Topics:

- Jacobians/Matrix Calculus continued
- Backpropagation / Automatic Differentiation

CS 4644 / 7643-A ZSOLT KIRA

Assignment 1 out!

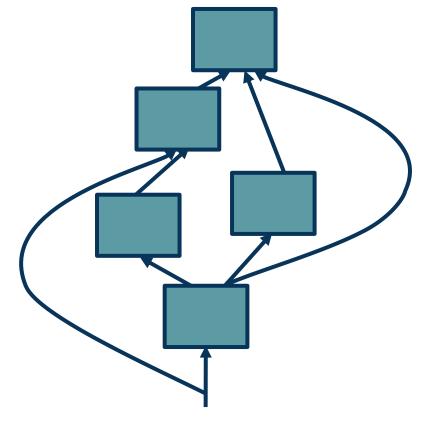
- Due Feb 2nd (with grace period 4th)
- Start now, start now, start now!
- Start now, start now!
- Start now, start now!
- Resources:
 - These lectures
 - Matrix calculus for deep learning
 - Gradients notes and MLP/ReLU Jacobian notes.
 - Assignment 1 (@57) and matrix calculus (@80), convex optimization (@82)
- Piazza: Project teaming thread
 - Will post video of project overview

To develop a general algorithm for this, we will view the function as a **computation graph**

Graph can be any directed acyclic graph (DAG)

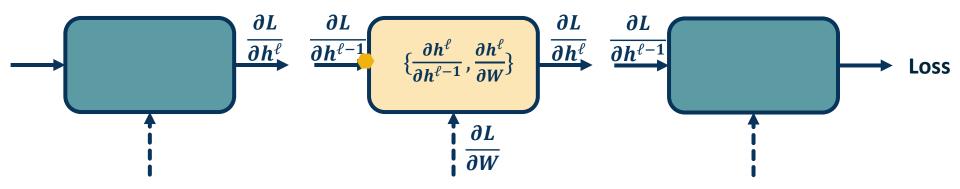
 Modules must be differentiable to support gradient computations for gradient descent

A training algorithm will then process this graph, one module at a time



Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

• We want to to compute: $\{\frac{\partial L}{\partial h^{\ell-1}}, \frac{\partial L}{\partial w}\}$



We will use the chain rule to do this:

Chain Rule:
$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial x}$$

Backpropagation: a simple example

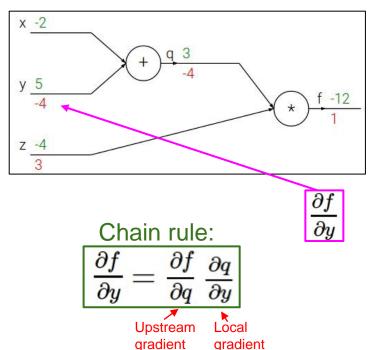
$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

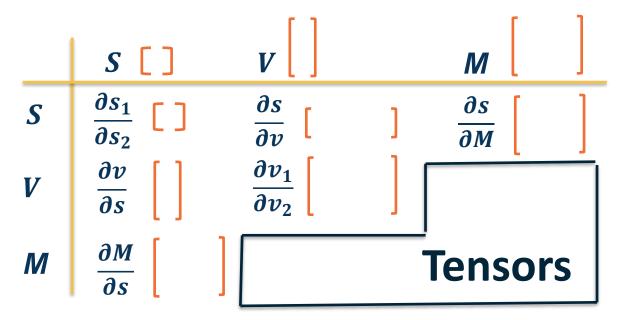
$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$



Conventions:

Size of derivatives for scalars, vectors, and matrices: Assume we have scalar $s \in \mathbb{R}^1$, vector $v \in \mathbb{R}^m$, i.e. $v = [v_1, v_2, ..., v_m]^T$ and matrix $M \in \mathbb{R}^{k \times \ell}$

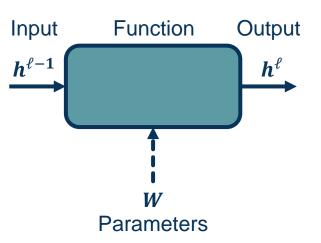


- What is the size of $\frac{\partial L}{\partial W}$?
 - Remember that loss is a scalar and W is a matrix:

$$\begin{bmatrix} w_{11} & w_{12} & \cdots & w_{1m} & b1 \\ w_{21} & w_{22} & \cdots & w_{2m} & b2 \\ w_{31} & w_{32} & \cdots & w_{3m} & b3 \end{bmatrix}$$

Jacobian is also a matrix:

$$\begin{bmatrix} \frac{\partial L}{\partial w_{11}} & \frac{\partial L}{\partial w_{12}} & \cdots & \frac{\partial L}{\partial w_{1m}} & \frac{\partial L}{\partial b_1} \\ \frac{\partial L}{\partial w_{21}} & \cdots & \cdots & \frac{\partial L}{\partial w_{2m}} & \frac{\partial L}{\partial b_2} \\ \cdots & \cdots & \cdots & \frac{\partial L}{\partial w_{3m}} & \frac{\partial L}{\partial b_3} \end{bmatrix}$$



Define:

$$\boldsymbol{h}_{\boldsymbol{i}}^{\ell} = \boldsymbol{w}_{\boldsymbol{i}}^T \boldsymbol{h}^{\ell-1}$$

