Topics:

- Optimization Continued
- Convolutional Layers

CS 4644-DL / 7643-A ZSOLT KIRA

Assignment 1 – due tonight, grace period 02/04

Assignment 2

Implement convolutional neural networks

- Meta Lectures: Data wrangling OH recordings available on piazza
 - https://gatech.zoom.us/j/92772996427

There are still many design decisions that must be made:

- Architecture
- Data Considerations
- Training and Optimization
- Machine Learning Considerations

Deep learning involves complex, compositional, non-linear functions

The **loss landscape** is extremely **non-convex** as a result

There is **little direct theory** and a **lot of intuition/rules of thumbs** instead

 Some insight can be gained via theory for simpler cases (e.g. convex settings)

Several **loss surface geometries** are difficult for optimization

Several types of minima: Local minima, plateaus, saddle points

Saddle points are those where the gradient of orthogonal directions are zero

 But they disagree (it's min for one, max for another)

- Gradient descent takes a step in the steepest direction (negative gradient)
- Intuitive idea: Imagine a ball rolling down loss surface, and use momentum to pass flat surfaces

$$v_i = \beta v_{i-1} + \frac{\partial L}{\partial w_{i-1}}$$
 Update Velocity (starts as 0, $\beta = 0.99$)

$$w_i = w_{i-1} - \alpha v_i$$

Update Weights

• Generalizes SGD ($\beta = 0$)

NOTE: *i* is indexing *iteration* here (not weight)

$$w_i = w_{i-1} - \alpha \frac{\partial L}{\partial w_{i-1}}$$

Key idea: Rather than combining velocity with current gradient, go along velocity **first** and then calculate gradient at new point

 We know velocity is probably a reasonable direction

$$\widehat{w}_{i-1} = w_{i-1} + \beta v_{i-1}$$

$$v_i = \beta v_{i-1} + \frac{\partial L}{\partial \widehat{w}_{i-1}}$$

$$w_i = w_{i-1} - \alpha v_i$$

Momentum update:

Nesterov Momentum

Figure Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Momentum

Note there are **several equivalent formulations** across deep learning frameworks!

Resource:

https://medium.com/the-artificialimpostor/sgd-implementation-inpytorch-4115bcb9f02c

- Various mathematical ways to characterize the loss landscape
- If you liked Jacobians... meet the

$$\mathbf{H} = egin{bmatrix} rac{\partial^2 f}{\partial x_1^2} & rac{\partial^2 f}{\partial x_1 \, \partial x_2} & \cdots & rac{\partial^2 f}{\partial x_1 \, \partial x_n} \ & & & rac{\partial^2 f}{\partial x_2 \, \partial x_1} & rac{\partial^2 f}{\partial x_2^2} & \cdots & rac{\partial^2 f}{\partial x_2 \, \partial x_n} \ & dots & dots & dots & dots \ rac{\partial^2 f}{\partial x_n \, \partial x_1} & rac{\partial^2 f}{\partial x_n \, \partial x_2} & \cdots & rac{\partial^2 f}{\partial x_n^2} \ \end{bmatrix}$$

 Gives us information about the curvature of the loss surface

Condition number is the ratio of the largest and smallest eigenvalue

 Tells us how different the curvature is along different dimensions

If this is high, SGD will make **big** steps in some dimensions and **small** steps in other dimension

Second-order optimization methods divide steps by curvature, but expensive to compute

Per-Parameter Learning Rate

Idea: Have a dynamic learning rate for each weight

Several flavors of **optimization algorithms**:

- RMSProp
- Adagrad
- Adam
- - ...

SGD+Momentum can achieve similar results in many cases but with much more tuning

Idea: Use gradient statistics to reduce learning rate across iterations

Denominator: Sum up gradients over iterations

Directions with high curvature will have higher gradients, and learning rate will reduce

$$G_{i} = G_{i-1} + \left(\frac{\partial L}{\partial w_{i-1}}\right)^{2}$$

$$w_{i} = w_{i-1} - \frac{\alpha}{G_{i} + \epsilon} \frac{\partial L}{\partial w_{i-1}}$$

As gradients are accumulated learning rate will go to zero

Duchi, et al., "Adaptive Subgradient Methods for Online Learning and Stochastic Optimization"

Solution: Keep a moving average of squared gradients!

Does not saturate the learning rate

$$G_i = \beta G_{i-1} + (1 - \beta) \left(\frac{\partial L}{\partial w_{i-1}} \right)^2$$

$$w_i = w_{i-1} - \frac{\alpha}{\sqrt{G_i + \epsilon}} \frac{\partial L}{\partial w_{i-1}}$$

Combines ideas from above algorithms

Maintains both gradient and squared statistics for gradients

$$v_i = \beta_1 v_{i-1} + (1 - \beta_1) \left(\frac{\partial L}{\partial w_{i-1}} \right)$$

$$G_i = \beta_2 G_{i-1} + (1 - \beta_2) \left(\frac{\partial L}{\partial w_{i-1}}\right)^2$$

$$w_i = w_{i-1} - \frac{\alpha v_i}{\sqrt{G_i + \epsilon}}$$

But unstable in the beginning (one or both of moments will be tiny values)

