Topics:

- Backpropagation
- Matrix/Linear Algebra view

CS 4644-DL / 7643-A ZSOLT KIRA

- Assignment 1 out!
 - Due Feb 2nd (with grace period 4th)
 - Start now, start now, start now!
 - Start now, start now, start now!
 - Start now, start now, start now!
- Resources:
 - These lectures
 - Matrix calculus for deep learning
 - <u>Gradients notes</u> and <u>MLP/ReLU Jacobian notes</u>.
 - Assignment 1 (@57) and matrix calculus/computation graph (TBD)
- Piazza: Project teaming thread
 - Project proposal overview during my OH (Thursday 4pm ET)

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Stretch pixels into column

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

We can find the steepest descent direction by computing the derivative (gradient):

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

- Steepest descent direction is the negative gradient
- Intuitively: Measures how the function changes as the argument a changes by a small step size
 - As step size goes to zero
- In Machine Learning: Want to know how the loss function changes as weights are varied

Derivatives

 Can consider each parameter separately by taking partial derivative of loss function with respect to that parameter

The same two-layered neural network corresponds to adding another weight matrix

 We will prefer the linear algebra view, but use some terminology from neural networks (& biology)

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Large (deep) networks can be built by adding more and more layers

Three-layered neural networks can represent **any function**

 The number of nodes could grow unreasonably (exponential or worse) with respect to the complexity of the function

We will show them **without edges**:

 $f(x, W_1, W_2, W_3) = \sigma(W_2 \sigma(W_1 x))$

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Adding More Layers!

- We are learning complex models with significant amount of parameters (millions or billions)
- How do we compute the gradients of the loss (at the end) with respect to internal parameters?
- Intuitively, want to understand how small changes in weight deep inside are propagated to affect the loss function at the end

To develop a general algorithm for this, we will view the function as a **computation graph**

Graph can be any **directed acyclic** graph (DAG)

 Modules must be differentiable to support gradient computations for gradient descent

A **training algorithm** will then process this graph, **one module at a time**

Note that we must store the **intermediate outputs of all layers**!

This is because we will need them to compute the gradients (the gradient equations will have terms with the output values in them)

Step 2: Compute Gradients wrt parameters: Backward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Computing the Gradients of Loss

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass
Step 3: Use gradient to update all parameters at the end

$$w_i = w_i - \alpha \frac{\partial L}{\partial w_i}$$

Backpropagation is the application of gradient descent to a computation graph via the chain rule!

Backpropagation: a simple example

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Patterns in backward flow

add gate: gradient distributormax gate: gradient routermul gate: gradient switcher

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

- Neural networks involves composing simple functions into a computation graph
- Optimization (updating weights) of this graph is through backpropagation
 - Recursive algorithm: Gradient descent (partial derivatives) plus chain rule
- Remaining questions:
 - How does this work with vectors, matrices, tensors?
 - Across a composed function?
 - How can we implement this algorithmically to make these calculations automatic? **Automatic Differentiation**

Linear **Algebra** View: **Vector and Matrix Sizes**

Sizes: $[c \times (m + 1)]$ $[(m + 1) \times 1]$

Where *c* is number of classes

m is dimensionality of input

Closer Look at a Linear Classifier

Conventions:

Size of derivatives for scalars, vectors, and matrices: Assume we have scalar $s \in \mathbb{R}^1$, vector $v \in \mathbb{R}^m$, i.e. $v = [v_1, v_2, ..., v_m]^T$ and matrix $M \in \mathbb{R}^{m_1 \times m_2}$

Dimensionality of Derivatives

Conventions:

- Size of derivatives for scalars, vectors, and matrices: Assume we have scalar $s \in \mathbb{R}^1$, vector $v \in \mathbb{R}^m$, i.e. $v = [v_1, v_2, ..., v_m]^T$ and matrix $M \in \mathbb{R}^{m_1 \times m_2}$
- What is the size of $\frac{\partial v}{\partial s}$? $\mathbb{R}^{m \times 1}$ (column vector of size m)
- What is the size of $\frac{\partial s}{\partial v}$? $\mathbb{R}^{1 \times m}$ (row vector of size m)

$$\left[\frac{\partial s}{\partial v_1} \frac{\partial s}{\partial v_1} \cdots \frac{\partial s}{\partial v_m}\right]$$

This matrix of partial derivatives is called a Jacobian

(Note this is slightly different convention than on Wikipedia). Also, computationally other conventions are used.