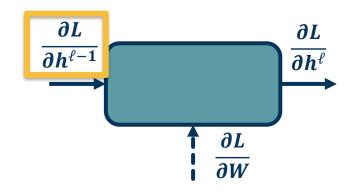
$$egin{aligned} oldsymbol{h}^{\ell} &= oldsymbol{W} oldsymbol{h}^{\ell-1} \ oldsymbol{h}^{\ell} &= oldsymbol{W} oldsymbol{h}^{\ell-1} \ oldsymbol{h}^{\ell} &= oldsymbol{W} oldsymbol{h}^{\ell-1} \ oldsymbol{h}^{\ell-1} & oldsymbol{h}^{\ell-1} & oldsymbol{h}^{\ell-1} & oldsymbol{h}^{\ell-1} & oldsymbol{h}^{\ell-1} & oldsymbol{1} \ oldsymbol{h}^{\ell-1} & oldsymbol{h}^{\ell-1} & oldsymbol{h}^{\ell-1} & oldsymbol{1} \ oldsymbol{h}^{\ell-1} & oldsymbol{h}^{\ell-1} & oldsymbol{h}^{\ell-1} & oldsymbol{1} \ oldsymbol{h}^{\ell-1} & oldsymbol{1} \ oldsymbol{h}^{\ell-1} & oldsymbol{1} \ oldsymbol{h}^{\ell-1} & oldsymbol{h}^{\ell-1} & oldsymbol{1} \ oldsymbol{h}^{\ell-1} & oldsymbol{1} \ o$$

$$\boldsymbol{h}^{\ell} = \boldsymbol{W}\boldsymbol{h}^{\ell-1}$$

$$\frac{\partial h^{\ell}}{\partial h^{\ell-1}} = W$$

Define:

$$\boldsymbol{h}_{\boldsymbol{i}}^{\ell} = \boldsymbol{w}_{\boldsymbol{i}}^T \boldsymbol{h}^{\ell-1}$$



$$\frac{\partial L}{\partial h^{\ell-1}} = \frac{\partial L}{\partial h^{\ell}} \frac{\partial h^{\ell}}{\partial h^{\ell-1}}$$

 $\mathbf{1} imes |oldsymbol{h}^{\ell-1}| \quad \mathbf{1} imes |oldsymbol{h}^{\ell}| \quad |oldsymbol{h}^{\ell}| imes |oldsymbol{h}^{\ell-1}|$

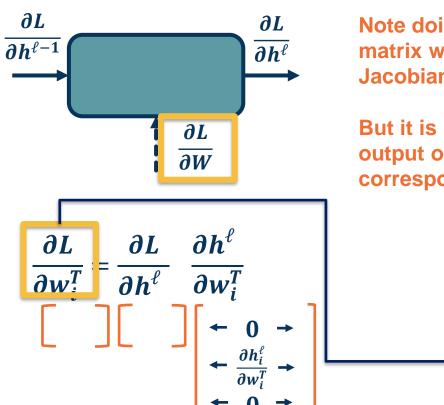
$$h^{\ell} = Wh^{\ell-1}$$

$$\frac{\partial h^{\ell}}{\partial h^{\ell-1}} = W$$

Define:

$$h_i^{\ell} = w_i^T h^{\ell-1}$$

$$\frac{\partial h_i^{\ell}}{\partial w_i^T} = h^{(\ell-1),T}$$



Note doing this on full *W* matrix would result in Jacobian tensor!

But it is *sparse* – each output only affected by corresponding weight row

 ∂L

 ∂W

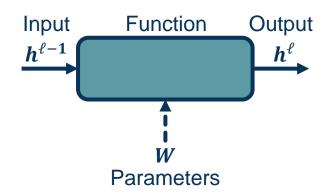
 $1 \times |h^{\ell-1}| 1 \times |h^{\ell}| |h^{\ell}| \times |h^{\ell-1}|$ lterate and populate Note can simplify/vectorize!

Full Jacobian of ReLU layer is large (output dim x input dim)

- But again it is **sparse**
- Only diagonal values non-zero because it is element-wise
- An output value affected only by corresponding input value

Max function funnels gradients through selected max

Gradient will be **zero** if input <= 0



Forward:
$$h^{\ell} = \max(0, h^{\ell-1})$$

Backward:
$$\frac{\partial L}{\partial h^{\ell-1}} = \frac{\partial L}{\partial h^{\ell}} \quad \frac{\partial h^{\ell}}{\partial h^{\ell-1}}$$

For diagonal

$$egin{array}{cccc} rac{\partial h^\ell}{\partial h^{\ell-1}} = egin{cases} 1 & if \ h^{\ell-1} > 0 \ 0 & otherwise \end{cases}$$

- Neural networks involves composing simple functions into a computation graph
- · Optimization (updating weights) of this graph is through backpropagation
 - Recursive algorithm: Gradient descent (partial derivatives) plus chain rule

- Remaining questions:
 - How does this work with vectors, matrices, tensors?
 - Across a composed function? This Time!
 - How can we implement this algorithmically to make these calculations automatic? Automatic Differentiation

Vectorizaiton in Function Compositions

Composition of Functions: $f(g(x)) = (f \circ g)(x)$

A complex function (e.g. defined by a neural network):

$$f(x) = g_{\ell} (g_{\ell-1}(...g_1(x)))$$
$$f(x) = g_{\ell} \circ g_{\ell-1} ... \circ g_1(x)$$

(Many of these will be parameterized)

(Note you might find the opposite notation as well!)

