Topics:

- Machine learning intro, applications (CV, NLP, etc.)
- Parametric models and their components

CS 4644 / 7643-A ZSOLT KIRA

Machine Learning Applications

- PSO due $14^{\text {th }}$ Sunday night, but do it TODAY!
- Please do it, and give others a chance at waitlist if your background is not sufficient (beef it up and take it next time)
- Do it even if you're on the waitlist!
- Piazza:
- Enroll now! https://piazza.com/gatech/spring2023/cs46447643/home (Code:

DLSPR23 or through canvas)

- Search for teammates: @5 (https://piazza.com/class/Ir1kcuwnhwo743/post/5)
- Note: Do NOT post anything containing solutions publicly!
- Make it active!
- Office hours start next week

Administrivia

- Collaboration
- Only on HWs and project (not allowed in HWO/PSO).
- You may discuss the questions
- Each student writes their own answers
- Write on your homework anyone with whom you collaborate
- Each student must write their own code for the programming part
- Do NOT search for code implementing what we ask; search for concepts
- Zero tolerance on plagiarism
- Neither ethical nor in your best interest
- Always credit your sources
- Don't cheat. We will find out.

Collaboration Policy

rech

- Grace period
- 2 days grace period for each assignment (EXCEPT PSO)
- Intended for checking submission NOT to replace due date
- No need to ask for grace, no penalty for turning it in within grace period
- Can NOT use for PSO
- After grace period, you get a 0 (no excuses except medical)
- Send all medical requests to dean of students (https://studentlife.gatech.edu/)
- Form: https://gatech-advocate.symplicity.com/care report/index.php/pid224342
- DO NOT SEND US ANY MEDICAL INFORMATION! We do not need any details, just a confirmation from dean of students

Grace Period

Python Numpy Tutorial

This tutorial was contributed by Justin Johnson.
We will use the Python programming language for all assignments in this course. Python is a great generalpurpose programming language on its own, but with the help of a few popular libraries (numpy, scipy, matplotlib) it becomes a powerful environment for scientific computing.

We expect that many of you will have some experience with Python and numpy; for the rest of you, this section will serve as a quick crash course both on the Python programming language and on the use of Python for scientific computing.

http://cs231n.github.io/python-numpy-tutorial/

Machine Learning Overview

What is Machine Learning (ML)?

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."

Tom Mitchell (Machine Learning, 1997)

How is it Different than Programming?

Programming

Machine Learning
Training

Machine learning thrives when it is difficult to design an algorithm to perform the task

Applications:

```
algorithm quicksort(A, lo, hi) is
    if lo < hi then
        p := partition(A, lo, hi)
        quicksort(A, lo, p - 1)
        quicksort(A, p + 1, hi)
algorithm partition(A, lo, hi) is
    pivot := A[hi]
    i := lo
    for j := lo to hi do
        if A[j] < pivot then
            swap A[i] with A[j]
            i := i + 1
    swap A[i] with A[hi]
    return i
```


Machine Learning Applications

What the computer sees What the computer sees

An image is just a big grid of numbers between [0, 255]:
e.g. $800 \times 600 \times 3$
(3 channels RGB)

$\frac{\text { This image by sare }}{\text { bear is licensed }} \frac{\text { This image by } \frac{\text { Tom }}{\text { Thai is licensed under }}}{\text { Ce }}$

Application: Computer Vision

3D Reconstructions

Application: Time-Series Forecasting

Given a series of measurements, output prediction for next time period

Input

Prediction

Application: Natural Language Process (NLP)

Very large number of NLP sub-tasks:

- Syntax Parsing
- Translation
- Named entity recognition
- Summarization

Sequence modeling: Variable length sequential inputs and/or outputs

Recent progress: Large-scale language models

Application:

- Sequence of inputs/outputs
- Actions affect the environment

Examples: Chess / Go, Video Games, Recommendation Systems, Network Congestion Control, ...

