Topics:

- Backpropagation
- Matrix/Linear Algebra view

CS 4644-DL / 7643-A ZSOLT KIRA

- Assignment 1 out!
- Due Feb $2^{\text {nd }}$ (with grace period $4^{\text {th }}$)
- Start now, start now, start now!
- Start now, start now, start now!
- Start now, start now, start now!
- Resources:
- These lectures
- Matrix calculus for deep learning
- Gradients notes and MLP/ReLU Jacobian notes.
- Assignment 1 (@57) and matrix calculus/computation graph (TBD)
- Piazza: Project teaming thread
- Project proposal overview during my OH (Thursday 4pm ET)

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)
Stretch pixels into column

Example

- We can find the steepest descent direction by computing the derivative (gradient):

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

- Steepest descent direction is the negative gradient
- Intuitively: Measures how the function changes as the argument a changes by a small step size
- As step size goes to zero

In Machine Learning: Want to know how the loss function changes as weights are varied

- Can consider each parameter separately by taking partial derivative of loss function with respect to that parameter

The same two-layered neural network corresponds to adding another weight matrix

- We will prefer the linear algebra view, but use some terminology from neural networks (\& biology)

Large (deep) networks can be built by adding more and more layers Three-layered neural networks can represent any function

- The number of nodes could grow unreasonably (exponential or worse) with respect to the complexity of the function

We will show them without edges:

$$
f\left(x, W_{1}, W_{2}, W_{3}\right)=\sigma\left(W_{2} \sigma\left(W_{1} x\right)\right)
$$

Adding More Layers!

- We are learning complex models with significant amount of parameters (millions or billions)
- How do we compute the gradients of the loss (at the end) with respect to internal parameters?
- Intuitively, want to understand how small changes in weight deep inside are propagated to affect the loss function at the end

To develop a general algorithm for this, we will view the function as a computation graph

Graph can be any directed acyclic graph (DAG)

- Modules must be differentiable to support gradient computations for gradient descent

A training algorithm will then process this graph, one module at a time

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

A General Framework

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 1: Compute Loss on Mini-Batch: Forward Pass

Note that we must store the intermediate outputs of all layers!

- This is because we will need them to compute the gradients (the gradient equations will have terms with the output values in them)

Step 1: Compute Loss on Mini-Batch: Forward Pass
 Step 2: Compute Gradients wrt parameters: Backward Pass

Step 1: Compute Loss on Mini-Batch: Forward Pass
 Step 2: Compute Gradients wrt parameters: Backward Pass

Step 1: Compute Loss on Mini-Batch: Forward Pass
 Step 2: Compute Gradients wrt parameters: Backward Pass

We want to compute: $\left\{\frac{\partial L}{\partial h^{\ell-1}}, \frac{\partial L}{\partial W}\right\}$
Layer ℓ

- We will use the chain rule to do this: $\quad \frac{\partial L}{\partial h^{\ell-1}}=\frac{\partial L}{\partial h^{\ell}} \frac{\partial h^{\ell}}{\partial h^{\ell-1}}$

Chain Rule: $\frac{\partial z}{\partial x}=\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial x}$

$$
\frac{\partial L}{\partial W}=\frac{\partial L}{\partial h^{\ell}} \frac{\partial h^{\ell}}{\partial W}
$$

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass
Step 3: Use gradient to update all parameters at the end

$$
w_{i}=w_{i}-\alpha \frac{\partial L}{\partial w_{i}}
$$

Backpropagation is the application of gradient descent to a computation graph via the chain rule!

