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Topics:

• Visualization



Visualization 

of Neural 

Networks



Interpretability Enables Trust in AI Models
Understand the reasons behind a prediction

How did you 
make this 

prediction? 

Neural network
for image 
recognition

Electric guitar
(p=0.32)

Acoustic guitar
(p=0.24) Labrador

(p=0.21)

"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin.

 ACM SIGKDD, 2016

Data scientist

http://arxiv.org/abs/1602.04938


Neural network
to predict 
wolf vs husky

Interpretability Enables Trust in AI Models
Figure out when NOT to trust a model

You are detecting 
snow, not wolves!
I can`t trust you

Prediction accuracy 
is very high. It is 
time to put this 
system online.

"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin.

 ACM SIGKDD, 2016

Data scientist

http://arxiv.org/abs/1602.04938


Visualizing Neural Networks

Given a trained model, we’d like to understand 

what it learned. 

Fei-Fei Li, Justin Johnson, 

Serena Yeung, from CS 

231n

Zeiler & Fergus, 2014

Weights

Activations

Simonyan et al, 2013

Gradients

Hendrycks & Dietterich, 

2019

Robustness



Visualizing Weights

FC Layer: Reshape weights for a node back into size of image, scale 0-255

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Conv layers: 

For each kernel, 

scale values 

from 0-255 and 

visualize

Problem: 

3x3 filters 

difficult to 

interpret!



Visualizing Output Maps

We can also produce 

visualization output 

(aka activation/filter) 

maps

These are larger early 

in the network.



Visualizing Output Maps

Highly 

Activating 

Image 

Patches

From: Yosinski et 

al., “Understanding 

Neural Networks 

Through Deep 

Visualization”, 

2015



Activations of last conv layer in VGG network

Problem: Small conv 

outputs also hard to 

interpret

Activations – Small Output Sizes



https://poloclub.github.io/cnn-explainer/   https://fredhohman.com/papers/cnn101 

CNN101 and CNN Explainer



Dimensionality Reduction: t-SNE

Van der Maaten & Hinton, “Visualizing Data using t-SNE”, 2008.

We can take the activations of 

any layer (FC, conv, etc.) and 

perform dimensionality 

reduction

Often reduce to two 

dimensions for plotting

E.g. using Principle 

Component Analysis (PCA) 

t-SNE is most common

Performs non-linear mapping 

to preserve pair-wise 

distances 



Visualizing Neural Networks

Fei-Fei Li, Justin Johnson, 

Serena Yeung, from CS 

231n

Zeiler & Fergus, 2014

Weights

Activations

Simonyan et al, 2013

Gradients

Hendrycks & Dietterich, 

2019

Robustness



While these methods provide some visually 

interpretable representations, they can be 

misleading or uninformative (Adebayo et al., 

2018)

Assessing interpretability is difficult

Requires user studies to show usefulness 

E.g. they allow a user to predict mistakes 

beforehand

Neural networks learn distributed 

representation 

(no one node represents a particular feature)

This makes interpretation difficult

Adebayo et al., “Sanity Checks for Saliency Maps”, 2018.

Summary & Caveats



Gradient-

Based 

Visualizations



Visualizing Neural NetworksVisualizing Neural Networks

Backward Pass

Forward Pass

Note: We are keeping parameters/weights frozen

Do not use gradients w.r.t. weights to perform updates

Given a trained model, we can 

perform forward pass given an 

input to get scores, softmax 

probabilities, loss and then 

backwards pass to get 

gradients



Visualizing Neural NetworksVisualizing Neural Networks

This can be useful not just for 

optimization, but also to 

understand what was learned

Backward Pass

Forward Pass

Gradient of loss with respect to all layers (including input!) 