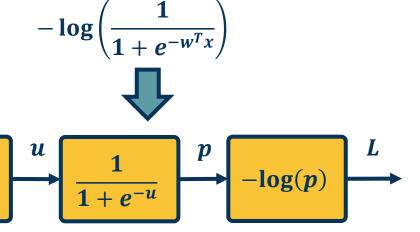
$$X \in \mathbb{R}' \xrightarrow{g_1()} 2 \in \mathbb{R}' \xrightarrow{g_2()} Y \in \mathbb{R}'$$

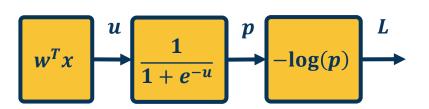
$$Y = g_2(g_1(x))$$

We have discussed **computation** graphs for generic functions

Machine Learning functions (input -> model -> loss function) is also a computation graph

We can use the **computed gradients from backprop/automatic differentiation** to update the weights!





$$\overline{L} = 1
\overline{p} = \frac{\partial L}{\partial p} = -\frac{1}{p}$$

where
$$p = \sigma(w^T x)$$
 and $\sigma(x) = \frac{1}{1 + e^{-x}}$

$$\overline{u} = \frac{\partial L}{\partial u} = \frac{\partial L}{\partial p} \frac{\partial p}{\partial u} = \overline{p} \sigma (1 - \sigma)$$

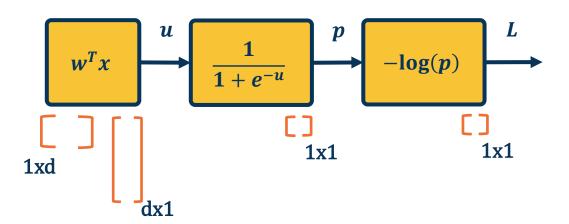
$$\overline{w} = \frac{\partial L}{\partial w} = \frac{\partial L}{\partial u} \frac{\partial u}{\partial w} = \overline{u}x^T$$

We can do this in a combined way to see all terms together:

$$\overline{w} = \frac{\partial L}{\partial p} \frac{\partial p}{\partial u} \frac{\partial u}{\partial w} = \overline{L} \, \overline{p} \, \overline{u} = -\frac{1}{\sigma(w^T x)} \sigma(w^T x) (1 - \sigma(w^T x)) x^T$$
$$= -\left(1 - \sigma(w^T x)\right) x^T$$

This effectively shows gradient flow along path from L to w

The chain rule can be computed as a series of scalar, vector, and matrix linear algebra operations



Extremely efficient in graphics processing units (GPUs)

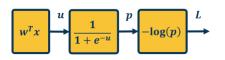
Many standard regularization methods still apply!

L1 Regularization

$$L = |y - Wx_i|^2 + \lambda |W|$$
 where $|W|$ is element-wise

Example regularizations:

- L1/L2 on weights (encourage small values)
- L2: $L = |y Wx_i|^2 + \lambda |W|^2$ (weight decay)
- Elastic L1/L2: $|y Wx_i|^2 + \alpha |W|^2 + \beta |W|$



$$\overline{p} = \frac{\partial L}{\partial p} = -\frac{1}{p}$$

where $p = \sigma(w^T x)$ and $\sigma(x) = \frac{1}{1+e^{-x}}$

$$\overline{u} = \frac{\partial L}{\partial u} = \frac{\partial L}{\partial p} \ \frac{\partial p}{\partial u} = \overline{p} \ \sigma (1 - \sigma)$$

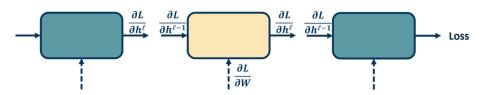
$$\overline{w} = \frac{\partial L}{\partial w} = \frac{\partial L}{\partial u} \frac{\partial u}{\partial w} = \overline{u}x^T$$

We can do this in a combined way to see all terms together:

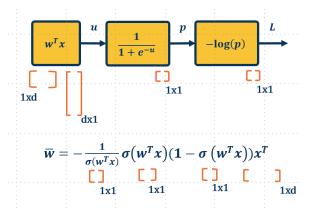
$$\begin{split} \overline{w} &= \frac{\partial L}{\partial p} \frac{\partial p}{\partial u} \frac{\partial u}{\partial w} = -\frac{1}{\sigma(w^T x)} \sigma(w^T x) (1 - \sigma(w^T x)) x^T \\ &= -\left(1 - \sigma(w^T x)\right) x^T \end{split}$$

This effectively shows gradient flow along path from $\it L$ to $\it w$

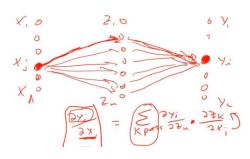
Computation Graph of primitives (automatic differentiation)



Backpropagation View (Recursive Algorithm)



Computational / Tensor View



Graph View

Backpropagation and Automatic Differentiation

Deep Learning = Differentiable Programming

- Computation = Graph
 - Input = Data + Parameters
 - Output = Loss
 - Scheduling = Topological ordering

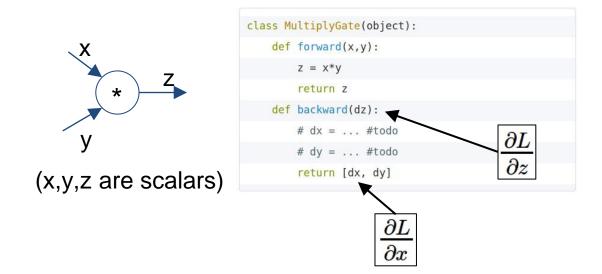
- What do we need to do?
 - Generic code for representing the graph of modules
 - Specify modules (both forward and backward function)

