
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:

• Visualization

Visualization

of Neural

Networks

Interpretability Enables Trust in AI Models
Understand the reasons behind a prediction

How did you
make this

prediction?

Neural network
for image
recognition

Electric guitar
(p=0.32)

Acoustic guitar
(p=0.24) Labrador

(p=0.21)

"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin.

 ACM SIGKDD, 2016

Data scientist

http://arxiv.org/abs/1602.04938

Neural network
to predict
wolf vs husky

Interpretability Enables Trust in AI Models
Figure out when NOT to trust a model

You are detecting
snow, not wolves!
I can`t trust you

Prediction accuracy
is very high. It is
time to put this
system online.

"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin.

 ACM SIGKDD, 2016

Data scientist

http://arxiv.org/abs/1602.04938

Visualizing Neural Networks

Given a trained model, we’d like to understand

what it learned.

Fei-Fei Li, Justin Johnson,

Serena Yeung, from CS

231n

Zeiler & Fergus, 2014

Weights

Activations

Simonyan et al, 2013

Gradients

Hendrycks & Dietterich,

2019

Robustness

Visualizing Weights

FC Layer: Reshape weights for a node back into size of image, scale 0-255

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Conv layers:

For each kernel,

scale values

from 0-255 and

visualize

Problem:

3x3 filters

difficult to

interpret!

Visualizing Output Maps

We can also produce

visualization output

(aka activation/filter)

maps

These are larger early

in the network.

Visualizing Output Maps

Highly

Activating

Image

Patches

From: Yosinski et

al., “Understanding

Neural Networks

Through Deep

Visualization”,

2015

Activations of last conv layer in VGG network

Problem: Small conv

outputs also hard to

interpret

Activations – Small Output Sizes

https://poloclub.github.io/cnn-explainer/ https://fredhohman.com/papers/cnn101

CNN101 and CNN Explainer

Dimensionality Reduction: t-SNE

Van der Maaten & Hinton, “Visualizing Data using t-SNE”, 2008.

We can take the activations of

any layer (FC, conv, etc.) and

perform dimensionality

reduction

Often reduce to two

dimensions for plotting

E.g. using Principle

Component Analysis (PCA)

t-SNE is most common

Performs non-linear mapping

to preserve pair-wise

distances

Visualizing Neural Networks

Fei-Fei Li, Justin Johnson,

Serena Yeung, from CS

231n

Zeiler & Fergus, 2014

Weights

Activations

Simonyan et al, 2013

Gradients

Hendrycks & Dietterich,

2019

Robustness

While these methods provide some visually

interpretable representations, they can be

misleading or uninformative (Adebayo et al.,

2018)

Assessing interpretability is difficult

Requires user studies to show usefulness

E.g. they allow a user to predict mistakes

beforehand

Neural networks learn distributed

representation

(no one node represents a particular feature)

This makes interpretation difficult

Adebayo et al., “Sanity Checks for Saliency Maps”, 2018.

Summary & Caveats

Gradient-

Based

Visualizations

Visualizing Neural NetworksVisualizing Neural Networks

Backward Pass

Forward Pass

Note: We are keeping parameters/weights frozen

Do not use gradients w.r.t. weights to perform updates

Given a trained model, we can

perform forward pass given an

input to get scores, softmax

probabilities, loss and then

backwards pass to get

gradients

Visualizing Neural NetworksVisualizing Neural Networks

This can be useful not just for

optimization, but also to

understand what was learned

Backward Pass

Forward Pass

Gradient of loss with respect to all layers (including input!)