Backpropagation: a simple example

$f(x, y, z)=(x+y) z$
e.g. $x=-2, y=5, z=-4$
$q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$
$f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q$
Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Patterns in backward flow

add gate: gradient distributor max gate: gradient router mul gate: gradient switcher

- Neural networks involves composing simple functions into a computation graph
- Optimization (updating weights) of this graph is through backpropagation
- Recursive algorithm: Gradient descent (partial derivatives) plus chain rule
- Remaining questions:
- How does this work with vectors, matrices, tensors?
- Across a composed function?
- How can we implement this algorithmically to make these calculations automatic? Automatic Differentiation

Summary

Linear Algebra View: Vector and Matrix Sizes

$$
\left[\begin{array}{lllll}
w_{11} & w_{12} & \cdots & w_{1 m} & b 1 \\
w_{21} & w_{22} & \cdots & w_{2 m} & b 2 \\
w_{31} & w_{32} & \cdots & w_{3 m} & b 3
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m} \\
1
\end{array}\right]
$$

W \boldsymbol{x}

Sizes: $[c \times(m+1)] \quad[(m+1) \times 1]$
Where c is number of classes
m is dimensionality of input

Conventions:

- Size of derivatives for scalars, vectors, and matrices:

Assume we have scalar $s \in \mathbb{R}^{1}$, vector $v \in \mathbb{R}^{m}$, i.e. $v=\left[v_{1}, v_{2}, \ldots, v_{m}\right]^{T}$ and matrix $M \in \mathbb{R}^{m_{1} \times m_{2}}$

Conventions:

- Size of derivatives for scalars, vectors, and matrices: Assume we have scalar $s \in \mathbb{R}^{\mathbf{1}}$, vector $v \in \mathbb{R}^{m}$, i.e. $v=\left[v_{1}, v_{2}, \ldots, v_{m}\right]^{T}$ and matrix $M \in \mathbb{R}^{m_{1} \times m_{2}}$
- What is the size of $\frac{\partial v}{\partial s}$? $\mathbb{R}^{m \times 1}$ (column vector of size m)

$$
\left[\begin{array}{c}
\frac{\partial v_{1}}{\partial s} \\
\frac{\partial v_{2}}{\partial s} \\
\vdots \\
\frac{\partial v_{m}}{\partial s}
\end{array}\right]
$$

$$
\left[\frac{\partial s}{\partial v_{1}} \frac{\partial s}{\partial v_{1}} \cdots \frac{\partial s}{\partial v_{m}}\right]
$$

Conventions:

- What is the size of $\frac{\partial v^{1}}{\partial v^{2}}$? A matrix:

Col j

Row $i\left[\begin{array}{cccccc}\frac{\partial v_{1}^{1}}{\partial v_{1}^{2}} & \cdots & \cdots & \cdots & \cdots & \\ \cdots & & \cdots & \cdots & \cdots & \cdots \\ \frac{\partial v_{i}^{1}}{\partial v_{1}^{2}} & \cdots & \frac{\partial v_{i}^{1}}{\partial v_{j}^{2}} & \cdots & \frac{\partial v_{i}^{1}}{\partial v_{m_{2}}^{2}} & \\ \cdots & \cdots & \cdots & \cdots & \cdots & \\ \cdots & \cdots & \cdots & \cdots & \cdots & m_{1} \times m_{2}\end{array}\right]$

- This matrix of partial derivatives is called a Jacobian
(Note this is slightly different convention than on Wikipedia). Also, computationally other conventions are used.

Conventions:

- What is the size of $\frac{\partial s}{\partial M}$? A matrix:

$$
\left[\begin{array}{cccccc}
\frac{\partial s}{\partial m_{[1,1]}} & \ldots & \ldots & \ldots & \ldots & \\
\ldots & & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \frac{\partial s}{\partial m_{[i, j]}} & \ldots & \ldots & \\
\ldots & \ldots & \ldots & \ldots & \ldots & \\
\ldots & \ldots & \ldots & \ldots & \ldots &
\end{array}\right]
$$

Example 1:

$$
y=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{c}
x \\
x^{2}
\end{array}\right] \quad \frac{\partial y}{\partial x}=\left[\begin{array}{c}
1 \\
2 x
\end{array}\right]
$$