Gradient of any layer with respect to input (by cutting off computation 

graph)

Backwards pass gives us 

gradients for all layers: How 

the loss changes as we change 

different parts of the input



Gradient of Loss w.r.t. Image

Idea: We can backprop to the 

image

Sensitivity of loss to individual 

pixel changes

Large sensitivity implies 

important pixels

Called Saliency Maps

In practice:

Instead of loss, find  gradient of classifier scores (pre-softmax)

Take absolute value of gradient

Sum across all channels From: Simonyan et al., “Deep Inside Convolutional Networks: 

Visualising Image Classification Models and Saliency Maps”, 2013

Backward Pass

Forward Pass



Guided Backprop

Normal backprop not always best 

choice

Example: You may get parts of 

image that decrease the feature 

activation

There are probably lots of 

such input pixels

Guided backprop can be used to 

improve visualizations

From: Springenberg et al., “Striving For Simplicity: The All Convolutional Net"



Guided Backprop Results

From: Springenberg et al., “Striving For Simplicity: The All Convolutional Net"



Note: These images were created 

by a slightly different method called 

deconvolution, which ends up 

being similar to guided backprop

VGG Layer-by-Layer Visualization

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.



VGG Layer-by-Layer Visualization

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.



VGG Layer-by-Layer Visualization

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.



VGG Layer-by-Layer Visualization

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.



Grad-CAM 24

Guided 
Grad-CAM

Backprop till 
conv

Guided Backpropagation

Conv 
Feature Maps

+

Neuron Importance 

GradCAM

Selfvaraju et al., Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, 2016.



Grad-CAM 25

Guided 
Grad-CAM

Backprop till 
conv

Guided Backpropagation

Rectified Conv 
Feature Maps

+

Grad-CAM

Selfvaraju et al., Grad-CAM: Visual Explanations from Deep 

Networks via Gradient-based Localization, 2016.



Grad-CAM

What animal is in this picture? Dog

Selfvaraju et al., Grad-CAM: Visual Explanations from Deep 

Networks via Gradient-based Localization, 2016.



Grad-CAM

What animal is in this picture? Cat

Selfvaraju et al., Grad-CAM: Visual Explanations from Deep 

Networks via Gradient-based Localization, 2016.



Summary 

Gradients are important not just 

for optimization, but also for 

analyzing what neural networks 

have learned

Standard backprop not always 

the most informative for 

visualization purposes

Several ways to modify the 

gradient flow to improve 

visualization results



Optimizing 

the Input 

Images



Optimizing the Image

Idea: Since we have the 

gradient of scores w.r.t. 

inputs, can we optimize the 

image itself to maximize the 

score?

Why? 

Generate images from 

scratch!

Adversarial examples

Backward Pass

Forward Pass

From: Simonyan et al., “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, 2013



Gradient Ascent on the Scores

We can perform gradient 

ascent on image

Start from random/zero image

Use scores to avoid 

minimizing other class scores 

instead

Often need regularization term 

to induce statistics of natural 

imagery

E.g. small pixel values, spatial 

smoothness

From: Simonyan et al., “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, 2013

Backward Pass

Forward Pass

𝒂𝒓𝒈𝒎𝒂𝒙 𝑺𝒄 𝑰 − 𝝀 𝑰
𝟐

𝟐
` 

𝑰 = 𝑰 + 𝜶
𝝏𝑺𝒄

𝝏𝑰



Example Images

Note: You might have to squint!
From: Simonyan et al., “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, 2013



Example Images

From: Yosinski et al., “Understanding Neural Networks Through Deep Visualization”, 2015

Can improve results with 

various tricks:

Clipping or normalization of 

small values & gradients

Gaussian blurring



Improved Results

From: Yosinski et al., “Understanding Neural Networks Through Deep Visualization”, 2015

Note: Can generate input images to 

maximize any arbitrary activation!



We can optimize the input 

image to generate 

examples to increase class 

scores or activations

This can show us a great 

deal about what examples 

(not in the training set) 

activate the network

Summary 



Testing 

Robustness



Gradient Ascent on the Scores

We can perform gradient 

ascent on image

Rather than start from zero 

image, why not real image?

And why not optimize the 

score of an arbitrary 

(incorrect!) class 

Surprising result: You need 

very small amount of pixel 

changes to make the network 

confidently wrong!

From: Simonyan et al., “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, 2013

Backward Pass

Forward Pass

𝒂𝒓𝒈𝒎𝒂𝒙 𝑺𝒄 𝑰 − 𝝀 𝑰
𝟐

𝟐
` 

where 𝒄 = 𝒄𝒂𝒕



Example of Adversarial Noise

Note this problem is not specific to deep learning!