Robotics involves a combination of $\mathrm{Al} / \mathrm{ML}$ techniques:

Application:

- Sense: Perception
- Plan: Planning
- Act: Controls/Decision-Making

Some things are learned (perception), while others programmed

- Evolving landscape

Supervised Learning and Parametric Models

Supervised
 Learning

Unsupervised Learning

Reinforcement
 Learning

Types of Machine Learning

Supervised Learning

Dataset

$$
\begin{aligned}
& X=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\} \text { where } x \in \mathbb{R}^{d} \text { Examples } \\
& Y=\left\{y_{1}, y_{2}, \ldots, y_{N}\right\} \text { where } y \in \mathbb{R}^{c} \text { Labels }
\end{aligned}
$$

Types of Machine Learning

Supervised Learning

- Train Input: $\{X, Y\}$
- Learning output: $f: X \rightarrow Y$, e.g. $P(y \mid x)$

Terminology:

- Model / Hypothesis Class
- $H:\{h: X \rightarrow Y\}$
- Learning is search in hypothesis space
Note inputs x_{i} and y_{i} are each represented as vectors

Dataset

$$
X=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\} \text { where } x \in \mathbb{R}^{d} \quad \text { Examples }
$$

$$
Y=\left\{y_{1}, y_{2}, \ldots, y_{N}\right\} \text { where } y \in \mathbb{R}^{c}
$$

Types of Machine Learning

Unsupervised Learning

- Input: $\{X\}$
- Learning output: $P_{\text {data }}(x)$
- How likely is x under $P_{\text {data }}$?
- Can we sample from $P_{\text {data }}$?

Example: Clustering, density estimation, generative modeling, etc.

Dataset

$$
X=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\} \text { where } x \in \mathbb{R}^{d}
$$

Dataset

```
Example 1
```


Example 2

$$
\text { Example } \mathbf{N}
$$

Reinforcement Learning

- Supervision in form of reward
- No supervision on what action to take

Adapted from: http://cs231n.stanford.edu/slides/2020/lecture_17.pdf

Supervised Learning

- Train Input: $\{X, Y\}$
- Learning output:
$f: X \rightarrow Y$,
e.g. $P(y \mid x)$

Unsupervised Learning

- Input: $\{X\}$
- Learning output: $P(x)$
- Example: Clustering, density estimation, etc.

Reinforcement Learning

Supervision in form of reward

No supervision on what action to take

Very often combined, sometimes within the same model!

Parametric Model

Explicitly model the function $f: X \rightarrow Y$ in the form of a parametrized function $f(x, W)=y$, examples:

- Logistic regression/classification
- Neural networks

Capacity (size of hypothesis class) does not grow with size of training data!

Learning is search

Parametric - Linear Classifier

$$
f(x, W)=W x+b
$$

Training Stage:
Training Data $\left\{\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)\right\} \rightarrow \mathrm{h} \quad$ (Learning)

Testing Stage
Test Data $\mathrm{x} \rightarrow \mathrm{h}(\mathrm{x}) \quad$ (Apply function, Evaluate error)

Probabilities to rescue:
X and Y are random variables
$D=\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right) \sim P(X, Y)$
IID: Independent Identically Distributed Both training \& testing data sampled IID from $P(X, Y)$ Learn on training set Have some hope of generalizing to test set

Statistical View of ML

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS $231 n$

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS $231 n$

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS $231 n$

20 years of research in Learning Theory oversimplified:
If you have:
Enough training data D
and H is not too complex
then probably we can generalize to unseen test data

Caveats: A number of recent empirical results question our intuitions built from this clean separation.

Zhang et al., Understanding deep learning requires rethinking generalization

Guarantees

Input $\{X, Y\}$ where:

- X is an image
- Y is a ground truth label annotated by an expert (human)
- $f(x, W)=W x+b$ is our model, chosen to be a linear function in this case
- W and b are the parameters (weights) of our model that must be learned

Input image is high-dimensional

- For example $n=512$ so 512×512 image $=\mathbf{2 6 2 , 1 4 4}$ pixels
- Learning a classifier with highdimensional inputs is hard

Before deep learning, it was typical to perform feature engineering

- Hand-design algorithms for converting raw input into a lowerdimensional set of features

Input Image

$$
x=\left[\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 n} \\
x_{21} & x_{22} & \cdots & x_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n 1} & x_{n 2} & \cdots & x_{n n}
\end{array}\right]
$$

Example: Color histogram

- Vector of numbers representing number of pixels fitting within each bin
- We will later see that learning the feature representation itself is much more effective

Data: Image

Input $\{X, Y\}$ where:

- X is an image histogram
- Y is a ground truth label represented a probability distribution
- $f(x, W)=W x+b$ is our model, chosen to be a linear function in this case
- W and b are the weights of our model that must be learned

Word Histogram

Word	Count
this	1
that	0
is	2
\ldots	
extremely	1
hello	0
onomatopoeia	0
\ldots	

Components of a Parametric Learning Algorithm

Input (and representation)
Functional form of the model
Including parameters
Performance measure to improve

- Loss or objective function
- Algorithm for finding best parameters
- Optimization algorithm

Optimizer

This image is $\underline{\text { CCO } 1.0 \text { public domain }}$

The Power of Deep Learning

What is the simplest function you can think of?

