
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:

• Optimization



Administrivia

• Assignment 1 – Due Friday!!! 

• DO NOT SEARCH FOR CODE!!!!

• Note: Syllabus will shift!!!

• Assignment 2

• Implement convolutional neural networks

• Piazza: Start with public posts so that others can benefit!

• Doesn’t mean don’t post!

 

• Meta OH: Data wrangling Friday 02/2 3pm ET
• Full schedule and discussions on https://ai-learning.org/ 

• See dropbox link on piazza @109 for first office hours and link to their lessons

https://ai-learning.org/
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Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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• Gradient Descent
• Compute gradients via 

chain rule
• Backpropagation
• Computation 

Graph +Automatic 
Differentiation
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(x,y,z are scalars)
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Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Computation Graphs in PyTorch

A graph is created on the fly

from torch.autograd import Variable

x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h

𝑾𝒉 h 𝑾𝒙 x

h2h i2h

MM MM

next_h

Add

(Note above)



Computation Graph / 
Global View of Chain Rule

Computational / Tensor View

Backpropagation View 
(Recursive Algorithm)

Graph View

Different Views of Equivalent Ideas



Designing Deep Neural Networks

There are still many design 

decisions that must be made:

⬣ Architecture

⬣ Data Considerations

⬣ Training and 

Optimization

⬣ Machine Learning 

Considerations

?

Local

Minima



The practice of machine learning 

is complex: For your particular 

application you have to trade off all 

of the considerations together

⬣ Trade-off between model 

capacity (e.g. measured by # of 

parameters) and amount of data

⬣ Adding appropriate biases 

based on knowledge of the 

domain

Machine Learning 

Considerations



Architectural 

Considerations



Determining what modules to use, and how to 

connect them is part of the architectural 

design

⬣ Guided by the type of data used and its 

characteristics

⬣ Understanding your data is always the 

first step!

⬣ Lots of data types (modalities) already 

have good architectures

⬣ Start with what others have 

discovered!

⬣ The flow of gradients is one of the key 

principles to use when analyzing layers

Designing the Architecture

?



⬣ Combination of linear and 

non-linear layers

⬣ Combination of only linear 

layers has same 

representational power as one 

linear layer

⬣ Non-linear layers are crucial 

⬣ Composition of non-linear 

layers enables complex 

transformations of the 

data

Linear and Non-Linear Modules

𝒘𝑻𝒙
𝟏

𝟏 + 𝒆−𝒖
−𝐥𝐨𝐠 𝒑

𝒖 𝒑 𝑳

𝒘𝟏
𝑻(𝒘𝟐

𝑻(𝒘𝟑
𝑻𝒙)) = 𝒘𝟒

𝑻x



Several aspects that we can analyze:

⬣ Min/Max

⬣ Correspondence between input & 

output statistics

⬣ Gradients

⬣ At initialization (e.g. small 

values)

⬣ At extremes

⬣ Computational complexity

Analysis of Non-Linear Function



⬣ Min: 0, Max: 1

⬣ Output always positive

⬣ Saturates at both ends

⬣ Gradients

⬣ Vanishes at both end

⬣ Always positive

⬣ Computation: Exponential 

term

Sigmoid Function

Sigmoid

Derivative

𝒉ℓ = 𝝈 (𝒉ℓ−𝟏) 

𝝈 𝒙 =
𝟏

𝟏 + 𝒆−𝒙
𝝏𝑳

𝝏𝒉ℓ−𝟏

𝝏𝑳

𝝏𝒉ℓ𝝏𝑳

𝝏𝑾

𝝏𝑳

𝝏𝑾
=

𝝏𝑳

𝝏𝒉ℓ  
𝝏𝒉ℓ

𝝏𝑾



⬣ Min: -1, Max: 1

⬣ Centered

⬣ Saturates at both ends

⬣ Gradients

⬣ Vanishes at both end

⬣ Always positive

⬣ Still somewhat 

computationally heavy

Tanh Function

tanh
Derivative

𝒉ℓ = 𝒕𝒂𝒏𝒉(𝒉ℓ−𝟏) 



⬣ Min: 0, Max: Infinity

⬣ Output always positive

⬣ No saturation on positive end!