Gradient of any layer with respect to input (by cutting off computation

graph)

Backwards pass gives us

gradients for all layers: How

the loss changes as we change

different parts of the input

Gradient of Loss w.r.t. Image

Idea: We can backprop to the

image

Sensitivity of loss to individual

pixel changes

Large sensitivity implies

important pixels

Called Saliency Maps

In practice:

Instead of loss, find gradient of classifier scores (pre-softmax)

Take absolute value of gradient

Sum across all channels From: Simonyan et al., “Deep Inside Convolutional Networks:

Visualising Image Classification Models and Saliency Maps”, 2013

Backward Pass

Forward Pass

Guided Backprop

Normal backprop not always best

choice

Example: You may get parts of

image that decrease the feature

activation

There are probably lots of

such input pixels

Guided backprop can be used to

improve visualizations

From: Springenberg et al., “Striving For Simplicity: The All Convolutional Net"

Guided Backprop Results

From: Springenberg et al., “Striving For Simplicity: The All Convolutional Net"

Note: These images were created

by a slightly different method called

deconvolution, which ends up

being similar to guided backprop

VGG Layer-by-Layer Visualization

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.

VGG Layer-by-Layer Visualization

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.

VGG Layer-by-Layer Visualization

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.

VGG Layer-by-Layer Visualization

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.

Grad-CAM 24

Guided
Grad-CAM

Backprop till
conv

Guided Backpropagation

Conv
Feature Maps

+

Neuron Importance

GradCAM

Selfvaraju et al., Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, 2016.

Grad-CAM 25

Guided
Grad-CAM

Backprop till
conv

Guided Backpropagation

Rectified Conv
Feature Maps

+

Grad-CAM

Selfvaraju et al., Grad-CAM: Visual Explanations from Deep

Networks via Gradient-based Localization, 2016.

Grad-CAM

What animal is in this picture? Dog

Selfvaraju et al., Grad-CAM: Visual Explanations from Deep

Networks via Gradient-based Localization, 2016.

Grad-CAM

What animal is in this picture? Cat

Selfvaraju et al., Grad-CAM: Visual Explanations from Deep

Networks via Gradient-based Localization, 2016.

Summary

Gradients are important not just

for optimization, but also for

analyzing what neural networks

have learned

Standard backprop not always

the most informative for

visualization purposes

Several ways to modify the

gradient flow to improve

visualization results

Optimizing

the Input

Images

Optimizing the Image

Idea: Since we have the

gradient of scores w.r.t.

inputs, can we optimize the

image itself to maximize the

score?

Why?

Generate images from

scratch!

Adversarial examples

Backward Pass

Forward Pass

From: Simonyan et al., “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, 2013

Gradient Ascent on the Scores

We can perform gradient

ascent on image

Start from random/zero image

Use scores to avoid

minimizing other class scores

instead

Often need regularization term

to induce statistics of natural

imagery

E.g. small pixel values, spatial

smoothness

From: Simonyan et al., “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, 2013

Backward Pass

Forward Pass

𝒂𝒓𝒈𝒎𝒂𝒙 𝑺𝒄 𝑰 − 𝝀 𝑰
𝟐

𝟐
`

𝑰 = 𝑰 + 𝜶
𝝏𝑺𝒄

𝝏𝑰

Example Images

Note: You might have to squint!
From: Simonyan et al., “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, 2013

Example Images

From: Yosinski et al., “Understanding Neural Networks Through Deep Visualization”, 2015

Can improve results with

various tricks:

Clipping or normalization of

small values & gradients

Gaussian blurring

Improved Results

From: Yosinski et al., “Understanding Neural Networks Through Deep Visualization”, 2015

Note: Can generate input images to

maximize any arbitrary activation!

We can optimize the input

image to generate

examples to increase class

scores or activations

This can show us a great

deal about what examples

(not in the training set)

activate the network

Summary

Testing

Robustness

Gradient Ascent on the Scores

We can perform gradient

ascent on image

Rather than start from zero

image, why not real image?

And why not optimize the

score of an arbitrary

(incorrect!) class

Surprising result: You need

very small amount of pixel

changes to make the network

confidently wrong!

From: Simonyan et al., “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, 2013

Backward Pass

Forward Pass

𝒂𝒓𝒈𝒎𝒂𝒙 𝑺𝒄 𝑰 − 𝝀 𝑰
𝟐

𝟐
`

where 𝒄 = 𝒄𝒂𝒕

Example of Adversarial Noise

Note this problem is not specific to deep learning!

