Topics:

- Convolutional Neural Networks

CS 4644-DL / 7643-A ZSOLT KIRA

- Assignment 2 Due Feb 19 ${ }^{\text {th }}$
- Implement convolutional neural networks
- Resources (in addition to lectures):
- DL book: Convolutional Networks
- CNN notes https://www.cc.gatech.edu/classes/AY2022/cs7643 spring/assets/L10 cnns notes.pdf
- Backprop notes https://www.cc.gatech.edu/classes/AY2022/cs7643 spring/assets/L10 cnns backprop notes.pdf
- HW2 Tutorial (piazza @113)
- Slower OMSCS lectures on dropbox: Module 2 Lessons 5-6 (M2L5/M2L6) (https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX Uy1TkpF yvizXOnPa?dl=0)
- GPU resources
- For assignments, can use CPU or Google Colab
- Projects:
- Google Cloud Credits
- PACE-ICE

The connectivity in linear layers doesn't always make sense

How many parameters?

- $\mathrm{M}^{*} \mathrm{~N}$ (weights) +N (bias)

Hundreds of millions of parameters for just one layer

More parameters => More data needed

Is this necessary?

Limitation of Linear Layers

Image features are spatially localized!

- Smaller features repeated across the image
- Edges
- Color

- Motifs (corners, etc.)
- No reason to believe one feature tends to appear in one location vs. another (stationarity)

Can we induce a bias in the design of a neural network layer to reflect this?

We can learn many such features for this one layer

- Weights are not shared across different feature extractors
- Parameters: $\left(K_{1} \times K_{2}+\right.$ 1) $* \boldsymbol{M}$ where \boldsymbol{M} is number of features we want to learn

Idea 3: Learn Many Features

This operation is extremely common in electrical/computer engineering!
$x(t) \quad w(t) y(t)$

We will make this convolution operation a layer in the neural network

- Initialize kernel values randomly and optimize them!
- These are our parameters (plus a bias term per filter)

1. Flip kernel (rotate 180 degrees)

2. Stride along image

Mathematics of Discrete 2D Convolution

$y(r, c)=(x * k)(r, c)=\sum_{a=0}^{k_{1}-1} \sum_{b=0}^{k_{2}-1} x(r+a, c+b) k(a, b)$
$(0,0)$

Since we will be learning these kernels, this change does not matter!

Cross-Correlation

$$
X(0: 2,0: 2)=\left[\begin{array}{ccc}
200 & 150 & 150 \\
100 & 50 & 100 \\
25 & 25 & 10
\end{array}\right] \quad K^{\prime}=\left[\begin{array}{ccc}
1 & 0 & -1 \\
2 & 0 & -2 \\
1 & 0 & -1
\end{array}\right] \xrightarrow{\square} \mathrm{X}(0: 2,0: 2) \cdot K^{\prime}=65+\text { bias }
$$

Cross-Correlation

Convolution and Cross-Correlation

Why Bother with Convolutions?

Convolutions are just simple linear operations

Why bother with this and not just say it's a linear layer with small receptive field?

- There is a duality between them during backpropagation
- Convolutions have various mathematical properties people care
 about
- This is historically how it was inspired

Input \& Output Sizes

Convolution Layer Hyper-Parameters

Parameters

- in_channels (int) - Number of channels in the input image
- out_channels (int) - Number of channels produced by the convolution
- kernel_size (int or tuple) - Size of the convolving kernel
- stride (int or tuple, optional) - Stride of the convolution. Default: 1
- padding (int or tuple, optional) - Zero-padding added to both sides of the input. Default: 0
- padding_mode (string, optional) - 'zeros', 'reflect', 'replicate' or 'circular'. Default: 'zeros'

Convolution operations have several hyper-parameters

Output size of vanilla convolution operation is $\left(\boldsymbol{H}-\boldsymbol{k}_{\mathbf{1}}+\mathbf{1}\right) \times\left(\boldsymbol{W}-\boldsymbol{k}_{\mathbf{2}}+\mathbf{1}\right)$

- This is called a "valid" convolution and only applies kernel within image

Valid Convolution

We can pad the images to make the output the same size:

- Zeros, mirrored image, etc.
- Note padding often refers to pixels added to one size ($\mathbf{P}=\mathbf{1}$ here)

$W+2$

$W+2-k_{2}+1$

We can move the filter along the image using larger steps (stride)This can potentially result in loss of information

- Can be used for dimensionality reduction (not recommended)

Stride can result in skipped pixels, e.g. stride of 3 for 5×5 input

W

Invalid Stride

We have shown inputs as a one-channel image but in reality they have three channels (red, green, blue)

- In such cases, we have 3-channel kernels!

