gradients)

Summary



Policy 

Gradients, 

Actor-Critic



Overview



⬣ Class of policies defined by parameters

⬣ Eg:     can be parameters of linear transformation, deep network, etc. 

⬣ Want to maximize:

⬣ In other words, 

Parametrized Policy



Pong from Pixels



Policy Gradient: Loss Function

Image Source: http://karpathy.github.io/2016/05/31/rl/



⬣ Slightly re-writing the notation

  Let              denote a trajectory

Gathering Data/Experience



⬣ How to gather data?

⬣ We already have a policy:

⬣ Sample N trajectories                 by acting according to 

Gathering Data/Experience



⬣ Sample trajectories                                            by acting according to 

⬣ Compute policy gradient as

⬣ Update policy parameters: 

The REINFORCE Algorithm

Run the policy and 
sample trajectories

Compute policy 
gradient

Update policy

Slide credit: Sergey Levine

?



Deriving The Policy Gradient

Expectation as integral

Exchange integral and gradient



Deriving The Policy Gradient

Doesn’t depend on 
Transition probabilities!

Continuous Action Space?



⬣ Sample trajectories                                            by acting according to 

⬣ Compute policy gradient as

⬣ Update policy parameters: 

Run the policy and 
sample trajectories

Compute policy 
gradient

Update policy

The REINFORCE Algorithm

Slide credit: Sergey Levine



Drawbacks of Policy Gradients

Slide credit: Dhruv Batra



Issues with Policy Gradients

• Credit assignment is hard! 

– Which specific action led to increase in reward

– Suffers from high variance → leading to unstable training


	Slide 1: CS 4803-DL / 7643-A Zsolt Kira
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Sample-Based Policy Evaluation?
	Slide 16: Temporal Difference Learning
	Slide 17: Q-Learning
	Slide 18: Q-Learning Properties
	Slide 19
	Slide 20: Generalizing Across States
	Slide 21: Example: Pacman
	Slide 22: Feature-Based Representations
	Slide 23: Linear Value Functions
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51: Issues with Policy Gradients