Other methods also suffer from it

Can show how linearity (even at the end) can bring this about

Can add many small values that add up in right direction

From: Goodfellow et al., “Explaining and Harnessing Adversarial Examples”, 2015

Variations of Attacks

Single-Pixel

Attacks!
Su et al., “One Pixel

Attack for Fooling Deep

Neural Networks”, 2019.

White vs. Black-Box Attacks of Increasing Complexity
Chakraborty et al., Adversarial Attacks and Defences: A Survey, 2018

Summary of dversarial

Attacks/Defenses

Similar to other security-related

areas, it’s an active cat-and-mouse

game

Several defenses such as:

Training with adversarial

examples

Perturbations, noise, or re-

encoding of inputs

There are not universal methods

that are robust to all types of attacks

Other Forms of Robustness Testing
m

C
E

Hendrycks & Dietterich, “Benchmarking Neural Network

Robustness to Common Corruptions and Perturbations”, 2019.

Analyzing Bias

We can try to understand the biases of CNNs

Can compare to those of humans

Example: Shape vs. Texture Bias Geirhos, “ImageNet-trained CNNs are biased towards texture;

increasing shape bias improves accuracy and robustness”, 2018.

Shape vs. Texture Bias

Humans

AlexNet

VGG

GoogleNet

ResNet-50

Geirhos, “ImageNet-trained CNNs are biased towards texture;

increasing shape bias improves accuracy and robustness”, 2018.

Summary

Various ways to test the

robustness and biases of

neural networks

Adversarial examples have

implications for understanding

and trusting them

Exploring the gain of different

architectures in terms of

robustness and biases can also

be used to understand what has

been learned

What about

Transformers,

LLMs, etc.

Interpretability of Transformers

Large models, especially transformers, can be seen as

implementing algorithms

Several ways to try to understand:

Visualization – Often attention

Distill into more interpretable model

Reverse engineer

Forward engineer: Algorithm → compiler → Weights!

Visualization

https://github.com/jessevig/bertviz

Model Distillation

Engineering Predictors for Interpretability
Using Shallow Decision Tree to Simulate Neural Network Prediction

Data (𝑿, 𝒚)

Predict ෝ𝒚

Train Tree on (𝐗, ෝ𝒚)

Beyond Sparsity: Tree Regularization of Deep Models for Interpretability
Mike Wu , Michael C. Hughes , Sonali Parbhoo , Maurizio Zazzi , Volker Roth , and Finale Doshi-

Velez
Slide by Ilknur Kaynar-Kabul

https://arxiv.org/pdf/1711.06178.pdf

Model Distillation: Linear Approximations

Local Interpretable Model-agnostic Explanations (LIME)
Gives explanations for individuals predictions from a classifier

Local approximation

LIME builds an interpretable
model of explanatory data

samples at local areas in the
analyzed data.

"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin.

 ACM SIGKDD, 2016 Slide by Ilknur Kaynar-Kabul

http://arxiv.org/abs/1602.04938

Model Distillation

Perturbed
Instances

P(Labrador)

Original Image

0.92

0.001

0.34

P(labrador) = 0.21

Locally weighted
regression

Explanation

Local Interpretable Model-agnostic Explanations (LIME)

Image Source: https://drive.google.com/file/d/0ByblrZgHugfYZ0ZCSWNPWFNONEU/view

Slide by Ilknur Kaynar-Kabul

Mechanistic Interpretability

What is Mechanistic Interpretability?

● Goal: Reverse engineer neural networks
○ Like reverse-engineering a compiled program binary

to source code
● Hypothesis: Models learn human-comprehensible

algorithms and can be understood, if we learn how
to make it legible

● Understanding features - the variables inside the
model

● Understanding circuits - the algorithms learned to
compute features

● Key property: Distinguishes between cognition
with identical output

● A deep knowledge of circuits is crucial to
understand, predict and align model behaviour

Slide by Neel Nanda

A Growing Area of Research
Slide by Neel Nanda

Does Localization Inform Editing? (Hase
et al, 2023)