Image

Kernel

Feature Map

We have shown inputs as a one-channel image but in reality they have three channels (red, green, blue)

- In such cases, we have 3-channel kernels!

Similar to before, we perform element-wise multiplication between kernel and image patch, summing them up (dot product)

- Except with $\boldsymbol{k}_{\mathbf{1}} * \boldsymbol{k}_{\mathbf{2}} * \mathbf{3}$ values

Image

We can have multiple kernels per layer

- We stack the feature maps together at the output

Number of
channels in output is equal to number of kernels

Image

Kernels

Feature Maps

Number of parameters with N filters is: $\boldsymbol{N} *\left(\boldsymbol{k}_{\mathbf{1}} * \boldsymbol{k}_{\mathbf{2}} * \mathbf{3 + 1}\right)$

- Example:

$$
k_{1}=3, k_{2}=3, N=4 \text { input channels }=3 \text {, then }(3 * 3 * 3+1) * 4=112
$$

Image

Kernels

Feature Maps

Just as before, in practice we can vectorize this operation

- Step 1: Lay out image patches in vector form (note can overlap!)

Input Image

Adapted from: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

Vectorization

 rechJust as before, in practice we can vectorize this operation

- Step 2: Multiple patches by kernels

Input Matrix

Backwards Pass for Convolution Layer

It is instructive to calculate the backwards pass of a convolution layer

$$
K=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

- Similar to fully connected layer, will be simple vectorized linear algebra operation!
- We will see a duality between cross-correlation and convolution

$$
K^{\prime}=\left[\begin{array}{lll}
9 & 8 & 7 \\
6 & 5 & 4 \\
3 & 2 & 1
\end{array}\right]
$$

$$
y(r, c)=(x * k)(r, c)=\sum_{a=0}^{k_{1}-1} \sum_{b=0}^{k_{2}-1} x(r+a, c+b) k(a, b)
$$

$(0,0)$

$$
y(r, c)=(x * k)(r, c)=\sum_{a=0}^{k_{1}-1} \sum_{b=0}^{k_{2}-1} x(r+a, c+b) k(a, b)
$$

$(0,0)$

Some simplification: 1 channel input, 1 kernel (channel output), padding (here 2 pixels on right/bottom) to make output the same size

$$
y(r, c)=(x * k)(r, c)=\sum_{a=0}^{k_{1}-1} \sum_{b=0}^{k_{2}-1} x(r+a, c+b) k(a, b)
$$

$$
|y|=H \times W
$$

∂L
Assume size $\boldsymbol{H} \times \boldsymbol{W}$ (add padding)
∂y
∂L $\overline{\partial y(r, c)}$
to access element

Gradient Terms and Notation

$$
\frac{\partial L}{\partial h^{\ell-1}}=\frac{\partial L}{\partial h^{\ell}} \frac{\partial h^{\ell}}{\partial h^{\ell-1}} \quad \frac{\partial L}{\partial k}=\frac{\partial L}{\partial h^{\ell}} \frac{\partial h^{\ell}}{\partial k}
$$

Gradient for passing back
Gradient for weight update
(weights $=k$, i.e. kernel values)

Gradient for Convolution Layer

$$
\frac{\partial L}{\partial k}=\frac{\partial L}{\partial h^{\ell}} \frac{\partial h^{\ell}}{\partial k}
$$

What does this weight affect at the output?

Gradient for weight update
Calculate one pixel at a time $\frac{\partial L}{\partial \boldsymbol{k}(\boldsymbol{a}, \boldsymbol{b})}$

Everything!

$(0,0)$

What a Kernel Pixel Affects at Output

Need to incorporate all upstream gradients:

Chain Rule:

$$
\frac{\partial L}{\partial k(a, b)}=\sum_{r=0}^{H-1} \sum_{c=0}^{W-1} \frac{\partial L}{\partial y(r, c)} \frac{\partial y(r, c)}{\partial k(a, b)}
$$

Sum over	Upstream	We will all output pixels
gradient (known)		

$$
\frac{\partial y(r, c)}{\partial k(a, b)}=?
$$

Chain Rule over all Output Pixels

$$
\frac{\partial y(r, c)}{\partial k(a, b)}=?
$$

Reasoning:

- Cross-correlation is just "dot product" of kernel and input patch (weighted sum)
- When at pixel $\boldsymbol{y}(\boldsymbol{r}, \boldsymbol{c})$, kernel is on input x such that $\boldsymbol{k}(\mathbf{0}, \mathbf{0})$ is multiplied by $\mathrm{x}(\boldsymbol{r}, \boldsymbol{c})$
- But we want derivative w.r.t. $\boldsymbol{k}(\boldsymbol{a}, \boldsymbol{b})$
- $k(0,0) * x(r, c), k(1,1) * x(r+1, c+1), k(2,2) * x(r+2, c+2)=>$ in general $k(a, b) * x(r+a, c+b)$
- Just like before in fully connected layer, partial derivative w.r.t. $\boldsymbol{k}(\boldsymbol{a}, \boldsymbol{b})$ only has this term (other x terms go away because not multiplied by $\boldsymbol{k}(\boldsymbol{a}, \boldsymbol{b})$).