Example 2:

$$
\begin{aligned}
y & =w^{T} x=\sum_{k} w_{k} x_{k} \\
\frac{\partial y}{\partial x} & =\left[\frac{\partial y}{\partial x_{1}}, \ldots, \frac{\partial y}{\partial x_{m}}\right] \\
& =\left[w_{1}, \ldots, w_{m}\right] \quad \text { because } \quad \frac{\partial\left(\sum_{k} w_{k} x_{k}\right)}{\partial x_{i}}=w_{i} \\
& =w^{T}
\end{aligned}
$$

Example 3:

$$
y=W x \quad \frac{\partial y}{\partial x}=W
$$

Col j

Example 4:

$$
\frac{\partial(w A w)}{\partial w}=2 w^{T} A \text { (assuming A is symmetric) }
$$

What is the size of $\frac{\partial L}{\partial W}$?

- Remember that loss is a scalar and W is a matrix:

$$
\left[\begin{array}{lllll}
w_{11} & w_{12} & \cdots & w_{1 m} & b 1 \\
w_{21} & w_{22} & \cdots & w_{2 m} & b 2 \\
w_{31} & w_{32} & \cdots & w_{3 m} & b 3
\end{array}\right]
$$

Jacobian is also a matrix:

$$
\left[\begin{array}{ccccc}
\frac{\partial L}{\partial w_{11}} & \frac{\partial L}{\partial w_{12}} & \cdots & \frac{\partial L}{\partial w_{1 m}} & \frac{\partial L}{\partial b_{1}} \\
\frac{\partial L}{\partial w_{21}} & \cdots & \cdots & \frac{\partial L}{\partial w_{2 m}} & \frac{\partial L}{\partial b_{2}} \\
\cdots & \cdots & \cdots & \frac{\partial L}{\partial w_{3 m}} & \frac{\partial L}{\partial b_{3}}
\end{array}\right]
$$

Batches of data are matrices or tensors (multidimensional matrices)

Examples:

- Each instance is a vector of size m, our batch is of size $[\boldsymbol{B} \times \boldsymbol{m}]$
- Each instance is a matrix (e.g. grayscale image) of size $\boldsymbol{W} \times \boldsymbol{H}$, our batch is [$\boldsymbol{B} \times \boldsymbol{W} \times \boldsymbol{H}$]
- Each instance is a multi-channel matrix (e.g. color image with R,B,G channels) of size $\boldsymbol{C} \times \boldsymbol{W} \times \boldsymbol{H}$, our batch is [$\boldsymbol{B} \times \boldsymbol{C} \times \boldsymbol{W} \times \boldsymbol{H}$]
Jacobians become tensors which is complicated
- Instead, flatten input to a vector and get a vector of derivatives!
- This can also be done for partial derivatives between two vectors, two matrices, or two tensors
$\left[\begin{array}{cccc}x_{11} & x_{12} & \cdots & x_{1 n} \\ x_{21} & x_{22} & \cdots & x_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n 1} & x_{n 2} & \cdots & x_{n n}\end{array}\right]$

Flatten

$$
\left[\begin{array}{c}
x_{11} \\
x_{12} \\
\vdots \\
x_{21} \\
x_{22} \\
\vdots \\
x_{n 1} \\
\vdots \\
x_{n n}
\end{array}\right]
$$

Define: $h_{i}^{\ell}=w_{i}^{T} h^{\ell-1}$

$$
\begin{gathered}
\boldsymbol{h}^{\ell}=\boldsymbol{W} \boldsymbol{h}^{\ell-1} \\
{[]\left[\boldsymbol{w}_{i}^{T} \rightarrow\right]} \\
\left.\left|\boldsymbol{h}^{\ell}\right| \times \mathbf{1}^{[}\right]\left|\boldsymbol{h}^{\ell}\right| \times\left|\boldsymbol{h}^{\ell-1}\right| \\
\left|\boldsymbol{h}^{\ell-1}\right| \times \mathbf{1}
\end{gathered}
$$