Modularized implementation: forward / backward API

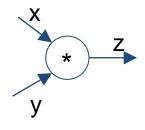
Graph (or Net) object (rough psuedo code)

```
class ComputationalGraph(object):
   # . . .
   def forward(inputs):
       # 1. [pass inputs to input gates...]
       # 2. forward the computational graph:
        for gate in self.graph.nodes topologically sorted():
            gate.forward()
        return loss # the final gate in the graph outputs the loss
   def backward():
        for gate in reversed(self.graph.nodes topologically sorted()):
            gate.backward() # little piece of backprop (chain rule applied)
        return inputs gradients
```

Modularized implementation: forward / backward API



Modularized implementation: forward / backward API



(x,y,z are scalars)

```
class MultiplyGate(object):
   def forward(x,y):
        z = x*y
        self.x = x # must keep these around!
        self.y = y
        return z
   def backward(dz):
        dx = self.y * dz # [dz/dx * dL/dz]
        dy = self.x * dz # [dz/dy * dL/dz]
        return [dx, dy]
```


Example: Caffe layers

Branch: master ▼ caffe / src / ca	affe / layers /	eate new file	Upload files	Find file	Histor
shelhamer committed on GitHub	Merge pull request #4630 from BIGene/load_hdf5_fix		Latest commit	e687a71 21	days ag
absval_layer.cpp	dismantle layer headers			a	year ag
absval_layer.cu	dismantle layer headers			a	year ag
accuracy_layer.cpp	dismantle layer headers			a	year ag
argmax_layer.cpp	dismantle layer headers			a	year ag
base_conv_layer.cpp	enable dilated deconvolution			а	year ag
base_data_layer.cpp	Using default from proto for prefetch			3 mo	nths ag
base_data_layer.cu	Switched multi-GPU to NCCL			3 mo	nths ag
abatch_norm_layer.cpp	Add missing spaces besides equal signs in batch_norm_layer	срр		4 mo	nths ag
batch_norm_layer.cu	dismantle layer headers			a	year ag
abatch_reindex_layer.cpp	dismantle layer headers			a	year ag
abatch_reindex_layer.cu	dismantle layer headers			a	year ag
i bias_layer.cpp	Remove incorrect cast of gemm int arg to Dtype in BiasLayer			a	year ag
i bias_layer.cu	Separation and generalization of ChannelwiseAffineLayer into	o BiasLayer		a	year ag
bnll_layer.cpp	dismantle layer headers			a	year ag
■ bnll_layer.cu	dismantle layer headers			a	year ag
concat_layer.cpp	dismantle layer headers			а	year ag
concat_layer.cu	dismantle layer headers			а	year ag
contrastive_loss_layer.cpp	dismantle layer headers			а	year ag
contrastive_loss_layer.cu	dismantle layer headers			а	year ag
conv_layer.cpp	add support for 2D dilated convolution			а	year ag
conv_layer.cu	dismantle layer headers Caffe is licensed under BSD 2-Clause			а	year ag
crop_layer.cpp	remove redundant operations in Crop layer (#5138)			2 mo	nths ag
crop_layer.cu	remove redundant operations in Crop layer (#5138)			2 mo	nths ag
cudnn_conv_layer.cpp	dismantle layer headers			a	year ag
cudnn_conv_layer.cu	Add cuDNN v5 support, drop cuDNN v3 support			11 mo	nths ag

cudnn_lcn_layer.cpp	dismantle layer headers	a year ago
cudnn_lcn_layer.cu	dismantle layer headers	a year ago
cudnn_lrn_layer.cpp	dismantle layer headers	a year ago
cudnn_lrn_layer.cu	dismantle layer headers	a year ago
cudnn_pooling_layer.cpp	dismantle layer headers	a year ago
cudnn_pooling_layer.cu	dismantle layer headers	a year ago
cudnn_relu_layer.cpp	Add cuDNN v5 support, drop cuDNN v3 support	11 months ago
cudnn_relu_layer.cu	Add cuDNN v5 support, drop cuDNN v3 support	11 months ago
cudnn_sigmoid_layer.cpp	Add cuDNN v5 support, drop cuDNN v3 support	11 months ago
cudnn_sigmoid_layer.cu	Add cuDNN v5 support, drop cuDNN v3 support	11 months ago
cudnn_softmax_layer.cpp	dismantle layer headers	a year ago
cudnn_softmax_layer.cu	dismantle layer headers	a year ago
cudnn_tanh_layer.cpp	Add cuDNN v5 support, drop cuDNN v3 support	11 months ago
cudnn_tanh_layer.cu	Add cuDNN v5 support, drop cuDNN v3 support	11 months ago
adata_layer.cpp	Switched multi-GPU to NCCL	3 months ago
deconv_layer.cpp	enable dilated deconvolution	a year ago
deconv_layer.cu	dismantle layer headers	a year ago
dropout_layer.cpp	supporting N-D Blobs in Dropout layer Reshape	a year ago
dropout_layer.cu	dismantle layer headers	a year ago
dummy_data_layer.cpp	dismantle layer headers	a year ago
eltwise_layer.cpp	dismantle layer headers	a year ago
eltwise_layer.cu	dismantle layer headers	a year ago
elu_layer.cpp	ELU layer with basic tests	a year ago
elu_layer.cu	ELU layer with basic tests	a year ago
embed_layer.cpp	dismantle layer headers	a year ago
embed_layer.cu	dismantle layer headers	a year ago
euclidean_loss_layer.cpp	dismantle layer headers	a year ago
euclidean_loss_layer.cu	dismantle layer headers	a year ago
exp_layer.cpp	Solving issue with exp layer with base e	a year ago
exp_layer.cu	dismantle layer headers	a year ago


```
#include <cmath>
    #include <vector>
                                                                                                                                 Caffe Sigmoid Layer
    #include "caffe/layers/sigmoid layer.hpp"
    namespace caffe {
    template <typename Dtype>
    inline Dtype sigmoid(Dtype x) {
     return 1. / (1. + exp(-x));
    template <typename Dtype>
    void SigmoidLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
     const vector<Blob<Dtype>*>& top) {
     const Dtype* bottom_data = bottom[0]->cpu_data();
     Dtype* top_data = top[0]->mutable_cpu_data();
                                                                                                     \sigma(x) =
     const int count = bottom[0]->count();
     for (int i = 0; i < count; ++i) {
      top_data[i] = sigmoid(bottom_data[i]);
    template <typename Dtype>
    void SigmoidLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
       const vector<bool>& propagate_down,
       const vector<Blob<Dtype>*>& bottom) {
     if (propagate_down[0]) {
       const Dtype* top_data = top[0]->cpu_data();
       const Dtype* top_diff = top[0]->cpu_diff();
       Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
       const int count = bottom[0]->count();
                                                                                                     (1 - \sigma(x)) \sigma(x) * top_diff (chain rule)
       for (int i = 0; i < count; ++i) {
         const Dtype sigmoid_x = top_data[i];
         bottom_diff[i] = top_diff[i] * sigmoid_x * (1. - sigmoid_x);
40 #1fdef CPU_ONLY
41 STUB_GPU(SigmoidLayer);
44 INSTANTIATE_CLASS(SigmoidLayer);
47 } // namespace caffe
  Caffe is licensed under BSD 2-Clause
```