Kingma and Ba, "Adam: A method for stochastic optimization", ICLR 2015

Solution: Time-varying bias correction

Typically $\beta_1 = 0.9$, $\beta_2 = 0.999$

So $\hat{v_i}$ will be small number divided by (1-0.9=0.1) resulting in more reasonable values (and \hat{G}_i larger)

$$v_i = \beta_1 v_{i-1} + (1 - \beta_1) \left(\frac{\partial L}{\partial w_{i-1}} \right)$$

$$G_i = \beta_2 G_{i-1} + (1 - \beta_2) \left(\frac{\partial L}{\partial w_{i-1}}\right)^2$$

$$\widehat{v}_{i} = \frac{v_{i}}{1 - \beta_{1}^{i}} \quad \widehat{G}_{i} = \frac{G_{i}}{1 - \beta_{2}^{i}}$$

$$w_{i} = w_{i-1} - \frac{\alpha \widehat{v}_{i}}{\sqrt{\widehat{G}_{i} + \epsilon}}$$

Optimizers behave differently depending on landscape

Different behaviors such as **overshooting**, **stagnating**, **etc.**

Plain SGD+Momentum can generalize better than adaptive methods, but requires more tuning

See: Luo et al., Adaptive Gradient Methods with Dynamic Bound of Learning Rate, ICLR 2019

From: https://mlfromscratch.com/optimizers-explained/#/

First order optimization methods have learning rates

Theoretical results rely on **annealed learning rate**

Several schedules that are typical:

- Graduate student!
- Step scheduler
- Exponential scheduler
- Cosine scheduler

From: Leslie Smith, "Cyclical Learning Rates for Training Neural Networks"

Convolution & Pooling

The connectivity in linear layers doesn't always make sense

How many parameters?

M*N (weights) + N (bias)

Hundreds of millions of parameters for just one layer

More parameters => More data needed

Is this necessary?

Image features are spatially localized!

- Smaller features repeated across the image
 - Edges
 - Color
 - Motifs (corners, etc.)
- No reason to believe one feature tends to appear in one location vs. another (stationarity)

Can we induce a *bias* in the design of a neural network layer to reflect this?

Each node only receives input from $K_1 \times K_2$ window (image patch)

 Region from which a node receives input from is called its receptive field

Advantages:

- Reduce parameters to (K₁× K₂ + 1) * N where N is number of output nodes
- Explicitly maintain spatial information

Do we need to learn location-specific features?

Nodes in different locations can **share** features

- No reason to think same feature (e.g. edge pattern) can't appear elsewhere
- Use same weights/parameters in computation graph (shared weights)

Advantages:

- Reduce parameters to $(K_1 \times K_2 + 1)$
- Explicitly maintain spatial information

We can learn **many** such features for this one layer

- Weights are **not** shared across different feature extractors
- Parameters: $(K_1 \times K_2 + 1) * M$ where M is number of features we want to learn

This operation is **extremely common** in electrical/computer engineering!

From https://en.wikipedia.org/wiki/Convolution

This operation is **extremely common** in electrical/computer engineering!

From https://en.wikipedia.org/wiki/Convolution

This operation is **extremely common** in electrical/computer engineering!

In mathematics and, in particular, functional analysis, **convolution** is a mathematical operation on two functions f and g producing a third function that is typically viewed as a modified version of one of the original functions, giving the area overlap between the two functions as a function of the amount that one of the original functions is translated.

Convolution is similar to **cross-correlation**.

It has **applications** that include probability, statistics, computer vision, image and signal processing, electrical engineering, and differential equations.

Visual comparison of **convolution** and **cross-correlation**.

From https://en.wikipedia.org/wiki/Convolution

Notation:

$$F \otimes (G \otimes I) = (F \otimes G) \otimes I$$

Convolution

2D

1D Convolution
$$y_k = \sum_{n=0}^{N-1} h_n \cdot x_{k-n}$$

$$y_{0} = h_{0} \cdot x_{0}$$

$$y_{1} = h_{1} \cdot x_{0} + h_{0} \cdot x_{1}$$

$$y_{2} = h_{2} \cdot x_{0} + h_{1} \cdot x_{1} + h_{0} \cdot x_{2}$$

$$y_{3} = h_{3} \cdot x_{0} + h_{2} \cdot x_{1} + h_{1} \cdot x_{2} + h_{0} \cdot x_{3}$$

$$\vdots$$

$$K = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

Kernel (or filter)

$$K = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

Output / filter / feature map

We will make this convolution operation a layer in the neural network

- Initialize kernel values randomly and optimize them!
- These are our parameters (plus a bias term per filter)

