Topics:

- Optimization Continued
- Convolutional Layers

CS 4644-DL / 7643-A ZSOLT KIRA

- Assignment 1 - due tonight, grace period 02/04
- Assignment 2
- Implement convolutional neural networks
- Meta Lectures: Data wrangling OH recordings available on piazza
- https://gatech.zoom.us/i/92772996427

There are still many design decisions that must be made:

- Architecture
- Data ConsiderationsTraining and Optimization

- Machine Learning Considerations

Designing Deep Neural Networks

Deep learning involves complex, compositional, non-linear functions

The loss landscape is extremely nonconvex as a result

There is little direct theory and a lot of intuition/rules of thumbs instead

- Some insight can be gained via theory for simpler cases (e.g. convex settings)

Several loss surface geometries are difficult for optimization

Several types of minima: Local minima, plateaus, saddle points

Saddle points are those where the gradient of orthogonal directions are zero

- But they disagree (it's min for one, max for another)

NOTE: i is indexing iteration

Gradient descent takes a step in the steepest direction (negative gradient)

- Intuitive idea: Imagine a ball rolling here (not weight)

$$
w_{i}=w_{i-1}-\alpha \frac{\partial L}{\partial w_{i-1}}
$$ down loss surface, and use momentum to pass flat surfaces

$$
\begin{array}{ll}
v_{i}=\beta v_{i-1}+\frac{\partial L}{\partial w_{i-1}} & \begin{array}{l}
\text { Update Velocity } \\
\text { (starts as } 0, \beta=0.99)
\end{array} \\
w_{i}=w_{i-1}-\alpha v_{i} & \text { Update Weights }
\end{array}
$$

- Generalizes SGD ($\boldsymbol{\beta}=\mathbf{0}$)

Key idea: Rather than combining velocity with current gradient, go along velocity first and then calculate gradient at new point

- We know velocity is probably a reasonable direction

$$
\widehat{w}_{i-1}=w_{i-1}+\beta v_{i-1}
$$

Momentum update:
Nesterov Momentum

$$
\begin{gathered}
v_{i}=\beta v_{i-1}+\frac{\partial L}{\partial \widehat{w}_{i-1}} \\
w_{i}=w_{i-1}-\alpha v_{i}
\end{gathered}
$$

Gradient

Momentum

Note there are several equivalent formulations across deep learning frameworks!

Resource:

https://medium.com/the-artificial-impostor/sgd-implementation-in-pytorch-4115bcb9f02c

- Various mathematical ways to characterize the loss landscape
- If you liked Jacobians... meet the

$$
\mathbf{H}=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right]
$$

Gives us information about the curvature of the loss surface

Condition number is the ratio of the largest and smallest eigenvalue

- Tells us how different the curvature is along different dimensions

If this is high, SGD will make big steps in some dimensions and small steps in other dimension

Second-order optimization methods divide steps by curvature, but expensive to compute

Per-Parameter Learning Rate

Idea: Have a dynamic learning rate for each weight

Several flavors of optimization algorithms:

- RMSProp
- Adagrad
- Adam

SGD+Momentum can achieve similar results in many cases but with much more tuning

Idea: Use gradient statisticsto reduce learning rate acrossiterations
Denominator: Sum up gradients over iterations
Directions with high curvature will have higher

$$
\begin{gathered}
G_{i}=G_{i-1}+\left(\frac{\partial L}{\partial w_{i-1}}\right)^{2} \\
w_{i}=w_{i-1}-\frac{\alpha}{\sqrt{\left.G_{i}\right)+\epsilon}} \frac{\partial L}{\partial w_{i-1}}
\end{gathered}
$$

As gradients are accumulated learning rate will go to zero

Solution: Keep a moving average of squared gradients!

Does not saturate the learning rate

$$
\begin{gathered}
G_{i}=\beta G_{i-1}+(1-\beta)\left(\frac{\partial L}{\partial w_{i-1}}\right)^{2} \\
w_{i}=w_{i-1}-\frac{\alpha}{\sqrt{G_{i}+\epsilon}} \frac{\partial L}{\partial w_{i-1}}
\end{gathered}
$$

RMSProp

$$
\begin{gathered}
v_{i}=\beta_{1} v_{i-1}+\left(1-\beta_{1}\right)\left(\frac{\partial L}{\partial w_{i-1}}\right) \\
G_{i}=\beta_{2} G_{i-1}+\left(1-\beta_{2}\right)\left(\frac{\partial L}{\partial w_{i-1}}\right)^{2} \\
w_{i}=w_{i-1}-\frac{\alpha v_{i}}{\sqrt{G_{i}+\epsilon}}
\end{gathered}
$$

But unstable in the beginning (one or both of moments will be tiny values)

Solution: Time-varying bias correction

Typically $\boldsymbol{\beta}_{\mathbf{1}}=\mathbf{0} .9, \boldsymbol{\beta}_{\mathbf{2}}=\mathbf{0} .999$

