Topics:

• Optimization

CS 4644-DL / 7643-A ZSOLT KIRA

- Assignment 1 Due Friday!!!
 - DO NOT SEARCH FOR CODE!!!!
- Note: Syllabus will shift!!!
- Assignment 2
 - Implement convolutional neural networks
- **Piazza:** Start with public posts so that others can benefit!
 - Doesn't mean don't post!
- Meta OH: Data wrangling Friday 02/2 3pm ET
 - Full schedule and discussions on https://ai-learning.org/
 - See dropbox link on piazza @109 for first office hours and link to their lessons

So Far

- Gradient Descent
- Compute gradients via chain rule
 - Backpropagation
 - Computation
 - Graph +Automatic

Differentiation

↓

 $w_i = w_i - \alpha \frac{\partial L}{\partial w_i}$

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Modularized implementation: forward / backward API

ass M	<pre>ultiplyGate(object):</pre>
def	forward(x,y):
	z = x*y
	<pre>self.x = x # must keep these around!</pre>
	self.y = y
	return z
def	backward(dz):
	dx = self.y * dz # [dz/dx * dL/dz]
	dy = self.x * dz # [dz/dy * dL/dz]
	return [dx, dy]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Example

A graph is created on the fly

from torch.autograd import Variable

```
x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))
```

```
i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h
```


(Note above)

We can do this in a combined way to see all terms together:

$$\begin{split} \overline{w} &= \frac{\partial L}{\partial p} \; \frac{\partial p}{\partial u} \; \frac{\partial u}{\partial w} = -\frac{1}{\sigma(w^T x)} \sigma(w^T x) (1 - \sigma(w^T x)) x^T \\ &= -\left(1 - \sigma(w^T x)\right) x^T \end{split}$$

This effectively shows gradient flow along path from L to w

Computation Graph / Global View of Chain Rule

Computational / Tensor View

Graph View

Backpropagation View (Recursive Algorithm)

Different Views of Equivalent Ideas

There are still many design decisions that must be made:

- Architecture
- Data Considerations
- Training and Optimization
- Machine Learning Considerations

Machine Learning Considerations

The practice of machine learning is complex: For your particular application you have to trade off all of the considerations together

- Trade-off between model capacity (e.g. measured by # of parameters) and amount of data
- Adding appropriate biases based on knowledge of the domain

Architectural Considerations

Determining what modules to use, and how to connect them is part of the **architectural design**

- Guided by the type of data used and its characteristics
 - Understanding your data is always the first step!
- Lots of data types (modalities) already have good architectures
 - Start with what others have discovered!
- The flow of gradients is one of the key principles to use when analyzing layers

- Combination of linear and non-linear layers
- Combination of only linear layers has same representational power as one linear layer
- Non-linear layers are crucial
 - Composition of non-linear layers enables complex transformations of the data

 $w_1^T(w_2^T(w_3^Tx)) = w_4^Tx$

Linear and Non-Linear Modules

Several aspects that we can **analyze**:

- Min/Max
- Correspondence between input & output statistics
- Gradients
 - At initialization (e.g. small values)
 - At extremes
- Computational complexity

- Min: 0, Max: 1
- Output **always positive**
- Saturates at both ends
- Gradients
 - Vanishes at both end
 - Always positive
- Computation: Exponential term

$$h^{\ell} = \sigma (h^{\ell-1})$$
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Georg

Centered

- Saturates at both ends
- Gradients
 - Vanishes at both end
 - Always positive
- Still somewhat computationally heavy

$$h^{\ell} = tanh(h^{\ell-1})$$

- Min: 0, Max: Infinity
- Output always positive
- **No saturation** on positive end!
- Gradients
 - 0 if $x \le 0$ (dead ReLU)
 - Constant otherwise (does not vanish)
- Cheap to compute (max)

$$h^{\ell} = max(0, h^{\ell-1})$$

Rectified Linear Unit

- Min: -Infinity, Max: Infinity
- Learnable parameter!
- No saturation
- Gradients
 - No dead neuron
- Still cheap to compute

$$h^{\ell} = max(\alpha h^{\ell-1}, h^{\ell-1})$$

- Activation functions is still area of research!
 - Though many don't catch on

 In Transformer architectures, other activations such as GeLU is common

From "Gaussian Error Linear Units (GELUs)", Hendrycks & Gimpel

Selecting a Non-Linearity

Which **non-linearity** should you select?