Image

Kernel (or filter)

$$K = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

Output / filter / feature map

2D Convolution

1. Flip kernel (rotate 180 degrees)

2. Stride along image

$$y(r,c) = (x*k)(r,c) = \sum_{a=-\frac{H-1}{2}}^{\frac{H-1}{2}} \sum_{b=-\frac{W-1}{2}}^{\frac{W-1}{2}} x(a,b) k(r-a,c-b)$$

$$(0,0)$$

$$k_1 = 3$$

$$W = 5 \qquad (\frac{H-1}{2}, \frac{W-1}{2})$$

$$y(0,0) = x(-2,-2)k(2,2) + x(-2,-1)k(2,1) + x(-2,0)k(2,0) + x(-2,1)k(2,-1) + x(-2,2)k(2,-2) + \dots$$

$$y(r,c) = (x*k)(r,c) = \sum_{a=-\frac{K_1-1}{2}}^{\frac{k_1-1}{2}} \sum_{b=-\frac{k_2-1}{2}}^{\frac{k_2-1}{2}} x(r-a,c-b) k(a,b)$$

(0,0)

$$W=5 \qquad (H-1,W-1)$$

$$(-\frac{k_1-1}{2},-\frac{k_2-1}{2})$$

$$k_1 = 3$$

$$k_2 = 3$$
 $(\frac{k_1 - 1}{2}, \frac{k_2 - 1}{2})$

As we have seen:

- Convolution: Start at end of kernel and move back
- Cross-correlation: Start in the beginning of kernel and move forward (same as for image)

An **intuitive interpretation** of the relationship:

- Take the kernel, and rotate 180 degrees along center (sometimes referred to as "flip")
- Perform cross-correlation
- (Just dot-product filter with image!)

$$K = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

$$K' = \begin{bmatrix} 9 & 8 & 7 \\ 6 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

$$y(r,c) = (x * k)(r,c) = \sum_{a=0}^{k_1-1} \sum_{b=0}^{k_2-1} x(r+a,c+b) k(a,b)$$

Since we will be learning these kernels, this change does not matter!

$$X(0:2,0:2) = \begin{bmatrix} 200 & 150 & 150 \\ 100 & 50 & 100 \\ 25 & 25 & 10 \end{bmatrix} \qquad K' = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix}$$

$$\mathsf{K}' = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix}$$

 $X(0:2,0:2) \cdot K' = 65 + bias$

Dot product (element-wise multiply and sum)

Why Bother with Convolutions?

Convolutions are just **simple linear operations**

Why bother with this and not just say it's a linear layer with small receptive field?

- There is a duality between them during backpropagation
- Convolutions have various mathematical properties people care about
- This is historically how it was inspired

Input & Output Sizes

Convolution Layer Hyper-Parameters

Parameters

- in_channels (int) Number of channels in the input image
- out_channels (int) Number of channels produced by the convolution
- kernel_size (int or tuple) Size of the convolving kernel
- stride (int or tuple, optional) Stride of the convolution. Default: 1
- padding (int or tuple, optional) Zero-padding added to both sides of the input. Default: 0
- padding_mode (string, optional) 'zeros', 'reflect', 'replicate' or 'circular'. Default: 'zeros'

Convolution operations have several hyper-parameters

Output size of vanilla convolution operation is $(H - k_1 + 1) \times (W - k_2 + 1)$

This is called a "valid" convolution and only applies kernel within image

(0,0)(0, 0)L k_1 $k_1 = 3$ H $k_2 = 3 (k_1 - 1)$ $W - k_2 + 1$ $k_2 - 1)$ $W = 5 \quad (H - 1, W - 1)$

We can **pad the images** to make the output the same size:

- Zeros, mirrored image, etc.
- ullet Note padding often refers to pixels added to **one size** (P = 1 here)

We can move the filter along the image using larger steps (stride)

- This can potentially result in loss of information
- Can be used for dimensionality reduction (not recommended)

Stride = 2 (every other pixel)

Stride can result in **skipped pixels**, e.g. stride of 3 for 5x5 input

We have shown inputs as a **one-channel image** but in reality they have three channels (red, green, blue)

In such cases, we have 3-channel kernels!

We have shown inputs as a **one-channel image** but in reality they have three channels (red, green, blue)

In such cases, we have 3-channel kernels!

Similar to before, we perform **element-wise multiplication** between kernel and image patch, summing them up **(dot product)**

• Except with $k_1 * k_2 * 3$ values

We can have multiple kernels per layer

We stack the feature maps together at the output

Number of channels in output is equal to *number* of kernels

Feature Maps

Number of parameters with N filters is: $N * (k_1 * k_2 * 3 + 1)$

Example:

$$k_1 = 3, k_2 = 3, N = 4 input channels = 3, then $(3 * 3 * 3 + 1) * 4 = 112$$$

Just as before, in practice we can **vectorize** this operation

Step 1: Lay out image patches in vector form (note can overlap!)

Input Image

Adapted from: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

Just as before, in practice we can **vectorize** this operation

Step 2: Multiple patches by kernels

Adapted from: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

- We will have a new layer: Convolution layer
 - Mathematical way of representing a strided filter
 - Equivalent view: Each output node is connected to window, not all input pixels
 - Kernels/filters/features are learned
 - Implementation is actually cross-correlation! (but it doesn't matter)

- Next time: How do we compute the gradients across this layer?
 - Need to reason about what input/weight pixel is affecting what output pixel!