Other methods also suffer from it

Can show how linearity (even at the end) can bring this about

Can add many small values that add up in right direction

From: Goodfellow et al., “Explaining and Harnessing Adversarial Examples”, 2015



Variations of Attacks

Single-Pixel 

Attacks!
Su et al., “One Pixel 

Attack for Fooling Deep 

Neural Networks”, 2019.

White vs. Black-Box Attacks of Increasing Complexity
Chakraborty et al., Adversarial Attacks and Defences: A Survey, 2018



Summary of dversarial 

Attacks/Defenses

Similar to other security-related 

areas, it’s an active cat-and-mouse 

game

Several defenses such as:

Training with adversarial 

examples

Perturbations, noise, or re-

encoding of inputs

There are not universal methods 

that are robust to all types of attacks



Other Forms of Robustness Testing
m

C
E

Hendrycks & Dietterich, “Benchmarking Neural Network 

Robustness to Common Corruptions and Perturbations”, 2019.



Analyzing Bias 

We can try to understand the biases of CNNs

Can compare to those of humans

Example: Shape vs. Texture Bias Geirhos, “ImageNet-trained CNNs are biased towards texture; 

increasing shape bias improves accuracy and robustness”, 2018.



Shape vs. Texture Bias

Humans

AlexNet

VGG

GoogleNet

ResNet-50

Geirhos, “ImageNet-trained CNNs are biased towards texture; 

increasing shape bias improves accuracy and robustness”, 2018.



Summary 

Various ways to test the 

robustness and biases of 

neural networks

Adversarial examples have 

implications for understanding 

and trusting them

Exploring the gain of different 

architectures in terms of 

robustness and biases can also 

be used to understand what has 

been learned



What about 

Transformers, 

LLMs, etc.



Interpretability of Transformers

Large models, especially transformers, can be seen as 

implementing algorithms

Several ways to try to understand:

Visualization – Often attention

Distill into more interpretable model

Reverse engineer

Forward engineer: Algorithm → compiler → Weights!



Visualization

https://github.com/jessevig/bertviz



Model Distillation

Engineering Predictors for Interpretability
Using Shallow Decision Tree to Simulate Neural Network Prediction

Data (𝑿, 𝒚)

Predict ෝ𝒚

Train Tree on (𝐗, ෝ𝒚)

Beyond Sparsity: Tree Regularization of Deep Models for Interpretability 
Mike Wu , Michael C. Hughes , Sonali Parbhoo , Maurizio Zazzi , Volker Roth , and Finale Doshi-

Velez
Slide by Ilknur Kaynar-Kabul

https://arxiv.org/pdf/1711.06178.pdf


Model Distillation: Linear Approximations

Local Interpretable Model-agnostic Explanations (LIME)
Gives explanations for individuals predictions from a classifier

Local approximation

LIME builds an interpretable 
model of explanatory data 

samples at local areas in the 
analyzed data.

"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin.

 ACM SIGKDD, 2016 Slide by Ilknur Kaynar-Kabul

http://arxiv.org/abs/1602.04938


Model Distillation

Perturbed 
Instances

P(Labrador)

Original Image  

0.92

0.001

0.34

P(labrador)  = 0.21  

Locally weighted
regression

Explanation

Local Interpretable Model-agnostic Explanations (LIME)

Image Source: https://drive.google.com/file/d/0ByblrZgHugfYZ0ZCSWNPWFNONEU/view

Slide by Ilknur Kaynar-Kabul



Mechanistic Interpretability

What is Mechanistic Interpretability?