- Unfortunately, no one activation function is best for all applications
- ReLU is most common starting point
 - Sometimes leaky ReLU can make a big difference
- Sigmoid is typically avoided unless clamping to values from [0,1] is needed

Demo

<u>http://playground.tensorflow.org</u>

Initialization

Initializing the Parameters

The parameters of our model must be initialized to something

- Initialization is extremely important!
 - Determines how statistics of outputs (given inputs) behave
 - Determines how well gradients flow in the beginning of training (important)
 - Could limit use of full capacity of the model if done improperly
- Initialization that is close to a good (local) minima will converge faster and to a better solution

Initializing values to a constant value leads to a degenerate solution!

- What happens to the weight updates?
- Each node has the same input from previous layers so gradients will be the same
- As a results, all weights will be updated to the same exact values

input layer 1 hidden layer 2

 $w_i = c \quad \forall i$

Common approach is small normally distributed random numbers

- E.g. $N(\mu, \sigma)$ where $\mu = 0, \sigma = 0.01$
- Small weights are preferred since no feature/input has prior importance
- Keeps the model within the linear region of most activation functions

Deeper networks (with many layers) are more sensitive to initialization

- With a deep network, activations (outputs of nodes) get smaller
 - Standard deviation reduces significantly
- Leads to small updates smaller values multiplied by upstream gradients

Distribution of activation values of a network with tanh nonlinearities, for increasingly deep layers

From "Understanding the difficulty of training deep feedforward neural networks." AISTATS, 2010.

Limitation of Small Weights

Ideally, we'd like to maintain the variance at the output to be similar to that of input!

This condition leads to a simple initialization rule, sampling from uniform distribution:

Uniform
$$\left(-\frac{\sqrt{6}}{n_j+n_{j+1}},+\frac{\sqrt{6}}{n_j+n_{j+1}}\right)$$

Where n_j is fan-in

 (number of input nodes)
 and n_{j+1} is fan-out
 (number of output nodes)

Distribution of activation values of a network with tanh nonlinearities, for increasingly deep layers

From "Understanding the difficulty of training deep feedforward neural networks." AISTATS, **2010.**

Xavier Initialization

In practice, simpler versions perform empirically well:

$$N(0,1) * \sqrt{\frac{1}{n_j}}$$

- This analysis holds for tanh or similar activations.
- Similar analysis for ReLU activations leads to:

$$N(0,1) * \sqrt{\frac{1}{n_j/2}}$$

"Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification", ICCV, 2015.

Summary

Key takeaway: Initialization matters!

- Determines the activation (output) statistics, and therefore gradient statistics
- If gradients are small, no learning will occur and no improvement is possible!
- Important to reason about output/gradient statistics and analyze them for new layers and architectures

Normalization, Preprocessing, and Augmentation

Importance of Data

In deep learning, **data drives learning** of features and classifier

- Its characteristics are therefore extremely important
- Always understand your data!
- Relationship between output statistics, layers such as nonlinearities, and gradients is important

Just like initialization, normalization can improve gradient flow and learning

Typically **normalization methods** apply:

- Subtract mean, divide by standard deviation (most common)
 - This can be done per dimension
- Whitening, e.g. through Principle Component Analysis (PCA) (not common)

Figure from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

- We can try to come up with a *layer* that can normalize the data across the neural network
- Given: A mini-batch of data $[B \times D]$ where B is batch size
- Compute mean and variance for each dimension d

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ, β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance

From: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, Sergey Ioffe, Christian Szegedy

Making Normalization a Layer

Normalize data

$$\widehat{x}_i = \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$

Note: This part does not involve new parameters

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\};$ Parameters to be learned: γ , β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_r^2 + \epsilon}}$ // normalize

From: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, Sergey Ioffe, Christian Szegedy

- We can give the model flexibility through
 learnable parameters γ (scale) and β (shift)
- Network can learn to not normalize if necessary!
- This layer is called a
 Batch Normalization
 (BN) layer

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize

 $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i)$ // scale and shift

From: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, Sergey Ioffe, Christian Szegedy

Learnable Scaling and Offset

Some Complexities of BN

During inference, stored mean/variances calculated on training set are used

Sufficient batch sizes must be used to get stable per-batch estimates during training

- This is especially an issue when using multi-GPU or multi-machine training
- Use torch.nn.SyncBatchNorm to estimate batch statistics in these settings

Normalization especially important before **non-linearities**!