So $\widehat{v_{i}}$ will be small number divided by (1-0.9=0.1) resulting in more reasonable values (and \widehat{G}_{i} larger)

$$
\begin{aligned}
v_{i} & =\beta_{1} v_{i-1}+\left(1-\beta_{1}\right)\left(\frac{\partial L}{\partial w_{i-1}}\right) \\
G_{i} & =\beta_{2} G_{i-1}+\left(1-\beta_{2}\right)\left(\frac{\partial L}{\partial w_{i-1}}\right)^{2}
\end{aligned}
$$

$$
\begin{gathered}
\widehat{v}_{i}=\frac{v_{i}}{1-\beta_{1}^{i}} \quad \widehat{G_{i}}=\frac{G_{i}}{1-\beta_{2}^{i}} \\
w_{i}=w_{i-1}-\frac{\alpha \widehat{v}_{i}}{\sqrt{\widehat{G}_{i}+\epsilon}}
\end{gathered}
$$

Optimizers behave differently depending on landscape

Different behaviors such as overshooting, stagnating, etc.

Plain SGD+Momentum can

 generalize better than adaptive methods, but requires more tuning- See: Luo et al., Adaptive Gradient Methods with
Dynamic Bound of Learning Rate, ICLR 2019

First order optimization methods have learning rates

Theoretical results rely on annealed learning rate

Several schedules that are typical:

- Graduate student!
- Step scheduler
- Exponential scheduler
- Cosine scheduler

From: Leslie Smith, "Cyclical Learning Rates for Training Neural Networks"

Convolution \& Pooling

The connectivity in linear layers doesn't always make sense

How many parameters?

- $\mathrm{M}^{*} \mathrm{~N}$ (weights) +N (bias)

Hundreds of millions of parameters for just one layer

More parameters => More data needed

Is this necessary?

Limitation of Linear Layers

Image features are spatially localized!

- Smaller features repeated across the image
- Edges
- Color

- Motifs (corners, etc.)
- No reason to believe one feature tends to appear in one location vs. another (stationarity)

Can we induce a bias in the design of a neural network layer to reflect this?

Each node only receives input from $\boldsymbol{K}_{1} \times \boldsymbol{K}_{2}$ window (image patch)

- Region from which a node receives input from is called its receptive field

Advantages:

- Reduce parameters to ($\boldsymbol{K}_{\mathbf{1}} \times \boldsymbol{K}_{\mathbf{2}}+$ 1) $* N$ where N is number of output nodes
- Explicitly maintain spatial information

Do we need to learn location-specific features?

Idea 1: Receptive Fields

rechn

Nodes in different locations can share features

- No reason to think same feature (e.g. edge pattern) can't appear elsewhere
- Use same weights/parameters in computation graph (shared weights)

Advantages:

- Reduce parameters to $\left(\boldsymbol{K}_{\mathbf{1}} \times \boldsymbol{K}_{\mathbf{2}}+\mathbf{1}\right)$
- Explicitly maintain spatial information

Idea 2: Shared Weights

We can learn many such features for this one layer

- Weights are not shared across different feature extractors
- Parameters: $\left(K_{1} \times K_{2}+\right.$ 1) $* \boldsymbol{M}$ where \boldsymbol{M} is number of features we want to learn

Idea 3: Learn Many Features

This operation is extremely common in electrical/computer engineering!

This operation is extremely common in electrical/computer engineering!

From https://en.wikipedia.org/wiki/Convolution

Convolution

This operation is extremely common in electrical/computer engineering!

In mathematics and, in particular, functional analysis, convolution is a mathematical operation on two functions f and g producing a third function that is typically viewed as a modified version of one of the original functions, giving the area overlap between the two functions as a function of the amount that one of the original functions is translated.
Convolution is similar to cross-correlation.
It has applications that include probability, statistics, computer vision, image and signal processing, electrical engineering, and differential equations.

Visual comparison of convolution and cross-correlation.

Notation: $\quad \boldsymbol{F} \otimes(\boldsymbol{G} \otimes \boldsymbol{I})=(\boldsymbol{F} \otimes \boldsymbol{G}) \otimes \boldsymbol{I}$

$$
y_{1}=h_{1} \cdot x_{0}+h_{0} \cdot x_{1}
$$

1D
Convolution $\quad y_{k}=\sum_{n=0} h_{n} \cdot x_{k-n}$

$$
y_{2}=h_{2} \cdot x_{0}+h_{1} \cdot x_{1}+h_{0} \cdot x_{2}
$$

$$
y_{3}=h_{3} \cdot x_{0}+h_{2} \cdot x_{1}+h_{1} \cdot x_{2}+h_{0} \cdot x_{3}
$$

2D
Convolution

$$
K=\left[\begin{array}{lll}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1
\end{array}\right]
$$

$$
y_{0}=h_{0} \cdot x_{0}
$$

2D Discrete Convolution

2D Discrete Convolution

We will make this convolution operation a layer in the neural network

- Initialize kernel values randomly and optimize them!
- These are our parameters (plus a bias term per filter)