Backpropagation does not really spell out how to **efficiently** carry out the necessary computations

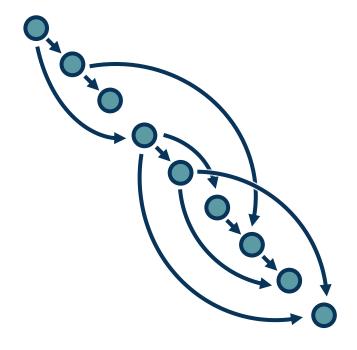
But the idea can be applied to **any directed acyclic graph** (DAG)

 Graph represents an ordering constraining which paths must be calculated first

Given an ordering, we can then iterate from the last module backwards, **applying the chain rule**

- We will store, for each node, its gradient outputs for efficient computation
- We will do this automatically by computing backwards function for primitives and as you write code, express the function with them

This is called reverse-mode automatic differentiation

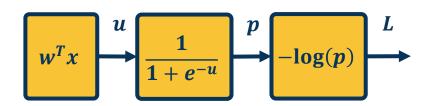


Computation = Graph

- Input = Data + Parameters
- Output = Loss
- Scheduling = Topological ordering

Auto-Diff

 A family of algorithms for implementing chain-rule on computation graphs



Automatic differentiation:

- Carries out this procedure for us on arbitrary graphs
- Knows derivatives of primitive functions
- As a result, we just define these (forward) functions and don't even need to specify the gradient (backward) functions!

$$\bar{L} = 1
\bar{p} = \frac{\partial L}{\partial p} = -\frac{1}{p}$$

where
$$p = \sigma(w^T x)$$
 and $\sigma(x) = \frac{1}{1 + e^{-x}}$

$$\overline{u} = \frac{\partial L}{\partial u} = \frac{\partial L}{\partial p} \frac{\partial p}{\partial u} = \overline{p} \sigma (1 - \sigma)$$

$$\overline{w} = \frac{\partial L}{\partial w} = \frac{\partial L}{\partial u} \frac{\partial u}{\partial w} = \overline{u}x^T$$

We can do this in a combined way to see all terms together:

$$\overline{w} = \frac{\partial L}{\partial p} \frac{\partial p}{\partial u} \frac{\partial u}{\partial w} = -\frac{1}{\sigma(w^T x)} \sigma(w^T x) (1 - \sigma(w^T x)) x^T$$
$$= -\left(1 - \sigma(w^T x)\right) x^T$$

This effectively shows gradient flow along path from L to w

$$f(x_1, x_2) = x_1 x_2 + \sin(x_2)$$

$$a_1$$

$$a_2$$

$$\sin()$$

$$x_2$$

We want to find the partial derivative of output f (output) with respect to all intermediate variables

Assign intermediate variables

Simplify notation:

Denote bar as:
$$\overline{a_3} = \frac{\partial f}{\partial a_3}$$

Start at end and move backward

$$f(x_1, x_2) = x_1x_2 + \sin(x_2)$$

$$a_3$$

$$+$$

$$a_1$$

$$sin()$$

$$*$$
Path 1
$$(P1)$$

$$Path 2$$

$$(P2)$$

$$\overline{a_3} = \frac{\partial f}{\partial a_3} = 1$$

$$\overline{a_1} = \frac{\partial f}{\partial a_1} = \frac{\partial f}{\partial a_3} \quad \frac{\partial a_3}{\partial a_1} = \frac{\partial f}{\partial a_3} \quad \frac{\partial (a_1 + a_2)}{\partial a_1} = \frac{\partial f}{\partial a_3} \quad \mathbf{1} = \overline{a_3}$$

$$\overline{a_2} = \frac{\partial f}{\partial a_2} = \frac{\partial f}{\partial a_3} \frac{\partial a_3}{\partial a_2} = \overline{a_3}$$