Fully Connected (FC) Layer: Forward Function

Fully Connected (FC) Layer

Fully Connected (FC) Layer

$$
\begin{aligned}
& \boldsymbol{h}^{\ell}=W h^{\ell-1} \\
& \frac{\partial h^{\ell}}{\partial h^{\ell-1}}=W \\
& \text { Define: } \\
& h_{i}^{\ell}=w_{i}^{T} h^{\ell-1} \\
& \frac{\partial h_{i}^{\ell}}{\partial w_{i}^{T}}=h^{(\ell-1), T}
\end{aligned}
$$

Note doing this on full W matrix would result in Jacobian tensor!

But it is sparse - each output only affected by corresponding weight row

$$
\begin{aligned}
& \frac{\partial L}{\partial w_{i}^{T}}=\frac{\partial L}{\partial \boldsymbol{h}^{\ell}} \frac{\partial h^{\ell}}{\partial \boldsymbol{w}_{i}^{T}} \\
& {\left[\begin{array}{ll}
{[} &]
\end{array}\right]\left[\begin{array}{lll}
\leftarrow & 0 & \rightarrow \\
\leftarrow \frac{\partial h_{i}^{\ell}}{\partial w_{i}^{T}} \\
\leftarrow & 0 & \rightarrow
\end{array}\right]}
\end{aligned}
$$

$$
1 \times\left|\boldsymbol{h}^{\ell-1}\right| 1 \times\left|h^{\ell}\right|\left|h^{\ell}\right| \times\left|h^{\ell-1}\right|
$$

We can employ any differentiable (or piecewise differentiable) function

A common choice is the Rectified Linear Unit

- Provides non-linearity but better gradient flow than sigmoid
- Performed element-wise

How many parameters for this layer?

Rectified Linear Unit (ReLU)

Full Jacobian of ReLU layer is large (output dim x input dim)

- But again it is sparse
- Only diagonal values non-zero because it is element-wise
- An output value affected only by corresponding input value

Max function funnels gradients through selected max

- Gradient will be zero if input <= 0

Parameters
Forward: $\boldsymbol{h}^{\ell}=\max \left(\mathbf{0}, \boldsymbol{h}^{\ell-1}\right)$
Backward: $\frac{\partial L}{\partial h^{\ell-1}}=\frac{\partial L}{\partial h^{\ell}} \frac{\partial h^{\ell}}{\partial h^{\ell-1}}$

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231 n
4D input x :
4D output z :

What does $\frac{\partial z}{\partial x}$ look like?

4D dL/dz:

[5] \longleftarrow gradient
[9]

4D input x :

4D output z:

4D dL/dx:

4D dL/dz:

Upstream gradient

For element-wise ops, jacobian is sparse: off-diagonal entries always zero! Never explicitly form Jacobian -- instead use elementwise multiplication

- Neural networks involves composing simple functions into a computation graph
- Optimization (updating weights) of this graph is through backpropagation
- Recursive algorithm: Gradient descent (partial derivatives) plus chain rule
- Remaining questions:
- How does this work with vectors, matrices, tensors?
- Across a composed function? Next!
- How can we implement this algorithmically to make these calculations automatic? Automatic Differentiation

Summary

Composition of Functions: $\quad f(g(x))=(f \circ g)(x)$

A complex function (e.g. defined by a neural network):

$$
\begin{gathered}
f(x)=g_{\ell}\left(g_{\ell-1}\left(\ldots g_{1}(x)\right)\right) \\
f(x)=g_{\ell} \circ g_{\ell-1} \ldots \circ g_{1}(x)
\end{gathered}
$$

(Many of these will be parameterized)