 Very low/high values (unnormalized/imbalanced data) cause saturation

Batch normalization unstable for small batch sizes

From: Group Normalization, Wu et al.

Generalization of BN

There are many variations of batch normalization

 See Convolutional Neural Network lectures for an example

Resource:

ML Explained - Normalization

Optimizers

Deep learning involves complex, compositional, non-linear functions

The **loss landscape** is extremely **nonconvex** as a result

There is **little direct theory** and a **lot of intuition/rules of thumbs** instead

 Some insight can be gained via theory for simpler cases (e.g. convex settings)

It used to be thought that existence of local minima is the main issue in optimization

There are other **more impactful issues**:

- Noisy gradient estimates
- Saddle points
- Ill-conditioned loss surface

From: Identifying and attacking the saddle point problem in highdimensional non-convex optimization, Dauphi et al., 2014.

We use a subset of the data at each iteration to calculate the loss (& gradients)

- This is an unbiased estimator but can have high variance
- This results in noisy steps in gradient descent

 $L = \frac{1}{M} \sum_{i} L(f(x_i, W), y_i)$

Several **loss surface geometries** are difficult for optimization

Several types of minima: Local minima, plateaus, saddle points

Saddle points are those where the gradient of orthogonal directions are zero

 But they disagree (it's min for one, max for another)

- Gradient descent takes a step in the steepest direction (negative gradient)
- Intuitive idea: Imagine a ball rolling down loss surface, and use momentum to pass flat surfaces

 $v_i = \beta v_{i-1} + \frac{\partial L}{\partial w_{i-1}}$ Update Velocity (starts as 0, $\beta = 0.99$)

 $w_i = w_{i-1} - \alpha v_i$ Update Weights

• Generalizes SGD ($\beta = 0$)

$$w_i = w_{i-1} - \alpha \frac{\partial L}{\partial w_i}$$

Adding Momentum

Velocity term is an exponential moving average of the gradient

$$v_i = \beta v_{i-1} + \frac{\partial L}{\partial w_{i-1}}$$

$$v_{i} = \beta (\beta v_{i-2} + \frac{\partial L}{\partial w_{i-2}}) + \frac{\partial L}{\partial w_{i-1}}$$
$$= \beta^{2} v_{i-2} + \beta \frac{\partial L}{\partial w_{i-2}} + \frac{\partial L}{\partial w_{i-1}}$$

There is a general class of accelerated gradient methods, with some theoretical analysis (under assumptions)

Accelerated Descent Methods

Equivalent formulation:

$$egin{aligned} &v_i = eta v_{i-1} - lpha rac{\partial L}{\partial w_{i-1}} & ext{Update Velocity} \ & ext{(starts as 0)} \end{aligned}$$

Key idea: Rather than combining velocity with current gradient, go along velocity **first** and then calculate gradient at new point

 We know velocity is probably a reasonable direction

$$\widehat{w}_{i-1} = w_{i-1} + \beta v_{i-1}$$

$$v_i = \beta v_{i-1} + \frac{\partial L}{\partial \widehat{w}_{i-1}}$$

$$w_i = w_{i-1} - \alpha v_i$$

Figure Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Momentum

Note there are **several equivalent formulations** across deep learning frameworks!