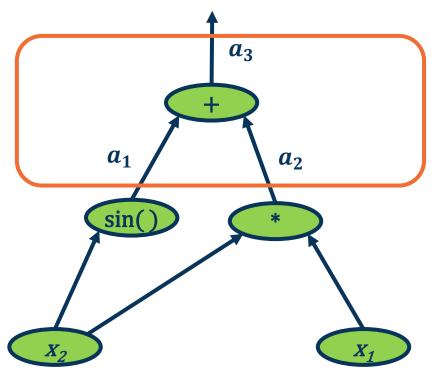
$$\overline{x_2^{P1}} = \frac{\partial f}{\partial a_1} \frac{\partial a_1}{\partial x_2} = \overline{a_1} \cos(x_2)$$

$$\overline{x_2^{P2}} = \frac{\partial f}{\partial a_2} \ \frac{\partial a_2}{\partial x_2} = \frac{\partial f}{\partial a_2} \ \frac{\partial (x_1 x_2)}{\partial x_2} = \overline{a_2} x_1$$
 from multiple paths

$$\overline{x_1} = \frac{\partial f}{\partial a_2} \frac{\partial a_2}{\partial x_1} = \overline{a_2} x_2$$

Gradients summed

$$f(x_1, x_2) = x_1 x_2 + \sin(x_2)$$

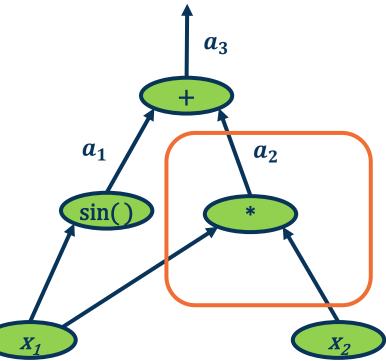


$$\overline{a_1} = \frac{\partial f}{\partial a_1} = \frac{\partial f}{\partial a_3} \quad \frac{\partial a_3}{\partial a_1} = \frac{\partial f}{\partial a_3} \quad \frac{\partial (a_1 + a_2)}{\partial a_1} = \frac{\partial f}{\partial a_3} \quad \mathbf{1} = \overline{a_3}$$

$$\overline{a_2} = \frac{\partial f}{\partial a_2} = \frac{\partial f}{\partial a_3} \frac{\partial a_3}{\partial a_2} = \overline{a_3}$$

Addition operation distributes gradients along all paths!

$$f(x_1, x_2) = x_1 x_2 + \sin(x_2)$$



Multiplication operation is a gradient switcher (multiplies it by the values of the other term)

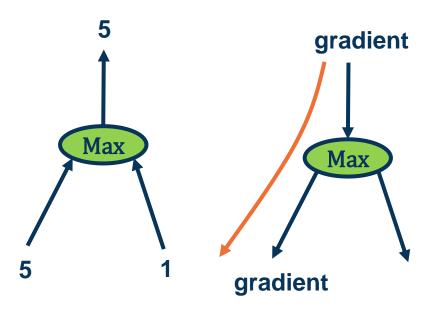
$$\overline{x_2} = \frac{\partial f}{\partial a_2} \frac{\partial a_2}{\partial x_2} = \frac{\partial f}{\partial a_2} \frac{\partial (x_1 x_2)}{\partial x_2} = \overline{a_2} x_1$$

$$\overline{x_1} = \frac{\partial f}{\partial a_2} \frac{\partial a_2}{\partial x_1} = \overline{a_2} x_2$$

Several other patterns as well, e.g.:

Max operation **selects** which path to push the gradients through

- Gradient flows along the path that was "selected" to be max
- This information must be recorded in the forward pass



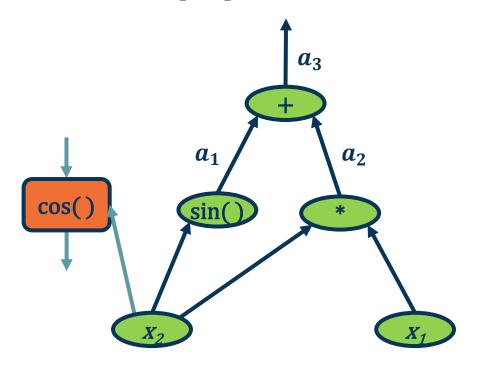
The flow of gradients is one of the most important aspects in deep neural networks

If gradients do not flow backwards properly, learning slows or stops!

- Key idea is to explicitly store computation graph in memory and corresponding gradient functions
- Nodes broken down to basic primitive computations

 (addition, multiplication, log, etc.) for which
 corresponding derivative is known

$$\overline{x_2} = \frac{\partial f}{\partial a_1} \frac{\partial a_1}{\partial x_2} = \overline{a_1} \cos(x_2)$$

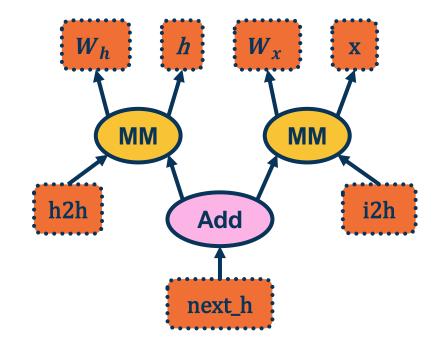


A graph is created on the fly

from torch.autograd import Variable

```
x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h
```

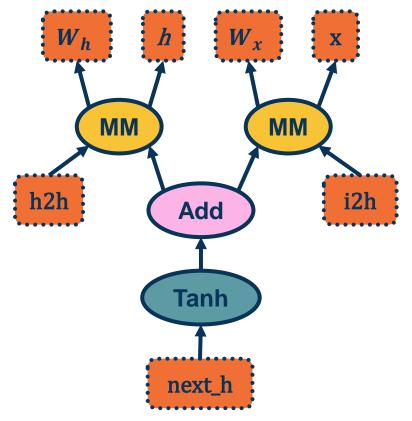


(Note above)