Scalar Case

Georgia

rech

Vector Case

Georgia

rech

Jacobian View of Chain Rule

Chain Rule: Cascaded

$\bar{L}=1$
$\bar{p}=\frac{\partial L}{\partial p}=-\frac{1}{p}$
where $p=\sigma\left(w^{T} x\right)$ and $\sigma(x)=\frac{1}{1+e^{-x}}$
$\overline{\boldsymbol{u}}=\frac{\partial L}{\partial u}=\frac{\partial L}{\partial p} \frac{\partial p}{\partial u}=\overline{\boldsymbol{p}} \boldsymbol{\sigma}(\mathbf{1}-\boldsymbol{\sigma})$
$\overline{\boldsymbol{w}}=\frac{\partial L}{\partial w}=\frac{\partial L}{\partial u} \frac{\partial u}{\partial w}=\bar{u} x^{T}$
We can do this in a combined way to see all terms together:

$$
\begin{aligned}
\bar{w} & =\frac{\partial L}{\partial p} \frac{\partial p}{\partial u} \frac{\partial u}{\partial w}=-\frac{1}{\sigma\left(w^{T} x\right)} \sigma\left(w^{T} x\right)\left(1-\sigma\left(w^{T} x\right)\right) x^{T} \\
& =-\left(1-\sigma\left(w^{T} x\right)\right) x^{T}
\end{aligned}
$$

This effectively shows gradient flow along path from L to w

Example Gradient Computations

The chain rule can be computed as a series of scalar, vector, and matrix linear algebra operations

Extremely efficient in graphics processing units (GPUs)

$$
\begin{gathered}
\bar{w}=-\frac{1}{\sigma\left(w^{T} x\right)} \sigma\left(w^{T} x\right)\left(1-\sigma\left(w^{T} x\right)\right) x^{T} \\
{[]_{1 \times 1} \quad[]_{1 \times 1} \quad[]_{1 \times 1}[]_{1 \mathrm{xd}}}
\end{gathered}
$$

Vectorized Computations

$L=1$
$\bar{p}=\frac{\partial L}{\partial p}=-\frac{1}{p}$
where $p=\sigma\left(w^{T} x\right)$ and $\sigma(x)=\frac{1}{1+e^{-x}}$
$\overline{\boldsymbol{u}}=\frac{\partial L}{\partial u}=\frac{\partial L}{\partial p} \frac{\partial p}{\partial u}=\overline{\boldsymbol{p}} \boldsymbol{\sigma}(\mathbf{1}-\boldsymbol{\sigma})$
$\overline{\boldsymbol{w}}=\frac{\partial L}{\partial w}=\frac{\partial L}{\partial u} \frac{\partial u}{\partial w}=\bar{u} x^{T}$
We can do this in a combined way to see all terms together:
$\bar{w}=\frac{\partial L}{\partial p} \frac{\partial p}{\partial u} \frac{\partial u}{\partial w}=-\frac{1}{\sigma\left(w^{T} x\right)} \sigma\left(w^{T} x\right)\left(1-\sigma\left(w^{T} x\right)\right) x^{T}$ $=-\left(1-\sigma\left(w^{T} x\right)\right) x^{T}$
This effectively shows gradient flow along path from L to w
Computation Graph / Global View of Chain Rule

Computational / Tensor View

- We want to to compute: $\left\{\frac{\partial L}{\partial h^{\ell-1}}, \frac{\partial L}{\partial W}\right\}$

Backpropagation View
(Recursive Algorithm)

- Backpropagation: Recursive, modular algorithm for chain rule + gradient descent
- When we move to vectors and matrices:
- Composition of functions (scalar)
- Composition of functions (vectors/matrices)
- Jacobian view of chain rule
- Can view entire set of calculations as linear algebra operations (matrix-vector or matrix-matrix multiplication)
- Automatic differentiation:
- Reduction of modules to simple operations we know (simple multiplication, etc.)
- Automatically build computation graph in background as write code
- Automatically compute gradients via backward pass

Automatic differentiation:

- Carries out this procedure for us on arbitrary graphs
- Knows derivatives of primitive functions
- As a result, we just define these (forward) functions and don't even need to specify the gradient (backward) functions!

Automatic Differentiation