● Goal: Reverse engineer neural networks
○ Like reverse-engineering a compiled program binary 

to source code
● Hypothesis: Models learn human-comprehensible 

algorithms and can be understood, if we learn how 
to make it legible

● Understanding features - the variables inside the 
model

● Understanding circuits - the algorithms learned to 
compute features

● Key property: Distinguishes between cognition 
with identical output

● A deep knowledge of circuits is crucial to 
understand, predict and align model behaviour

Slide by Neel Nanda



A Growing Area of Research
Slide by Neel Nanda

Does Localization Inform Editing? (Hase 
et al, 2023)

A Mathematical Framework for Transformer 
Circuits (Elhage et al, Anthropic 2021)

Transformer Feed-Forward Layers Are Key-Value 
Memories (Geva et al, EMNLP 2021)

Investigating Gender Bias in Language Models 
Using Causal Mediation Analysis (Vig et al, 
NeurIPS 2020)

Toy Models of Superposition (Elhage, Anthropic 
2022)

Locating and Editing Factual 
Associations in GPT (Meng et al, 
NeurIPS 2022)

https://arxiv.org/pdf/2301.04213.pdf
https://arxiv.org/pdf/2301.04213.pdf
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://aclanthology.org/2021.emnlp-main.446.pdf
https://aclanthology.org/2021.emnlp-main.446.pdf
https://proceedings.neurips.cc/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://transformer-circuits.pub/2022/toy_model/index.html#motivation
https://transformer-circuits.pub/2022/toy_model/index.html#motivation
https://rome.baulab.info/
https://rome.baulab.info/
https://rome.baulab.info/


Mechanistic Interpretability: Example
Slide by Neel Nanda

Circuits = Functions: How does the model think?

A Mathematical Framework (Elhage et al)
Open Problems: Analysing Toy Language Models

• Zero layer transformers model bigram statistics. The bigram table can be accessed 
directly from the weights.

• One layer attention-only transformers are an ensemble of bigram and “skip-
trigram” (sequences of the form "A… B C") models. The bigram and skip-trigram 
tables can be accessed directly from the weights, without running the model. 

• Two layer attention-only transformers can implement much more complex 
algorithms using compositions of attention heads. These compositional algorithms 
can also be detected directly from the weights. Notably, two layer models use 
attention head composition to create “induction heads”, a very general in-context 
learning algorithm.

https://transformer-circuits.pub/2021/framework/index.html
https://www.alignmentforum.org/s/yivyHaCAmMJ3CqSyj/p/GWCgZrzWCZCuzGktv


Mechanistic Interpretability: Example
Slide by Neel Nanda

Circuits = Functions: How does the model think?

A Mathematical Framework (Elhage et al)
Open Problems: Analysing Toy Language Models

• Attention heads can be understood as independent operations, each outputting a 
result which is added into the residual stream. Attention heads are often described 
in an alternate “concatenate and multiply” formulation for computational efficiency, 
but this is mathematically equivalent.

• Attention-only models can be written as a sum of interpretable end-to-end 
functions mapping tokens to changes in logits. These functions correspond to 
“paths” through the model, and are linear if one freezes the attention patterns.

• Transformers have an enormous amount of linear structure. One can learn a lot 
simply by breaking apart sums and multiplying together chains of matrices.

https://transformer-circuits.pub/2021/framework/index.html
https://www.alignmentforum.org/s/yivyHaCAmMJ3CqSyj/p/GWCgZrzWCZCuzGktv


Forward Engineering (Compiler)
Slide by David Lindler

Lindler et al., Tracr: Compiled Transformers as a Laboratory for  Interpretability, https://arxiv.org/abs/2301.05062 

https://arxiv.org/abs/2301.05062


Forward Engineering (Compiler)
Slide by David Lindler

Lindler et al., Tracr: Compiled Transformers as a Laboratory for  Interpretability, https://arxiv.org/abs/2301.05062 

https://arxiv.org/abs/2301.05062


Forward Engineering (Compiler)
Slide by David Lindler

Lindler et al., Tracr: Compiled Transformers as a Laboratory for  Interpretability, https://arxiv.org/abs/2301.05062 

https://arxiv.org/abs/2301.05062


Forward Engineering (Compiler)
Slide by David Lindler

Lindler et al., Tracr: Compiled Transformers as a Laboratory for  Interpretability, https://arxiv.org/abs/2301.05062 

https://arxiv.org/abs/2301.05062


Summary

Large models, especially transformers, can be seen as 

implementing algorithms

Several ways to try to understand:

Visualization – Often attention

Distill into more interpretable model

Reverse engineer

Forward engineer: Algorithm → compiler → Weights!
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