Back-propagation uses the dynamically built graph

from torch.autograd import Variable

```
x = Variable(torch.randn(1, 20))
prev h = Variable(torch.randn(1, 20))
W h = Variable(torch.randn(20, 20))
W x = Variable(torch.randn(20, 20))
i2h = torch.mm(W x, x.t())
h2h = torch.mm(W h, prev h.t())
next h = i2h + h2h
next h = next h.tanh()
next h.backward(torch.ones(1, 20))
```



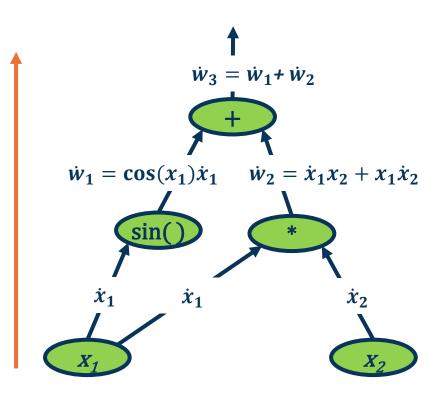
From pytorch.org

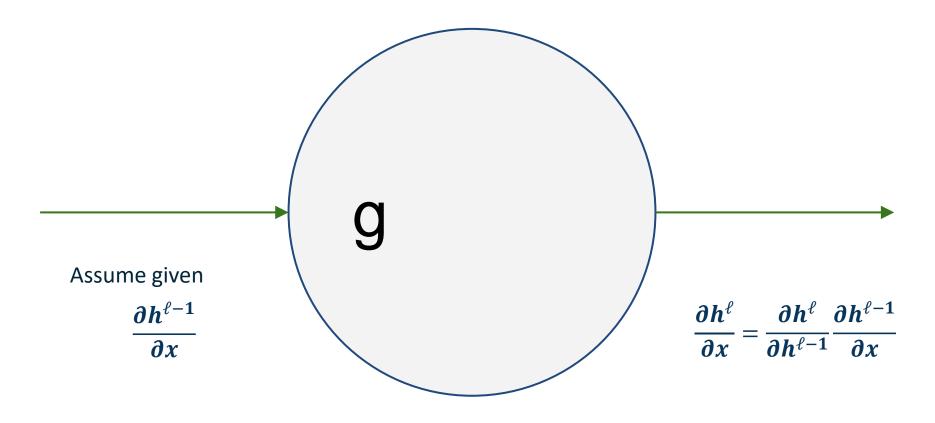
Note that we can also do **forward mode** automatic differentiation

Start from **inputs** and propagate gradients forward

Complexity is proportional to input size

- Memory savings (all forward pass, no need to store activations)
- However, in most cases our inputs (images) are large and outputs (loss) are small





See https://www.cc.gatech.edu/classes/AY2020/cs7643 spring/slides/autodiff forward reverse.pdf

Convolutional network (AlexNet)

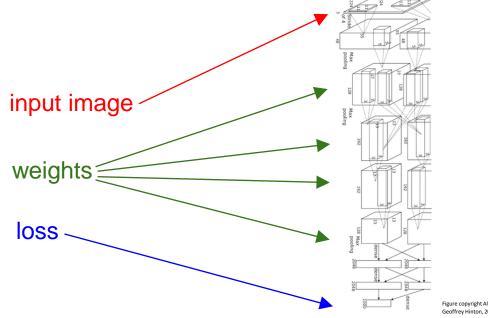


Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Neural Turing Machine

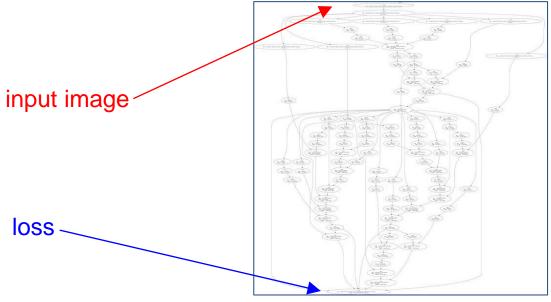
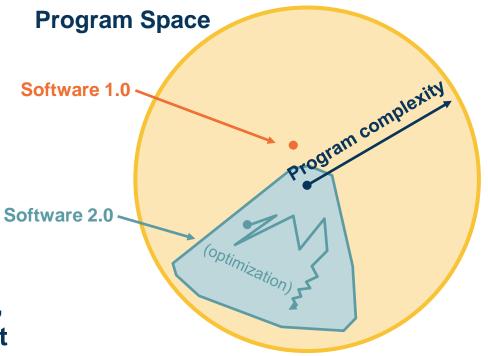


Figure reproduced with permission from a Twitter post by Andrej Karpathy.