Resource:

https://medium.com/the-artificialimpostor/sgd-implementation-inpytorch-4115bcb9f02c

- Various mathematical ways to characterize the loss landscape
- If you liked **Jacobians**... meet:

 Gives us information about the curvature of the loss surface

Hessian and Loss Curvature

Condition number is the ratio of the largest and smallest eigenvalue

 Tells us how different the curvature is along different dimensions

If this is high, SGD will make **big** steps in some dimensions and **small** steps in other dimension

Second-order optimization methods divide steps by curvature, but expensive to compute

Per-Parameter Learning Rate

Idea: Have a dynamic learning rate for each weight

Several flavors of **optimization algorithms**:

- RMSProp
- Adagrad
- Adam

SGD can achieve similar results in many cases but with much more tuning

Idea: Use gradient statistics to reduce learning rate across iterations

Denominator: Sum up gradients over iterations

Directions with **high curvature will have higher gradients**, and learning rate will reduce $G_{i} = G_{i-1} + \left(\frac{\partial L}{\partial w_{i-1}}\right)^{2}$ $w_{i} = w_{i-1} - \frac{\alpha}{\sqrt{G_{i} + \epsilon}} \frac{\partial L}{\partial w_{i-1}}$

As gradients are accumulated learning rate will go to zero

Duchi, et al., "Adaptive Subgradient Methods for Online Learning and Stochastic Optimization"

Solution: Keep a moving average of squared gradients!

Does not saturate the learning rate

$$G_{i} = \beta G_{i-1} + (1 - \beta) \left(\frac{\partial L}{\partial w_{i-1}}\right)^{2}$$

$$\alpha \qquad \partial L$$

$$w_i = w_{i-1} - \frac{\partial}{\sqrt{G_i + \epsilon}} \frac{\partial u}{\partial w_{i-1}}$$

Combines ideas from above algorithms

Maintains both first and second moment statistics for gradients

$$v_i = \beta_1 v_{i-1} + (1 - \beta_1) \left(\frac{\partial L}{\partial w_{i-1}} \right)$$

$$G_{i} = \beta_{2} G_{i-1} + (1 - \beta_{2}) \left(\frac{\partial L}{\partial w_{i-1}}\right)^{2}$$

$$w_i = w_{i-1} - \frac{\alpha v_i}{\sqrt{G_i + \epsilon}}$$

But unstable in the beginning (one or both of moments will be tiny values)

Kingma and Ba, "Adam: A method for stochastic optimization", ICLR 2015

Solution: Time-varying bias correction

Typically $\beta_1 = 0.9$, $\beta_2 = 0.999$

So \hat{v}_i will be small number divided by (1-0.9=0.1) resulting in more reasonable values (and \hat{G}_i larger)

$$v_{i} = \beta_{1} v_{i-1} + (1 - \beta_{1}) \left(\frac{\partial L}{\partial w_{i-1}}\right)$$
$$G_{i} = \beta_{2} G_{i-1} + (1 - \beta_{2}) \left(\frac{\partial L}{\partial w_{i-1}}\right)^{2}$$

$$\widehat{v}_{i} = \frac{v_{i}}{1 - \beta_{1}^{t}} \quad \widehat{G}_{i} = \frac{G_{i}}{1 - \beta_{2}^{t}}$$
$$w_{i} = w_{i-1} - \frac{\alpha \,\widehat{v}_{i}}{\sqrt{\widehat{G}_{i} + \epsilon}}$$

Optimizers behave differently depending on landscape

Different behaviors such as **overshooting**, **stagnating**, **etc**.

Plain SGD+Momentum can generalize better than adaptive methods, but requires more tuning

See: Luo et al., Adaptive Gradient Methods with Dynamic Bound of Learning Rate, ICLR 2019

From: https://mlfromscratch.com/optimizers-explained/#/

First order optimization methods have learning rates

Theoretical results rely on **annealed** learning rate

Several schedules that are typical:

- Graduate student!
- Step scheduler
- Exponential scheduler
- Cosine scheduler

From: Leslie Smith, "Cyclical Learning Rates for Training Neural Networks"

Learning Rate Schedules

First order optimization methods have learning rates

Theoretical results rely on **annealed** learning rate

Several schedules that are typical:

- Graduate student!
- Step scheduler
- Exponential scheduler
- Cosine scheduler

From: Leslie Smith, "Cyclical Learning Rates for Training Neural Networks"

Learning Rate Schedules