Chain Rule over all Output Pixels

$$
\frac{\partial y(r, c)}{\partial k(a, b)}=x(r+a, c+b)
$$

Does this look familiar?

$$
\frac{\partial L}{\partial k(a, b)}=\sum_{r=0}^{H-1} \sum_{c=0}^{W-1} \frac{\partial L}{\partial y(r, c)} x(r+a, c+b)
$$

Gradients and Cross-Correlation

Forward Pass

Backward Pass k(0,0)

W

Does this look familiar?

Cross-correlation between upstream gradient and input!
(until $\boldsymbol{k}_{1} \times \boldsymbol{k}_{2}$ output)

$$
\frac{\partial L}{\partial x}=\frac{\partial L}{\partial y} \frac{\partial y}{\partial x}
$$

What does this input pixel affect at the output?

Gradient for input (to pass to prior layer)
Calculate one pixel at a time $\frac{\partial L}{\partial x\left(\boldsymbol{r}^{\prime}, \boldsymbol{c}^{\prime}\right)}$

Neighborhood around it (where part of the kernel touches it)
$(0,0)$

What an Input Pixel Affects at Output

Extents of Kernel Touching the Pixel

This is where the corresponding locations are for the output

Chain rule for affected pixels (sum gradients):

$$
\begin{aligned}
& \frac{\partial L}{\partial x\left(r^{\prime}, c^{\prime}\right)}=\sum_{\text {Pixels }} \frac{\partial L}{\partial y(p)} \frac{\partial y(p)}{\partial x\left(\boldsymbol{r}^{\prime}, c^{\prime}\right)} \\
& \frac{\partial L}{\partial x\left(r^{\prime}, c^{\prime}\right)}=\sum_{a=0}^{k_{1}-1} \sum_{b=0}^{k_{2}-1} \frac{\partial L}{\partial y(?, ?)} \frac{\partial y(?, ?)}{\partial x\left(r^{\prime}, c^{\prime}\right)}
\end{aligned}
$$

$\left(r^{\prime}-k_{1}+1, c^{\prime}-k_{2}+1\right)$

Chain rule for affected pixels (sum gradients):

$$
\begin{aligned}
& \frac{\partial L}{\partial x\left(r^{\prime}, c^{\prime}\right)}=\sum_{\text {Pixels } p} \frac{\partial L}{\partial y(p)} \frac{\partial y(p)}{\partial x\left(r^{\prime}, c^{\prime}\right)} \\
& \frac{\partial L}{\partial x\left(r^{\prime}, c^{\prime}\right)}=\sum_{a=0}^{k_{1}-1} \sum_{b=0}^{k_{2}-1} \frac{\partial L}{\partial y(?, ?)} \frac{\partial y(?, ?)}{\partial x\left(r^{\prime}, c^{\prime}\right) * k\left(0, \boldsymbol{c}^{\prime}\right)} \\
& x\left(r^{\prime}, c^{\prime}\right) * k(1,1) \Rightarrow ?
\end{aligned}
$$

$\left(r^{\prime}-k_{1}+1, c^{\prime}-k_{2}+1\right)$

Chain rule for affected pixels (sum gradients):

$$
\frac{\partial L}{\partial x\left(r^{\prime}, c^{\prime}\right)}=\sum_{\text {Pixels } p} \frac{\partial L}{\partial y(p)} \frac{\partial y(p)}{\partial x\left(r^{\prime}, c^{\prime}\right)}
$$

$$
\begin{aligned}
& x\left(r^{\prime}, c^{\prime}\right) * k(\mathbf{0}, \mathbf{0}) \Rightarrow y\left(r^{\prime}, c^{\prime}\right) \\
& x\left(r^{\prime}, c^{\prime}\right) * k(\mathbf{1}, \mathbf{1}) \Rightarrow y\left(r^{\prime}-\mathbf{1}, c^{\prime}-1\right) \\
& \ldots \\
& x\left(r^{\prime}, c^{\prime}\right) * k(a, b) \Rightarrow y\left(r^{\prime}-a, c^{\prime}-b\right)
\end{aligned}
$$

$$
\frac{\partial L}{\partial x\left(r^{\prime}, c^{\prime}\right)}=\sum_{a=0}^{k_{1}-1} \sum_{b=0}^{k_{2}-1} \frac{\partial L}{\partial y(?, ?)} \frac{\partial y(?, ?)}{\partial x\left(r^{\prime}, c^{\prime}\right)}
$$