⬣ Gradients

⬣ 𝟎 if 𝐱 ≤ 𝟎 (dead ReLU)

⬣ Constant otherwise (does 

not vanish)

⬣ Cheap to compute (max)

Rectified Linear Unit

𝒉ℓ = 𝒎𝒂𝒙(𝟎, 𝒉ℓ−𝟏) 



⬣ Min: -Infinity, Max: Infinity

⬣ Learnable parameter!

⬣ No saturation 

⬣ Gradients

⬣ No dead neuron

⬣ Still cheap to compute

Leaky ReLU

θ

𝒉ℓ = 𝒎𝒂𝒙(𝜶𝒉ℓ−𝟏, 𝒉ℓ−𝟏) 



⬣ Activation functions is 

still area of research!

⬣ Though many don’t 

catch on

⬣ In Transformer 

architectures, other 

activations such as 

GeLU is common 

Variations: ELU, GeLU, etc.

θ

From "Gaussian Error Linear Units (GELUs)”, Hendrycks & Gimpel



Selecting a Non-Linearity

Which non-linearity should you 

select?

⬣ Unfortunately, no one activation 

function is best for all applications

⬣ ReLU is most common starting 

point

⬣ Sometimes leaky ReLU can 

make a big difference 

⬣ Sigmoid is typically avoided 

unless clamping to values from 

[0,1] is needed



Demo
• http://playground.tensorflow.org

http://playground.tensorflow.org/


Initialization



Initializing the Parameters

The parameters of our model must be 

initialized to something

⬣ Initialization is extremely important!

⬣ Determines how statistics of outputs 

(given inputs) behave

⬣ Determines how well gradients flow in 

the beginning of training (important)

⬣ Could limit use of full capacity of the 

model if done improperly

⬣ Initialization that is close to a good (local) 

minima will converge faster and to a better 

solution



⬣ What happens to the 

weight updates?

⬣ Each node has the same 

input from previous layers 

so gradients will be the 

same

⬣ As a results, all weights 

will be updated to the 

same exact values

A Poor Initialization

Initializing values to a constant value leads to a degenerate solution!

input 
layer

hidden 
layer 1

hidden 
layer 2

output 
layer

𝒘𝒊 = 𝒄 ∀𝒊



⬣ E.g. 𝑵 𝝁, 𝝈  𝒘𝒉𝒆𝒓𝒆 𝝁 = 𝟎, 𝝈 = 𝟎. 𝟎𝟏

⬣ Small weights are preferred since 

no feature/input has prior 

importance

⬣ Keeps the model within the linear 

region of most activation 

functions

Gaussian/Normal Initialization

Common approach is small normally distributed random numbers



⬣ With a deep network, 

activations (outputs of 

nodes) get smaller 

⬣ Standard deviation reduces 

significantly 

⬣ Leads to small updates – 

smaller values multiplied by 

upstream gradients

Limitation of Small Weights

Deeper networks (with many layers) are more sensitive to 

initialization

Distribution of activation values 

of a network with tanh non-

linearities, for increasingly deep 

layers

From "Understanding the difficulty of training deep 

feedforward neural networks." AISTATS, 2010.



⬣ This condition leads to a 

simple initialization rule, 

sampling from uniform 

distribution:

  Uniform −
𝟔

𝒏𝒋+𝒏𝒋+𝟏
, +

𝟔

𝒏𝒋+𝒏𝒋+𝟏

⬣ Where 𝒏𝒋 is fan-in 

(number of input nodes) 

and 𝒏𝒋+𝟏 is fan-out 

(number of output nodes)

Xavier Initialization

Ideally, we’d like to maintain the variance at the output to be similar 

to that of input!

Distribution of activation values 

of a network with tanh non-

linearities, for increasingly deep 

layers

From "Understanding the difficulty of training deep 

feedforward neural networks." AISTATS, 2010.



(Simpler) Xavier and Xavier2 Initialization

In practice, simpler versions perform empirically well:

N 𝟎, 𝟏  ∗
𝟏

𝒏𝒋

⬣ This analysis holds for tanh or similar activations.