1. Flip kernel (rotate 180 degrees)

2. Stride along image

Mathematics of Discrete 2D Convolution

As we have seen:
Convolution: Start at end of kernel and move back

- Cross-correlation: Start in the beginning of kernel and move forward (same as for image)

An intuitive interpretation of the relationship:

- Take the kernel, and rotate 180 degrees along center (sometimes referred to as "flip")
- Perform cross-correlation
- (Just dot-product filter with image!)

$$
K=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

$$
K^{\prime}=\left[\begin{array}{lll}
9 & 8 & 7 \\
6 & 5 & 4 \\
3 & 2 & 1
\end{array}\right]
$$

$y(r, c)=(x * k)(r, c)=\sum_{a=0}^{k_{1}-1} \sum_{b=0}^{k_{2}-1} x(r+a, c+b) k(a, b)$
$(0,0)$

Since we will be learning these kernels, this change does not matter!

Cross-Correlation

$$
X(0: 2,0: 2)=\left[\begin{array}{ccc}
200 & 150 & 150 \\
100 & 50 & 100 \\
25 & 25 & 10
\end{array}\right] \quad K^{\prime}=\left[\begin{array}{ccc}
1 & 0 & -1 \\
2 & 0 & -2 \\
1 & 0 & -1
\end{array}\right] \xrightarrow{\square} \mathrm{X}(0: 2,0: 2) \cdot K^{\prime}=65+\text { bias }
$$

Cross-Correlation

Convolution and Cross-Correlation

Why Bother with Convolutions?

Convolutions are just simple linear operations

Why bother with this and not just say it's a linear layer with small receptive field?

- There is a duality between them during backpropagation
- Convolutions have various mathematical properties people care
 about
- This is historically how it was inspired

Input \& Output Sizes

Convolution Layer Hyper-Parameters

Parameters

- in_channels (int) - Number of channels in the input image
- out_channels (int) - Number of channels produced by the convolution
- kernel_size (int or tuple) - Size of the convolving kernel
- stride (int or tuple, optional) - Stride of the convolution. Default: 1
- padding (int or tuple, optional) - Zero-padding added to both sides of the input. Default: 0
- padding_mode (string, optional) - 'zeros', 'reflect', 'replicate' or 'circular'. Default: 'zeros'

Convolution operations have several hyper-parameters

Output size of vanilla convolution operation is $\left(\boldsymbol{H}-\boldsymbol{k}_{\mathbf{1}}+\mathbf{1}\right) \times\left(\boldsymbol{W}-\boldsymbol{k}_{\mathbf{2}}+\mathbf{1}\right)$

- This is called a "valid" convolution and only applies kernel within image

Valid Convolution

We can pad the images to make the output the same size:

- Zeros, mirrored image, etc.
- Note padding often refers to pixels added to one size ($\mathbf{P}=\mathbf{1}$ here)

$W+2$

$W+2-k_{2}+1$

We can move the filter along the image using larger steps (stride)This can potentially result in loss of information

- Can be used for dimensionality reduction (not recommended)

Stride can result in skipped pixels, e.g. stride of 3 for 5×5 input

W

Invalid Stride

We have shown inputs as a one-channel image but in reality they have three channels (red, green, blue)

- In such cases, we have 3-channel kernels!

Image

Kernel

Feature Map

We have shown inputs as a one-channel image but in reality they have three channels (red, green, blue)

- In such cases, we have 3-channel kernels!

Similar to before, we perform element-wise multiplication between kernel and image patch, summing them up (dot product)

- Except with $\boldsymbol{k}_{\mathbf{1}} * \boldsymbol{k}_{\mathbf{2}} * \mathbf{3}$ values

Image

We can have multiple kernels per layer

- We stack the feature maps together at the output

Number of
channels in output is equal to number of kernels

Image

Kernels

Feature Maps

Number of parameters with N filters is: $\boldsymbol{N} *\left(\boldsymbol{k}_{\mathbf{1}} * \boldsymbol{k}_{\mathbf{2}} * \mathbf{3 + 1}\right)$

- Example:

$$
k_{1}=3, k_{2}=3, N=4 \text { input channels }=3 \text {, then }(3 * 3 * 3+1) * 4=112
$$

Image

Kernels

Feature Maps

Just as before, in practice we can vectorize this operation

- Step 1: Lay out image patches in vector form (note can overlap!)

Input Image

Adapted from: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

Vectorization

 rechJust as before, in practice we can vectorize this operation

- Step 2: Multiple patches by kernels

Input Matrix

- We will have a new layer: Convolution layer
- Mathematical way of representing a strided filter
- Equivalent view: Each output node is connected to window, not all input pixels
- Kernels/filters/features are learned
- Implementation is actually cross-correlation! (but it doesn't matter)
- Next time: How do we compute the gradients across this layer?
- Need to reason about what input/weight pixel is affecting what output pixel!