Our model is:

$$
f(x, w)=w \cdot x+b
$$

Weights

Bias (scalar) Input
(Note if \boldsymbol{w} and \mathbf{x} are column vectors we often show this as $\boldsymbol{w}^{T} \boldsymbol{x}$)

Linear Classification and Regression

Simple linear classifier:

- Calculate score:

$$
f(x, w)=w \cdot x+b
$$

- Binary classification rule (\boldsymbol{w} is a vector):

$$
y= \begin{cases}1 & \text { if } f(x, w)>=0 \\ 0 & \text { otherwise }\end{cases}
$$

- For multi-class classifier take class with highest (max) score $f(x, W)=W x+b$

Data: Image

Class Scores
Model $f(x, W)=W x+b$

$$
x=\left[\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 n} \\
x_{21} & x_{22} & \cdots & x_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n 1} & x_{n 2} & \cdots & x_{n n}
\end{array}\right] \underset{\text { Flatten }}{\square} x=\left[\begin{array}{c}
x_{11} \\
x_{12} \\
\vdots \\
x_{21} \\
x_{22} \\
\vdots \\
x_{n 1} \\
\vdots \\
x_{n n}
\end{array}\right]
$$

To simplify notation we will refer to inputs as $x_{1} \cdots x_{m}$ where $m=n \times n$

Model
 $$
f(x, W)=W x+b
$$

Classifier for class 1
Classifier for class 2
Classifier for class 3

w_{21} \& w_{22} \& \cdots \& w_{2 m}

w_{31} \& w_{32} \& \cdots \& w_{3 m}\end{array}\right]\)
\boldsymbol{W}

- We can move the bias term
into the weight matrix, and a " 1 " at the end of the input

Results in one
matrix-vector
multiplication!
multiplication!

Model

$$
f(x, W)=W x+b
$$

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)
Stretch pixels into column

Example

Visual Viewpoint

> We can convert the weight vector back into the shape of the image and visualize

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Geometric Viewpoint

$f(x, W)=W x+b$

 Array of $32 \times 32 \times 3$ numbers
 (3072 numbers total)

Plot created using Wolfram Cloud
Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Class 1:
number of pixels >0 odd

Class 2:

number of pixels >0 even

Class 1:
$1<=$ L2 norm <= 2
Class 2:
Everything else

Class 1:
Three modes
Class 2:
Everything else

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

- We will learn complex, parameterized functions
- Start w/ simple building blocks such as linear classifiers
- Key is to learn parameters, but learning is hard
- Sources of generalization error
- Add bias/assumptions via architecture, loss, optimizer
- Components of parametric classifiers:
- Input/Output, Model (function), Loss function, Optimizer
- Example: Image/Label, Linear Classifier, Hinge Loss, ?

Summary

Next Time:

- Input (and representation)
- Functional form of the model
- Including parameters
- Performance measure to improve
- Algorithm for finding best parameters
- Optimization algorithm

$\boldsymbol{W})=\boldsymbol{W} \boldsymbol{x}+\boldsymbol{b}$

- Loss or objective function

Optimizer

Several issues with scores:

- Not very interpretable (no bounded value)

We often want probabilitiesMore interpretable

- Can relate to probabilistic view of machine learning

We use the softmax function to convert scores to probabilities

$$
s=f(x, W) \text { Scores }
$$

$P(Y=k \mid X=x)=\frac{e^{s_{k}}}{\sum_{j} e^{s_{j}}} \quad \begin{aligned} & \text { Softmax } \\ & \text { Function }\end{aligned}$

We need a performance measure to optimize

- Penalizes model for being wrong
- Allows us to modify the model to reduce this penalty
- Known as an objective or loss function
In machine learning we use empirical risk minimization
- Reduce the loss over the training dataset
- We average the loss over the training data

Given a dataset of examples:

$$
\left\{\left(\boldsymbol{x}_{i}, y_{i}\right)\right\}_{i=1}^{N}
$$

Where $\boldsymbol{x}_{\boldsymbol{i}}$ is image and

$$
y_{i} \text { is (integer) label }
$$

Loss over the dataset is a sum of loss over examples:

$$
L=\frac{1}{N} \sum L\left(f\left(x_{i}, W\right), y_{i}\right)
$$