Dimensionality of Derivatives

Conventions:

• What is the size of $\frac{\partial s}{\partial M}$? A matrix:

(Note this is slightly different convention than on Wikipedia). Also, computationally other conventions are used.

Example 1: $y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} x \\ x^2 \end{bmatrix} \qquad \frac{\partial}{\partial}$

$$\frac{\partial y}{\partial x} = \begin{bmatrix} 1\\2x \end{bmatrix}$$

 $\frac{\partial(\sum_k w_k x_k)}{\partial x_i} = w_i$

Example 2:

$$y = w^{T}x = \sum_{k} w_{k}x_{k}$$
$$\frac{\partial y}{\partial x} = \left[\frac{\partial y}{\partial x_{1}}, \dots, \frac{\partial y}{\partial x_{m}}\right]$$
$$= [w_{1}, \dots, w_{m}] \quad \text{because}$$
$$= w^{T}$$

Example 4:

$$\frac{\partial (wAw)}{\partial w} = 2w^T A \text{ (assuming A is symmetric)}$$

- What is the size of $\frac{\partial L}{\partial W}$?
 - Remember that loss is a scalar and W is a matrix:

 $\begin{bmatrix} w_{11} & w_{12} & \cdots & w_{1m} & b1 \\ w_{21} & w_{22} & \cdots & w_{2m} & b2 \\ w_{31} & w_{32} & \cdots & w_{3m} & b3 \end{bmatrix}$ Jacobian is also a matrix: W $\begin{bmatrix} \frac{\partial L}{\partial w_{11}} & \frac{\partial L}{\partial w_{12}} & \cdots & \frac{\partial L}{\partial w_{1m}} & \frac{\partial L}{\partial b_1} \\ \frac{\partial L}{\partial w_{21}} & \cdots & \cdots & \frac{\partial L}{\partial w_{2m}} & \frac{\partial L}{\partial b_2} \\ \cdots & \cdots & \cdots & \frac{\partial L}{\partial w_{3m}} & \frac{\partial L}{\partial b_3} \end{bmatrix}$

Dimensionality of Derivatives in ML

Batches of data are **matrices** or **tensors** (multidimensional matrices)

Examples:

- Each instance is a vector of size m, our batch is of size $[B \times m]$
- Each instance is a matrix (e.g. grayscale image) of size $W \times H$, our batch is $[B \times W \times H]$
- Each instance is a multi-channel matrix (e.g. color image with R,B,G channels) of size $C \times W \times H$, our batch is $[B \times C \times W \times H]$

Jacobians become tensors which is complicated

- Instead, flatten input to a vector and get a vector of derivatives!
- This can also be done for partial derivatives between two vectors, two matrices, or two tensors

Jacobians of Batches

Fully Connected (FC) Layer: Forward Function

Fully Connected (FC) Layer

$$h^{\ell} = Wh^{\ell-1}$$

 $rac{\partial h^{\ell}}{\partial h^{\ell-1}} = W$
Define:
 $h^{\ell}_i = w^T_i h^{\ell-1}$

 $\frac{\partial h_i^\ell}{\partial w_i^T} = h^{(\ell-1),T}$

Note doing this on full *W* matrix would result in Jacobian tensor!

But it is *sparse* – each output only affected by corresponding weight row

Fully Connected (FC) Layer

We can employ **any differentiable** (or piecewise differentiable) function

A common choice is the **Rectified** Linear Unit

- Provides non-linearity but better gradient flow than sigmoid
- Performed element-wise

How many parameters for this layer?