⬣ Similar analysis for ReLU activations leads to:

𝑵 𝟎, 𝟏  ∗
𝟏

𝒏𝒋/𝟐

"Delving Deep into Rectifiers:Surpassing Human-Level Performance on ImageNet Classification“, ICCV, 2015.



Key takeaway: Initialization matters!

⬣ Determines the activation (output) 

statistics, and therefore gradient 

statistics 

⬣ If gradients are small, no learning 

will occur and no improvement is 

possible!

⬣ Important to reason about 

output/gradient statistics and 

analyze them for new layers and 

architectures

Summary



Normalization,  

Preprocessing,

and 

Augmentation



In deep learning, data drives 

learning of features and classifier

⬣ Its characteristics are therefore 

extremely important

⬣ Always understand your data!

⬣ Relationship between output 

statistics, layers such as non-

linearities, and gradients is 

important

Importance of Data



Preprocessing

Just like initialization, normalization can 

improve gradient flow and learning

Typically normalization methods apply:

⬣ Subtract mean, divide by standard 

deviation (most common)

⬣ This can be done per dimension

⬣ Whitening, e.g. through Principle 

Component Analysis (PCA) (not 

common)

Data after subtracting mean, 

dividing by standard deviation

Data after whitening

Figure from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Making Normalization a Layer

⬣ We can try to come up with a layer that can normalize the data across 

the neural network

⬣  Given: A mini-batch of data [𝑩 × 𝑫] where 𝑩 is batch size

⬣ Compute mean and variance for each dimension 𝒅

From: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, Sergey Ioffe, Christian Szegedy



Normalizing the Data

Normalize data

ෝ𝒙𝒊 =
𝒙𝒊 −  𝝁𝑩

𝝈𝑩
𝟐 + 𝝐

Note: This part 

does not involve 

new parameters

From: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, Sergey Ioffe, Christian Szegedy



Learnable Scaling and Offset

⬣ We can give the model 

flexibility through 

learnable parameters 

𝜸 (scale) and 𝜷 (shift)

⬣ Network can learn to not 

normalize if necessary!

⬣ This layer is called a 

Batch Normalization 

(BN) layer

From: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, Sergey Ioffe, Christian Szegedy



Some Complexities of BN

During inference, stored 

mean/variances calculated on training 

set are used

Sufficient batch sizes must be used to 

get stable per-batch estimates during 

training

⬣ This is especially an issue when 

using multi-GPU or multi-machine 

training

⬣ Use torch.nn.SyncBatchNorm to 

estimate batch statistics in these 

settings



Where to Apply BN

Normalization especially important before 

non-linearities!

⬣ Very low/high values (un-

normalized/imbalanced data) cause 

saturation

Input

Linear

Layer
BN Non-

Linearity



Variations

From: Group Normalization, Wu et al.

Batch normalization unstable for small batch sizes 



Generalization of BN

There are many variations of batch 

normalization

⬣ See Convolutional Neural 

Network lectures for an example

Resource: 

⬣ ML Explained - Normalization

http://mlexplained.com/2018/11/30/an-overview-of-normalization-methods-in-deep-learning/


Optimizers



Loss Landscape

Deep learning involves complex, 

compositional, non-linear functions

The loss landscape is extremely non-

convex as a result 

There is little direct theory and a lot of 

intuition/rules of thumbs instead

⬣ Some insight can be gained via 

theory for simpler cases (e.g. 

convex settings)



Loss Landscape

It used to be thought that 

existence of local minima is 

the main issue in optimization

There are other more 

impactful issues:

⬣ Noisy gradient estimates

⬣ Saddle points

⬣ Ill-conditioned loss surface From: Identifying and attacking the saddle point problem in high-

dimensional non-convex optimization, Dauphi et al., 2014.