$\left(r^{\prime}-k_{1}+1, c^{\prime}-k_{2}+1\right)$

Summing Gradient Contributions

Chain rule for affected pixels (sum gradients):

$$
\frac{\partial L}{\partial x\left(r^{\prime}, c^{\prime}\right)}=\sum_{\text {Pixels } p} \frac{\partial L}{\partial y(p)} \frac{\partial y(p)}{\partial x\left(r^{\prime}, c^{\prime}\right)}
$$

Let's derive it analytically this time (as opposed to visually)
$\frac{\partial L}{\partial x\left(r^{\prime}, c^{\prime}\right)}=\sum_{a=0}^{k_{1}-1} \sum_{b=0}^{k_{2}-1} \frac{\partial L}{\partial y\left(r^{\prime}-a, c^{\prime}-b\right)} \frac{\partial y\left(r^{\prime}-a, c^{\prime}-b\right)}{\partial x\left(r^{\prime}, c^{\prime}\right)}$

Summing Gradient Contributions

Definition of cross-correlation (use $\mathrm{a}^{\prime}, b^{\prime}$ to distinguish from prior variables):

$$
y\left(r^{\prime}, c^{\prime}\right)=(x * k)\left(r^{\prime}, c^{\prime}\right)=\sum_{a^{\prime}=0}^{k_{1}-1} \sum_{b^{\prime}=0}^{k_{2}-1} x\left(r^{\prime}+a^{\prime}, c^{\prime}+b^{\prime}\right) k\left(a^{\prime}, b^{\prime}\right)
$$

Plug in what we actually wanted :

$$
y\left(r^{\prime}-a, c^{\prime}-b\right)=(x * k)\left(r^{\prime}, c^{\prime}\right)=\sum_{a \prime=0}^{k_{1}-1} \sum_{b^{\prime}=0}^{k_{2}-1} x\left(r^{\prime}-a+a^{\prime}, c^{\prime}-b+b^{\prime}\right) k\left(a^{\prime}, b^{\prime}\right)
$$

What is $\frac{\partial y\left(r^{\prime}-a, c^{\prime}-b\right)}{\partial x\left(r^{\prime}, c^{\prime}\right)}=\mathbf{k}(\boldsymbol{a}, \boldsymbol{b})$
(we want term with $\boldsymbol{x}\left(\boldsymbol{r}^{\prime}, \boldsymbol{c}^{\prime}\right)$ in it; this happens when $\mathbf{a}^{\prime}=\mathbf{a}$ and $\mathbf{b}^{\prime}=\mathbf{b}$)

Plugging in to earlier equation:

$$
\frac{\partial L}{\partial x\left(r^{\prime}, c^{\prime}\right)}=\sum_{a=0}^{k_{1}-1} \sum_{b=0}^{k_{2}-1} \frac{\partial L}{\partial y\left(r^{\prime}-a, c^{\prime}-b\right)} \frac{\partial y\left(r^{\prime}-a, c^{\prime}-b\right)}{\partial x\left(r^{\prime}, c^{\prime}\right)}
$$

Does this look familiar?

$$
=\sum_{a=0}^{k_{1}-1} \sum_{b=0}^{k_{2}-1} \frac{\partial L}{\partial y\left(r^{\prime}-a, c^{\prime}-b\right)} k(a, b)
$$

Again, all operations can be implemented via matrix multiplications (same as FC layer)!

Convolution between upstream gradient and kerne!!
(can implement by flipping kernel and cross- correlation)

Backwards is Convolution

- Convolutions are mathematical descriptions of striding linear operation
- In practice, we implement cross-correlation neural networks! (still called convolutional neural networks due to history)
- Can connect to convolutions via duality (flipping kernel)
- Convolution formulation has mathematical properties explored in ECE
- Duality for forwards and backwards:
- Forward: Cross-correlation
- Backwards w.r.t. K: Cross-correlation b/w upstream gradient and input
- Backwards w.r.t. X: Convolution b/w upstream gradient and kernel
- In practice implement via cross-correlation and flipped kernel
- All operations still implemented via efficient linear algebra (e.g. matrixmatrix multiplication)

Summary