A Mathematical Framework for Transformer
Circuits (Elhage et al, Anthropic 2021)

Transformer Feed-Forward Layers Are Key-Value
Memories (Geva et al, EMNLP 2021)

Investigating Gender Bias in Language Models
Using Causal Mediation Analysis (Vig et al,
NeurIPS 2020)

Toy Models of Superposition (Elhage, Anthropic
2022)

Locating and Editing Factual
Associations in GPT (Meng et al,
NeurIPS 2022)

https://arxiv.org/pdf/2301.04213.pdf
https://arxiv.org/pdf/2301.04213.pdf
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://aclanthology.org/2021.emnlp-main.446.pdf
https://aclanthology.org/2021.emnlp-main.446.pdf
https://proceedings.neurips.cc/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://transformer-circuits.pub/2022/toy_model/index.html#motivation
https://transformer-circuits.pub/2022/toy_model/index.html#motivation
https://rome.baulab.info/
https://rome.baulab.info/
https://rome.baulab.info/

Mechanistic Interpretability: Example
Slide by Neel Nanda

Circuits = Functions: How does the model think?

A Mathematical Framework (Elhage et al)
Open Problems: Analysing Toy Language Models

• Zero layer transformers model bigram statistics. The bigram table can be accessed
directly from the weights.

• One layer attention-only transformers are an ensemble of bigram and “skip-
trigram” (sequences of the form "A… B C") models. The bigram and skip-trigram
tables can be accessed directly from the weights, without running the model.

• Two layer attention-only transformers can implement much more complex
algorithms using compositions of attention heads. These compositional algorithms
can also be detected directly from the weights. Notably, two layer models use
attention head composition to create “induction heads”, a very general in-context
learning algorithm.

https://transformer-circuits.pub/2021/framework/index.html
https://www.alignmentforum.org/s/yivyHaCAmMJ3CqSyj/p/GWCgZrzWCZCuzGktv

Mechanistic Interpretability: Example
Slide by Neel Nanda

Circuits = Functions: How does the model think?

A Mathematical Framework (Elhage et al)
Open Problems: Analysing Toy Language Models

• Attention heads can be understood as independent operations, each outputting a
result which is added into the residual stream. Attention heads are often described
in an alternate “concatenate and multiply” formulation for computational efficiency,
but this is mathematically equivalent.

• Attention-only models can be written as a sum of interpretable end-to-end
functions mapping tokens to changes in logits. These functions correspond to
“paths” through the model, and are linear if one freezes the attention patterns.

• Transformers have an enormous amount of linear structure. One can learn a lot
simply by breaking apart sums and multiplying together chains of matrices.

https://transformer-circuits.pub/2021/framework/index.html
https://www.alignmentforum.org/s/yivyHaCAmMJ3CqSyj/p/GWCgZrzWCZCuzGktv

Forward Engineering (Compiler)
Slide by David Lindler

Lindler et al., Tracr: Compiled Transformers as a Laboratory for Interpretability, https://arxiv.org/abs/2301.05062

https://arxiv.org/abs/2301.05062

Forward Engineering (Compiler)
Slide by David Lindler

Lindler et al., Tracr: Compiled Transformers as a Laboratory for Interpretability, https://arxiv.org/abs/2301.05062

https://arxiv.org/abs/2301.05062

Forward Engineering (Compiler)
Slide by David Lindler

Lindler et al., Tracr: Compiled Transformers as a Laboratory for Interpretability, https://arxiv.org/abs/2301.05062

https://arxiv.org/abs/2301.05062

Forward Engineering (Compiler)
Slide by David Lindler

Lindler et al., Tracr: Compiled Transformers as a Laboratory for Interpretability, https://arxiv.org/abs/2301.05062

https://arxiv.org/abs/2301.05062

Summary

Large models, especially transformers, can be seen as

implementing algorithms

Several ways to try to understand:

Visualization – Often attention

Distill into more interpretable model

Reverse engineer

Forward engineer: Algorithm → compiler → Weights!

	Slide 1: CS 4644-DL / 7643-A Zsolt Kira
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