Saddle Point



Noisy Gradients

⬣ We use a subset of the 

data at each iteration to 

calculate the loss (& 

gradients)

⬣ This is an unbiased 

estimator but can have 

high variance

⬣ This results in noisy steps 

in gradient descent

𝑳 =
𝟏

𝑴
 𝑳 (𝒇 𝒙𝒊, 𝑾 , 𝒚𝒊)



Loss Surface Geometry

Several loss surface geometries 

are difficult for optimization

Several types of minima: Local 

minima, plateaus, saddle points

Saddle points are those where the 

gradient of orthogonal directions 

are zero

⬣ But they disagree (it’s min for 

one, max for another)

Plateau

Saddle Point



Adding Momentum

⬣ Gradient descent takes a step in the 

steepest direction (negative gradient)

⬣ Intuitive idea: Imagine a ball rolling 

down loss surface, and use 

momentum to pass flat surfaces

⬣ Generalizes SGD (𝜷 = 𝟎)

𝒘𝒊 = 𝒘𝒊−𝟏 − 𝜶
𝝏𝑳

𝝏𝒘𝒊

𝒗𝒊 = 𝜷𝒗𝒊−𝟏 +
𝝏𝑳

𝝏𝒘𝒊−𝟏

Update Velocity

(starts as 0, 𝜷 = 𝟎. 𝟗𝟗)

𝒘𝒊 = 𝒘𝒊−𝟏 − 𝜶𝒗𝒊 Update Weights



Accelerated Descent Methods

⬣ Velocity term is an exponential moving average of the gradient

⬣ There is a general class of accelerated gradient methods, with 

some theoretical analysis (under assumptions)

𝒗𝒊 = 𝜷𝒗𝒊−𝟏 +
𝝏𝑳

𝝏𝒘𝒊−𝟏

𝒗𝒊 = 𝜷(𝜷 𝒗𝒊−𝟐 +
𝝏𝑳

𝝏𝒘𝒊−𝟐
) +

𝝏𝑳

𝝏𝒘𝒊−𝟏

=  𝜷𝟐𝒗𝒊−𝟐 + 𝜷
𝝏𝑳

𝝏𝒘𝒊−𝟐
+

𝝏𝑳

𝝏𝒘𝒊−𝟏



Equivalent Momentum Update

Equivalent formulation:

𝒗𝒊 = 𝜷𝒗𝒊−𝟏 − 𝜶
𝝏𝑳

𝝏𝒘𝒊−𝟏

Update Velocity

(starts as 0)

𝒘𝒊 = 𝒘𝒊−𝟏 + 𝒗𝒊 Update Weights



Nesterov Momentum

ෝ𝒘𝒊−𝟏 = 𝒘𝒊−𝟏 +  𝜷𝒗𝒊−𝟏

𝒗𝒊 = 𝜷𝒗𝒊−𝟏 +
𝝏𝑳

𝝏 ෝ𝒘𝒊−𝟏

Key idea: Rather than combining velocity 

with current gradient, go along velocity 

first and then calculate gradient at new 

point

⬣ We know velocity is probably a 

reasonable direction

𝒘𝒊 = 𝒘𝒊−𝟏 − 𝜶 𝒗𝒊

Velocity

New Gradient

Figure Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Note there are several equivalent 

formulations across deep learning 

frameworks!

Resource: 

https://medium.com/the-artificial-

impostor/sgd-implementation-in-

pytorch-4115bcb9f02c 

Momentum

https://medium.com/the-artificial-impostor/sgd-implementation-in-pytorch-4115bcb9f02c
https://medium.com/the-artificial-impostor/sgd-implementation-in-pytorch-4115bcb9f02c
https://medium.com/the-artificial-impostor/sgd-implementation-in-pytorch-4115bcb9f02c


Hessian and Loss Curvature

⬣ Various mathematical ways to 

characterize the loss landscape

⬣ If you liked Jacobians… meet:

⬣ Gives us information about the 

curvature of the loss surface

First 

order

Second 

order



Condition Number

Condition number is the ratio of 

the largest and smallest eigenvalue 

⬣ Tells us how different the 

curvature is along different 

dimensions

If this is high, SGD will make big 

steps in some dimensions and 

small steps in other dimension

Second-order optimization methods 

divide steps by curvature, but 

expensive to compute



Idea: Have a dynamic learning rate 

for each weight

Several flavors of optimization 

algorithms:

⬣ RMSProp

⬣ Adagrad

⬣ Adam

⬣ …

SGD can achieve similar results in 

many cases but with much more 

tuning

Per-Parameter Learning Rate



Adagrad

𝑮𝒊 = 𝑮𝒊−𝟏 +
𝝏𝑳

𝝏𝒘𝒊−𝟏

𝟐

𝒘𝒊 = 𝒘𝒊−𝟏 −
𝜶

𝑮𝒊 + 𝝐
 

𝝏𝑳

𝝏𝒘𝒊−𝟏

Idea: Use gradient statistics 

to reduce learning rate across 

iterations

Denominator: Sum up 

gradients over iterations

Directions with high 

curvature will have higher 

gradients, and learning rate 

will reduce 
Duchi, et al., “Adaptive Subgradient Methods for Online 

Learning and Stochastic Optimization”

As gradients are 

accumulated learning 

rate will go to zero



RMSProp

𝑮𝒊 = 𝜷𝑮𝒊−𝟏 + 𝟏 − 𝜷
𝝏𝑳

𝝏𝒘𝒊−𝟏

𝟐

𝒘𝒊 = 𝒘𝒊−𝟏 −
𝜶

𝑮𝒊 + 𝝐
 

𝝏𝑳

𝝏𝒘𝒊−𝟏

Solution: Keep a moving 

average of squared 

gradients!

Does not saturate the 

learning rate



Adam

Combines ideas from 

above algorithms

Maintains both first 

and second moment 

statistics for gradients

𝒗𝒊 = 𝜷𝟏 𝒗𝒊−𝟏 + 𝟏 − 𝜷𝟏

𝝏𝑳

𝝏𝒘𝒊−𝟏

𝑮𝒊 = 𝜷𝟐 𝑮𝒊−𝟏 + 𝟏 − 𝜷𝟐

𝝏𝑳

𝝏𝒘𝒊−𝟏

𝟐

𝒘𝒊 = 𝒘𝒊−𝟏 −
𝜶 𝒗𝒊

𝑮𝒊 + 𝝐

But unstable in the beginning 

(one or both of moments will be 

tiny values)

Kingma and Ba, “Adam: A method for stochastic optimization”,

ICLR 2015



Adam

Solution: Time-varying bias 

correction 

Typically 𝜷𝟏 = 𝟎. 𝟗, 𝜷𝟐 = 𝟎. 𝟗𝟗𝟗

So ෝ𝒗𝒊 will be small number 

divided by (1-0.9=0.1) resulting 

in more reasonable values (and 
𝑮𝒊 larger)

𝒗𝒊 = 𝜷𝟏 𝒗𝒊−𝟏 + 𝟏 − 𝜷𝟏

𝝏𝑳

𝝏𝒘𝒊−𝟏

𝑮𝒊 = 𝜷𝟐 𝑮𝒊−𝟏 + 𝟏 − 𝜷𝟐

𝝏𝑳

𝝏𝒘𝒊−𝟏

𝟐

ෝ𝒗𝒊 =
𝒗𝒊

𝟏 − 𝜷𝟏
𝒕  𝑮𝒊 =

𝑮𝒊

𝟏 − 𝜷𝟐
𝒕

𝒘𝒊 = 𝒘𝒊−𝟏 −
𝜶 ෝ𝒗𝒊

𝑮𝒊 + 𝝐



Behavior of Optimizers

Optimizers behave differently 

depending on landscape

Different behaviors such as 

overshooting, stagnating, etc. 

Plain SGD+Momentum can 

generalize better than adaptive 

methods, but requires more tuning 

⬣ See: Luo et al., Adaptive 

Gradient Methods with 

Dynamic Bound of Learning 

Rate, ICLR 2019
From: https://mlfromscratch.com/optimizers-explained/#/

https://openreview.net/pdf?id=Bkg3g2R9FX


Learning Rate Schedules

First order optimization methods have 

learning rates

Theoretical results rely on annealed 

learning rate

Several schedules that are typical:

⬣ Graduate student!

⬣ Step scheduler

⬣ Exponential scheduler

⬣ Cosine scheduler 
From: Leslie Smith, “Cyclical Learning Rates for Training Neural Networks”

Training

Loss



Learning Rate Schedules

First order optimization methods have 

learning rates

Theoretical results rely on annealed 
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