- Computation graphs are not limited to mathematical functions!
- Can have control flows (if statements, loops) and backpropagate through algorithms!
- Can be done dynamically so that gradients are computed, then nodes are added, repeat
- Differentiable programming

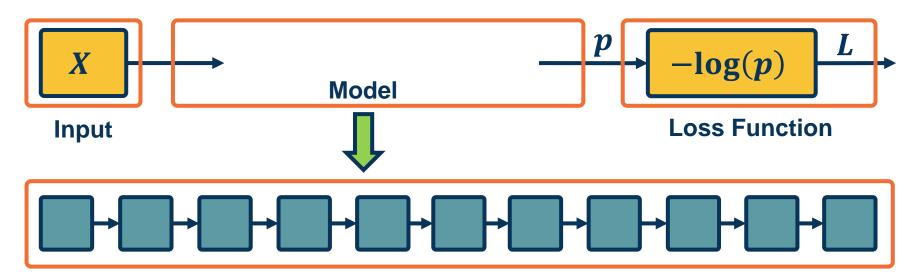


Adapted from figure by Andrej Karpathy

Optimization of Deep **Neural Networks Overview**

Backpropagation, and automatic differentiation, allows us to optimize **any** function composed of differentiable blocks

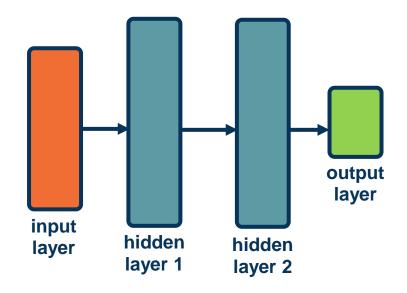
- No need to modify the learning algorithm!
- The complexity of the function is only limited by computation and memory



A network with two or more hidden layers is often considered a **deep** model

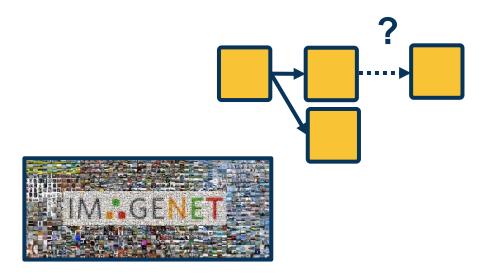
Depth is important:

- Structure the model to represent an inherently compositional world
- Theoretical evidence that it leads to parameter efficiency
- Gentle dimensionality reduction (if done right)



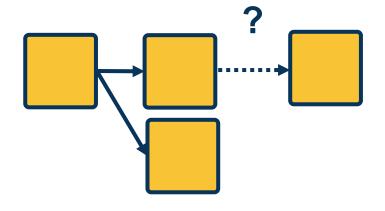
There are still many design decisions that must be made:

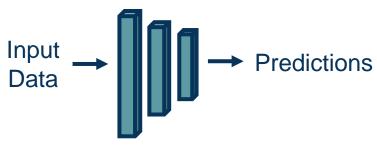
- Architecture
- Data Considerations
- Training and Optimization
- Machine Learning Considerations



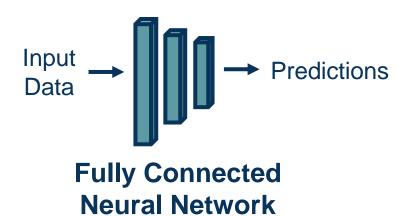
We must design the **neural network** architecture:

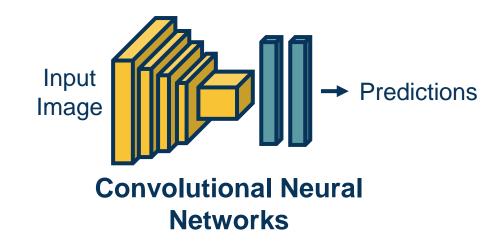
- What modules (layers) should we use?
- How should they be connected together?
- Can we use our domain knowledge to add architectural biases?





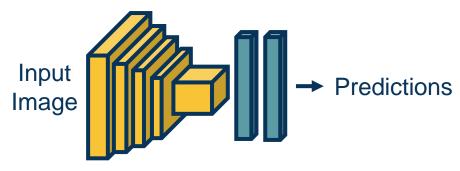
Fully Connected Neural Network



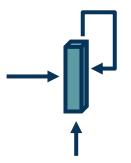




Fully Connected Neural Network

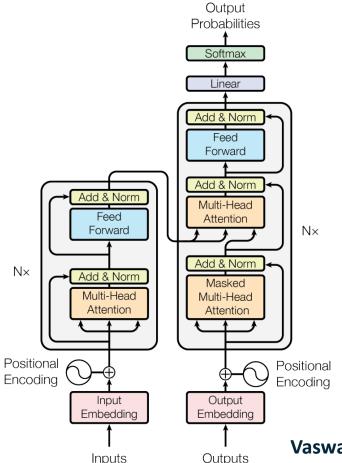


Convolutional Neural Networks



Recurrent Neural Network

Before: Different architectures are suitable for different applications or types of input



Now: Transformers for all input modalities!

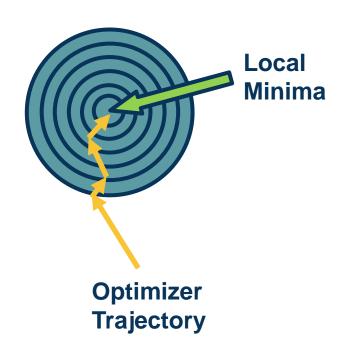
Vaswani et al., Attention Is All You Need

As in traditional machine learning, **data** is key:

- Should we pre-process the data?
- Should we normalize it?
- Can we augment our data by adding noise or other perturbations?

Even given a good neural network architecture, we need a good optimization algorithm to find good weights

- What optimizer should we use?
 - Different optimizers make different weight updates depending on the gradients
- How should we initialize the weights?
- What regularizers should we use?
- What loss function is appropriate?



Machine Learning Considerations

The practice of machine learning is complex: For your particular application you have to trade off all of the considerations together

- Trade-off between model capacity (e.g. measured by # of parameters) and amount of data
- Adding appropriate biases based on knowledge of the domain