Full Jacobian of ReLU layer is **large** (output dim x input dim)

- But again it is sparse
- Only diagonal values non-zero because it is element-wise
- An output value affected only by corresponding input value

Max function **funnels gradients through selected max**

Gradient will be zero if input
 <= 0

For element-wise ops, jacobian is **sparse**: off-diagonal entries always zero! Never **explicitly** form Jacobian -- instead use elementwise multiplication

- Neural networks involves composing simple functions into a computation graph
- Optimization (updating weights) of this graph is through backpropagation
 - Recursive algorithm: Gradient descent (partial derivatives) plus chain rule
- Remaining questions:
 - How does this work with vectors, matrices, tensors?
 - Across a composed function? Next!
 - How can we implement this algorithmically to make these calculations automatic? **Automatic Differentiation**

Composition of Functions: $f(g(x)) = (f \circ g)(x)$

A complex function (e.g. defined by a neural network):

$$f(x) = g_{\ell} (g_{\ell-1}(\dots g_1(x)))$$
$$f(x) = g_{\ell} \circ g_{\ell-1} \dots \circ g_1(x)$$

(Many of these will be parameterized)

(Note you might find the opposite notation as well!)

Composition of Functions & Chain Rule

$$\bar{L} = 1$$

$$\bar{p} = \frac{\partial L}{\partial p} = -\frac{1}{p}$$

where $p = \sigma(w^T x)$ and $\sigma(x) = \frac{1}{1+e^{-x}}$

$$\bar{u} = \frac{\partial L}{\partial u} = \frac{\partial L}{\partial p} \quad \frac{\partial p}{\partial u} = \bar{p} \ \sigma(1 - \sigma)$$

$$\bar{w} = \frac{\partial L}{\partial w} = \frac{\partial L}{\partial u} \quad \frac{\partial u}{\partial w} = \bar{u}x^T$$

We can do this in a combined way to see all terms together:

$$\overline{w} = \frac{\partial L}{\partial p} \frac{\partial p}{\partial u} \frac{\partial u}{\partial w} = -\frac{1}{\sigma(w^T x)} \sigma(w^T x) (1 - \sigma(w^T x)) x^T$$
$$= -\left(1 - \sigma(w^T x)\right) x^T$$

This effectively shows gradient flow along path from L to w

The chain rule can be computed as a **series of scalar, vector, and matrix linear algebra operations**

Extremely efficient in graphics processing units (GPUs)

$\overline{w} = -\frac{1}{\sigma(w^T x)} \sigma(w^T x) (1 - \sigma(w^T x)) x^T$				
	[]]
	1x1	1x1	1X1	1xd

We can do this in a combined way to see all terms together:

$$\begin{split} \overline{w} &= \frac{\partial L}{\partial p} \; \frac{\partial p}{\partial u} \; \frac{\partial u}{\partial w} = -\frac{1}{\sigma(w^T x)} \sigma(w^T x) (1 - \sigma(w^T x)) x^T \\ &= -\left(1 - \sigma(w^T x)\right) x^T \end{split}$$

This effectively shows gradient flow along path from L to w

Computation Graph / Global View of Chain Rule

Computational / Tensor View

Graph View

Backpropagation View (Recursive Algorithm)

Different Views of Equivalent Ideas

- **Backpropagation:** Recursive, modular algorithm for chain rule + gradient descent
- When we move to vectors and matrices:
 - Composition of functions (scalar)
 - Composition of functions (vectors/matrices)
 - Jacobian view of chain rule
 - Can view entire set of calculations as linear algebra operations (matrix-vector or matrix-matrix multiplication)
- Automatic differentiation:
 - Reduction of modules to simple operations we know (simple multiplication, etc.)
 - Automatically build computation graph in background as write code
 - Automatically compute gradients via backward pass

Automatic differentiation:

- Carries out this procedure for us on arbitrary graphs
- Knows derivatives of primitive functions
- As a result, we just define these (forward) functions and don't even need to specify the gradient (backward) functions!

